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EEG recordings

EEG recordings of a 11 year old female patient.



A few questions to answer

I Modelling: How to model this?

I Simulation/Numerics:
How to simulate EEG recordings from the
chosen model?

I Statistics:
How to infer such network structure?
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Let’s look at one neural population

Model: 6-dim Jansen-and-Rit NMM (Hamiltonian-type SDE)

dX1(t) = X4(t)dt

dX2(t) = X5(t)dt

dX3(t) = X6(t)dt

dX4(t) =
[
Aa
(
sig(X2(t)−X3(t))

)
−2aX4(t)−a2X1(t)

]
dt + ε̄dW4(t)

dX5(t) =
[
Aa
(
µ +C2sig

(
C1X1(t)

))
−2aX5(t)−a2X2(t)

]
dt + σdW5(t)

dX6(t) =
[
BbC4sig(C3X1(t))−2bX6(t)−b2X3(t)

]
dt + ε̃dW6(t),

(1)

with fixed ε̄, ε̃ � σ and unknown parameters µ,C ,σ .



What can a single sJR-NMM do?

Different activities obtained by modifying the excitation-inhibition-ratio
A/B



It succesfully fits single EEG recording1

1Buckwar, Tamborrino, Tubikanec. Spectral density-based and measure-preserving
ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs.
Stat. Comput. 30 (3), 627-648, 2020.



Modelling of N copuled neural populations

I N populations of neural mass models ⇒ 6N-SDE

I Each population k follows a sJR-NMM with

dX5(t) =
[
Aa
(
µ +C2sig

(
C1X1(t)

))
−2aX5(t)−a2X2(t)

]
dt + σdW5(t)

⇒ dX k
5 (t) =

[
Akak

(
µk +C2,k sig

(
C1,kX

k
1 (t)

)
+

N

∑
j=1,j 6=k

ρjkKjkX
j
1(t)

)
−2akX

k
5 (t)−a2

kX
k
2 (t)

]
dt + σkdW

k
5 (t)

with
* ρjk ∈ {0,1} modelling the directed coupling from the jth to kth pop
* Kjk > 0 modelling the coupling strenght.

I N-dimensional observed output

Y (t) := (Y 1(t), . . . ,Y N(t))>= (X 1
2 (t)−X 1

3 (t), . . . ,XN
2 (t)−XN

3 (t))>, t ∈ [0,T ].

I Now the excitation-inhibitiona ratio A/B, ρij and Kij play a crucial
role



Example: Cascade network - 4 populations, 1 active

Population 1: Setting D: Frequent spiking.
Left columns: ρkj = 0.
Center and Right columns: ρ12 = ρ23 = ρ34 = 1, Kii+1 = 300 (C) vs 500
(R).



Formulation as stochastic Hamiltonian-type system
Each kth population can be written as

d

(
Qk(t)

Pk(t)

)
=

(
∇PHk

(
Qk(t),Pk(t)

)
−∇QHk

(
Qk(t),Pk(t)

)
−2ΓkP

k(t) +Gk(Q(t))

)
dt +

(
O3

Σk

)
dW k(t),

with Hk : R6→ R+
0 given by

Hk(Qk ,Pk) :=
1

2

(∥∥∥Pk
∥∥∥2

+
∥∥∥ΓkQ

k
∥∥∥2
)
,

with:
- gradients ∇PHk

(
Qk(t),Pk(t)

)
= Pk(t) and ∇QHk

(
Qk(t),Pk(t)

)
= Γ2

kQ
k(t)

- 3×3-dimensional diagonal matrix Γk = diag[ak ,ak ,bk ]. and Gk : R3N → R3

given by

Gk(Q(t)) =


Akak sig

(
X k

2 (t)−X k
3 (t)

)
Akak

(
µk +C2,k sig

(
C1,kX

k
1 (t)

)
+

N
∑

j=1,j 6=k
ρjkKjkX

j
1(t)

)
BkbkC4,k sig(C3,kX

k
1 (t))

 ,



Formulation as stochastic Hamiltonian-type system

Putting everything together

d

(
Q(t)
P(t)

)
=

(
P(t)

−Γ2Q(t)−2ΓP(t) +G (Q(t))

)
dt +

(
O3N

Σ

)
dW (t),

with

Q = (Q1, . . . ,QN)> = (X 1
1 ,X

1
2 ,X

1
3 , . . . ,X

N
1 ,XN

2 ,XN
3 )>

P = (P1, . . . ,PN)> = (X 1
4 ,X

1
5 ,X

1
6 , . . . ,X

N
4 ,XN

5 ,XN
6 )>

Γ = diag[a1,a1,b1, . . . ,aN ,aN ,bN ],

Σ = diag[ε1,σ1,ε1, . . . ,εN ,σN ,εN ]



Simulation of stochastic Hamiltonian-type system

We can rewrite

d

(
Q(t)
P(t)

)
=

(
P(t)

−Γ2Q(t)−2ΓP(t) +G (Q(t))

)
dt +

(
O3N

Σ

)
dW (t),

as
dX (t) = (AX (t) +N(X (t))dt + Σ0dW (t),

with X (t) = (Q(t),P(t))T and

A=

(
O3N I3N

−Γ2 −2Γ

)
, N(X (t)) =N(Q(t)) =

(
O3N

G (Q(t))

)
, Σ0 =

(
O3N

Σ

)
.

We will use splitting schemes (⊇ leap-frog) to simulate from it



Splitting integrators for the multi-population sJR-NMM

dX (t) = [AX (t) +N(X (t))]dt + Σ0dW (t)

=

((
O3N I3N

−Γ2 −2Γ

)
X (t) +

(
O3N

G (Q(t))

))
dt +

(
O3N

Σ

)
dW (t).

Step 1: Split the equation into explicitly solvable subequations.

dX [1](t) = AX [1](t)dt + Σ0dW (t)

dX [2](t) = N(X (t))dt

Step 2: Derive the explicit solutions of the subequations.

X [1](ti+1) = ϕ
[1]
∆

(
X [1](ti )

)
= eA∆X [1](ti ) + ξi (∆),

X [2](ti+1) = ϕ
[2]
∆

(
X [2](ti )

)
= X [2](ti ) + ∆

(
03N

G (Q [2](ti ))

)
.

Step 3: Compose the derived explicit solutions.

X̃ S(ti+1) =
(

ϕ
[2]

∆/2
◦ϕ

[1]
∆ ◦ϕ

[2]

∆/2

)(
X̃ S(ti )

)
. (2)



Splitting integrators for the multi-population sJR-NMM

dX (t) = [AX (t) +N(X (t))]dt + Σ0dW (t)

=

((
O3N I3N

−Γ2 −2Γ

)
X (t) +

(
O3N

G (Q(t))

))
dt +

(
O3N

Σ

)
dW (t).

Step 1: Split the equation into explicitly solvable subequations.

dX [1](t) = AX [1](t)dt + Σ0dW (t)

dX [2](t) = N(X (t))dt

Step 2: Derive the explicit solutions of the subequations.

X [1](ti+1) = ϕ
[1]
∆

(
X [1](ti )

)
= eA∆X [1](ti ) + ξi (∆),

X [2](ti+1) = ϕ
[2]
∆

(
X [2](ti )

)
= X [2](ti ) + ∆

(
03N

G (Q [2](ti ))

)
.

Step 3: Compose the derived explicit solutions.

X̃ S(ti+1) =
(

ϕ
[2]

∆/2
◦ϕ

[1]
∆ ◦ϕ

[2]

∆/2

)(
X̃ S(ti )

)
. (2)



Splitting integrators for the multi-population sJR-NMM

dX (t) = [AX (t) +N(X (t))]dt + Σ0dW (t)

=

((
O3N I3N

−Γ2 −2Γ

)
X (t) +

(
O3N

G (Q(t))

))
dt +

(
O3N

Σ

)
dW (t).

Step 1: Split the equation into explicitly solvable subequations.

dX [1](t) = AX [1](t)dt + Σ0dW (t)

dX [2](t) = N(X (t))dt

Step 2: Derive the explicit solutions of the subequations.

X [1](ti+1) = ϕ
[1]
∆

(
X [1](ti )

)
= eA∆X [1](ti ) + ξi (∆),

with ξ (∆)∼N(06N ,C (∆)),Cov(∆) =
∆∫
0
eA(∆−s)Σ0Σ>0

(
eA(∆−s)

)>
ds and

eF∆ =

(
e−Γ∆ (I3N + Γ∆) e−Γ∆∆
−Γ2e−Γ∆∆ e−Γ∆ (I3N −Γ∆)

)
=:

(
ϑ(∆) κ(∆)
ϑ ′(∆) κ ′(∆)

)
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∆

(
X [1](ti )

)
= eA∆X [1](ti ) + ξi (∆),

Cov(∆) =

(
1
4 Γ−3Σ2

(
I3N + κ(∆)ϑ ′(∆)−ϑ 2(∆)

)
1
2 Σ2κ2(∆)

1
2 Σ2κ2(∆) 1

4 Γ−1Σ2
(
I3N + κ(∆)ϑ ′(∆)−κ ′2(∆)

)) .

X [1](ti+1) = ϕ
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∆
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Splitting integrators for the multi-population sJR-NMM



Properties of the derived splitting scheme
The derived splitting scheme

1. is mean-square convergent order 1 if N(X (t)) is globally
Lipschitz (similar results for one-sided globally Lipschitz with
polynomial growth2.

2. is 1-step hypoelliptic.

3. satisfies a discrete Lyapunov condition ⇒ it is geometrically
ergodic.

(More to be discussed):

I It could be used for simulating Langevin dynamics in
HMC.

I Better than leap-frog/MALT.

2Buckwar et al. Appl. Num. Math. 2022



Properties of the derived splitting scheme
The derived splitting scheme

1. is mean-square convergent order 1 if N(X (t)) is globally
Lipschitz (similar results for one-sided globally Lipschitz with
polynomial growth2.

2. is 1-step hypoelliptic.

3. satisfies a discrete Lyapunov condition ⇒ it is geometrically
ergodic.

(More to be discussed):

I It could be used for simulating Langevin dynamics in
HMC.

I Better than leap-frog/MALT.

2Buckwar et al. Appl. Num. Math. 2022



What about inference?



SMC-ABC



Adjusted SMC-ABC

1: for i = 1 : M do
2: repeat
3: Randomly pick (with replacement) θc from the weighted set {Θc,t−1,wt−1}
4: Perturb θc to obtain θ ∗c from qct (·|θc ).

5: Sample θk
d , k = 1, . . . ,dn, from Bernoulli(p̂kt ), where p̂kt = 1

M

M

∑
l=1

θ
k,(l)
d ,t−1.

6: Perturb θd = (θ 1
d , . . . ,θ

dn
d ) to obtain θ ∗d from qdt (·|θd ).

7: Conditioned on θ ∗ = (θ ∗c ,θ
∗
d ), simulate a dataset ỹθ∗ from the model.

8: Compute the summaries s(ỹθ∗ ).
9: Calculate the distance D = d

(
s(y),s(ỹθ∗ )

)
.

10: until D < δt

11: Set θ
(i)
d ,t = θ ∗d and θ

(i)
c,t = θ ∗c

12: Set w̃
(i)
t = πc

(
θ

(i)
c,t

)
/

M

∑
l=1

w
(l)
t−1K

c
t

(
θ

(i)
c,t

∣∣∣θ (l)
c,t−1

)
13: end for

14: Normalise the weights w
(i)
t = w̃

(i)
t /

M

∑
l=1

w̃
(i)
t , for j = 1, . . . ,M



Choice of perturbation kernels

qc
θ

: Optimised Gaussian kernels as in Filippi et al. 2013
(alternatively: copula-based samplers, Picchini and Tamborrino, 2022).

Discrete kernel: a value θd
k ,k = 1, . . . ,dn, sampled from a Bernoulli

distribution at iteration t is either kept with (fixed) probability qstay or
perturbed to 1−θd

k , i.e.

qdt

(
θ

(i)
d ,t

∣∣∣θ (l)
d ,t−1

)
=

dn

∏
k=1

qd ,kt

(
θ
k,(i)
d ,t

∣∣∣θk,(l)
d ,t−1

)
=

dn

∏
k=1

(
p
k,(l)
t

)θ
k,(i)
d ,t
(

1−p
k,(l)
t

)1−θ
k,(i)
d ,t

,

where
p
k,(l)
t =

{
1−qstay, if θ

k,(l)
d ,t−1 = 0 .



Choice of Summary Statistics

Accept θ ∗ if d(s(y),s(ỹθ∗)) < δt .



Choice of Summary Statistics
Accept θ ∗ if d(s(y),s(ỹθ∗)) < δt .

=⇒ Derive summaries based on the characterising model properties: map
the data into something fully characterised by θ .



Choice of Summary Statistics

s(y) :=
{
fk ,Sk ,Zjk ,Rjk

}
j ,k=1,...,N,j 6=k

.

* fk : invariant density of Y k .

* Spectral density Sk of Y k :

Sk (ν) = F{Rk}(ν) =

∞∫
−∞

Rk (τ)e−i2πντ dτ, k ∈ {1, . . . ,N},

where ν denotes the frequency and Rk (τ) = E[Y k (t)Y k (t + τ)], k ∈ {1, . . . ,N}.

* Cross-spectral density Sjk of Y j and Y k :

Sjk (ν) = F{Rjk}(ν) =

∞∫
−∞

Rjk (τ)e−i2πντ dτ,

where Rjk (τ) = E[Y j (t)Y k (t + τ)], j ,k ∈ {1, . . . ,N}, j 6= k.

* Magnitude Square Coherence (MSC):

Zjk (ν) :=
|Sjk (ν)|2

Sj (ν)Sk (ν)
, j ,k ∈ {1, . . . ,N}, j 6= k,

where | · | denotes the magnitude.



Choice of distance measure

We use the Integrate Absolute Error (IAE)3

IAE(g1,g2) :=
∫
R

|g1(x)−g2(x)| dx ∈ R+,

to compute

D(s(y),s(ỹθ )) := v1
1

N

N

∑
k=1

IAE(Ŝk , S̃k) + v2
1

N(N−1)/2

N

∑
j=1,k>j

IAE(Ẑjk , Z̃jk)

+v3
1

N(N−1)

N

∑
j ,k=1,j 6=k

IAE(R̂jk , R̃jk) + v4
1

N

N

∑
k=1

IAE(f̂k , f̃k),

The weights vl ≥ 0, l = 1,2,3,4, are chosen such that the different
summary functions have a comparable impact on the distance measure.

3Buckwar, Tamborrino, Tubikanec, Stat. Comput. 2020



Parameters of interest
(N + 2 +N(N−1))-dimensional parameter vector

θ = (A1, . . . ,AN ,L,c︸ ︷︷ ︸
θc

,vec(P)︸ ︷︷ ︸
θd

),

with

I Ak : Average excitatory synaptic gains.

I P: directed connectivity parameters θd = P = (ρjk)j ,k=1,...,N , with
ρji = {0,1}.

I (L,c) entering into the coupling parameters Kjk as

Kjk := c |j−k|−1L,

- L> 0: coupling strength parameter
- 0� c < 1 determines how fast the the network coupling strength
decreases with distance.



Setting: N = 4 neural populations
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Partially connected network

ABC results A1
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Partially connected network

ABC results ρ12
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ABC results ρ31
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Back to real data

K =


− K12 K13 K14

K21 − K23 K24

K31 K32 − K34

K41 K42 K43 −

=


− L c2L c3L
L − cL c2L
c2L cL − L
c3L c2L L −

 ,

* b and C chosen from pilot study, other quantities fixed according to
standard values.

Parameter of interest: (10+12)-dimensional

θ = (A1,A2,A3,A4,L,c ,σl ,σr ,µl ,µr ,vec(P)).
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ABC results σ (left)
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ABC results σ (right)

3000 6000 9000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

 

 

ABC results μ (left)

0 50 100 150 2000.
00

0.
02

0.
04

0.
06

 

 

ABC results μ (right)

0 50 100 150 2000.
00

0.
02

0.
04

0.
06

 

 

Before seizure: solid green (N = 4)

During seizure: solid blue (N = 4)
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ABC results σ (left)
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ABC results μ (left)
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Before seizure: solid green (N = 4), dotted orange (N = 2, LH), dotted brown
(N = 2, RH).
During seizure: solid blue (N = 4), dashed grey (N = 2, LH), dashed black
(N = 2, RH).
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Fitted summaries
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Odd panels: before seizure. Even panels: during seizure.

Solid black lines: Summaries derived from the EEG datasets.

Grey areas: Range of the summaries obtained from synthetic datasets
simulated using the kept posterior samples from the full model.
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Some references
Today Ditlevsen, Tamborrino, Tubikanec.

Network inference in a stochastic multi-population neural mass model via
approximate Bayesian computation.
Preprint at arXiv:2306.15787, 2023.

I Buckwar, Tamborrino, Tubikanec.
Spectral density-based and measure-preserving ABC for partially observed
diffusion processes. An illustration on Hamiltonian SDEs.
Stat. Comput., 30, 627–648, 2020.

I Picchini, Tamborrino.
Guided sequential ABC for intractable Bayesian models.
Preprint at arXiv:2206.12235, 2022.

I Buckwar, Samson, Tamborrino, Tubikanec.
A splitting method for SDEs with locally Lipschitz drift. An illustration on the
FitzHugh-Nagumo model.
App. Num. Math. 179, 191–220, 2022.

Some interesting ongoing/forthcoming activities

I OneWorldABC (every last Thursday of the month)
www.warwick.ac.uk/oneworldabc

I BioInference2024, 5th-7th June 2024, Warwick.
https://bioinference.github.io/2024/

https://bioinference.github.io/2024/
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Specific choices

I M=500.

I T = 20,∆sim = 10−4,∆obs = 210−3⇒ n = 104.

I δ1 obtained via a reference table acceptance-rejection ABC pilot run.
Under π(θ), we produce 104 distances and then choose
δ1 = median(D1, . . . ,D104 ).

I δt = percentile(D
(t−1)
1 , . . . ,D

(t−1)
M ), with percentile = 50% if accept.

rate > 1%,75% otherwise.

I Stopping criterion: acceptance rate below 0.1%.
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