

Network inference in a stochastic multi-population WARWICK neural mass model via ABC Algorithm Seminar 2023

Massimiliano Tamborrino, Dept. of Statistics, warwick.ac.uk/tamborrino

Can we infer the connectivity structures of brain regions $\mid C K$ before and during epileptic seizure? Do they differ? Algorithm Semina

Massimiliano Tamborrino, Dept. of Statistics, warwick.ac.uk/tamborrino

EEG recordings

EEG recordings of a 11 year old female patient.

A few questions to answer

A few questions to answer

- Modelling: How to model this?

A few questions to answer

- Modelling: How to model this?
- Simulation/Numerics: How to simulate EEG recordings from the chosen model?

A few questions to answer

- Modelling: How to model this?
- Simulation/Numerics: How to simulate EEG recordings from the chosen model?
- Statistics:

How to infer such network structure?

Let's look at one neural population

Model: 6-dim Jansen-and-Rit NMM (Hamiltonian-type SDE)

$$
\begin{align*}
& d X_{1}(t)=X_{4}(t) d t \\
& d X_{2}(t)=X_{5}(t) d t \\
& d X_{3}(t)=X_{6}(t) d t \\
& d X_{4}(t)=\left[\operatorname{Aa}\left(\operatorname{sig}\left(X_{2}(t)-X_{3}(t)\right)\right)-2 a X_{4}(t)-a^{2} X_{1}(t)\right] d t+\bar{\varepsilon} d W_{4}(t) \tag{1}\\
& d X_{5}(t)=\left[\operatorname{Aa}\left(\mu+C_{2} \operatorname{sig}\left(C_{1} X_{1}(t)\right)\right)-2 a X_{5}(t)-a^{2} X_{2}(t)\right] d t+\sigma d W_{5}(t) \\
& d X_{6}(t)=\left[B b C_{4} \operatorname{sig}\left(C_{3} X_{1}(t)\right)-2 b X_{6}(t)-b^{2} X_{3}(t)\right] d t+\tilde{\varepsilon} d W_{6}(t), \\
& \text { with fixed } \bar{\varepsilon}, \tilde{\varepsilon} \ll \sigma \text { and unknown parameters } \mu, C, \sigma .
\end{align*}
$$

What can a single sJR-NMM do?

Different activities obtained by modifying the excitation-inhibition-ratio A/B

Statistics

It succesfully fits single EEG recording ${ }^{1}$

${ }^{1}$ Buckwar, Tamborrino, Tubikanec. Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs. Stat. Comput. 30 (3), 627-648, 2020.

Statistics

Modelling of N copuled neural populations

- N populations of neural mass models $\Rightarrow 6 \mathrm{~N}-\mathrm{SDE}$
- Each population k follows a sJR-NMM with
$d X_{5}(t)=\left[A a\left(\mu+C_{2} \operatorname{sig}\left(C_{1} X_{1}(t)\right)\right)-2 a X_{5}(t)-a^{2} X_{2}(t)\right] d t+\sigma d W_{5}(t)$
$\Rightarrow d X_{5}^{k}(t)=\left[A_{k} a_{k}\left(\mu_{k}+C_{2, k} \operatorname{sig}\left(C_{1, k} X_{1}^{k}(t)\right)+\sum_{j=1, j \neq k}^{N} \rho_{j k} K_{j k} X_{1}^{j}(t)\right)-2 a_{k} X_{5}^{k}(t)-a_{k}^{2} X_{2}^{k}(t)\right] d t+\sigma_{k} d W_{5}^{k}(t$
with
* $\rho_{j k} \in\{0,1\}$ modelling the directed coupling from the j th to k th pop
* $K_{j k}>0$ modelling the coupling strenght.
- N-dimensional observed output

$$
Y(t):=\left(Y^{1}(t), \ldots, Y^{N}(t)\right)^{\top}=\left(X_{2}^{1}(t)-X_{3}^{1}(t), \ldots, X_{2}^{N}(t)-X_{3}^{N}(t)\right)^{\top}, \quad t \in[0, T]
$$

- Now the excitation-inhibitiona ratio $A / B, \rho_{i j}$ and $K_{i j}$ play a crucial role

\ldots Statistics

Example: Cascade network - 4 populations, 1 active

C. Cascade network, $K=500$

Population 1: Setting D: Frequent spiking.
Left columns: $\rho_{k j}=0$.
Center and Right columns: $\rho_{12}=\rho_{23}=\rho_{34}=1, K_{i i+1}=300$ (C) vs 500 (R).

Statistics

Formulation as stochastic Hamiltonian-type system

Each k th population can be written as
$d\binom{Q^{k}(t)}{P^{k}(t)}=\binom{\nabla_{P} H_{k}\left(Q^{k}(t), P^{k}(t)\right)}{-\nabla_{Q} H_{k}\left(Q^{k}(t), P^{k}(t)\right)-2 \Gamma_{k} P^{k}(t)+G_{k}(Q(t))} d t+\binom{\mathbb{O}_{3}}{\Sigma_{k}} d W^{k}(t)$,
with $H_{k}: \mathbb{R}^{6} \rightarrow \mathbb{R}_{0}^{+}$given by

$$
H_{k}\left(Q^{k}, P^{k}\right):=\frac{1}{2}\left(\left\|P^{k}\right\|^{2}+\left\|\Gamma_{k} Q^{k}\right\|^{2}\right)
$$

with:

- gradients $\nabla_{P} H_{k}\left(Q^{k}(t), P^{k}(t)\right)=P^{k}(t)$ and $\nabla_{Q} H_{k}\left(Q^{k}(t), P^{k}(t)\right)=\Gamma_{k}^{2} Q^{k}(t)$
- 3×3-dimensional diagonal matrix $\Gamma_{k}=\operatorname{diag}\left[a_{k}, a_{k}, b_{k}\right]$. and $G_{k}: \mathbb{R}^{3 N} \rightarrow \mathbb{R}^{3}$ given by

$$
G_{k}(Q(t))=\binom{A_{k} a_{k} \operatorname{sig}\left(X_{2}^{k}(t)-X_{3}^{k}(t)\right)}{A_{k} a_{k}\left(\mu_{k}+C_{2, k} \operatorname{sig}\left(C_{1, k} K_{1}^{k}(t)\right)+\sum_{j=1 . j \neq k}^{N} \rho_{j k k} K_{j k} X_{1}^{j}(t)\right)},
$$

Formulation as stochastic Hamiltonian-type system

Putting everything together

$$
d\binom{Q(t)}{P(t)}=\binom{P(t)}{-\Gamma^{2} Q(t)-2 \Gamma P(t)+G(Q(t))} d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t),
$$

with

$$
\begin{aligned}
Q & =\left(Q^{1}, \ldots, Q^{N}\right)^{\top}=\left(X_{1}^{1}, X_{2}^{1}, X_{3}^{1}, \ldots, X_{1}^{N}, X_{2}^{N}, X_{3}^{N}\right)^{\top} \\
P & =\left(P^{1}, \ldots, P^{N}\right)^{\top}=\left(X_{4}^{1}, X_{5}^{1}, X_{6}^{1}, \ldots, X_{4}^{N}, X_{5}^{N}, X_{6}^{N}\right)^{\top} \\
\Gamma & =\operatorname{diag}\left[a_{1}, a_{1}, b_{1}, \ldots, a_{N}, a_{N}, b_{N}\right], \\
\Sigma & =\operatorname{diag}\left[\varepsilon_{1}, \sigma_{1}, \varepsilon_{1}, \ldots, \varepsilon_{N}, \sigma_{N}, \varepsilon_{N}\right]
\end{aligned}
$$

Simulation of stochastic Hamiltonian-type system

We can rewrite

$$
d\binom{Q(t)}{P(t)}=\binom{P(t)}{-\Gamma^{2} Q(t)-2 \Gamma P(t)+G(Q(t))} d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t),
$$

as

$$
d X(t)=\left(A X(t)+N(X(t)) d t+\Sigma_{0} d W(t)\right.
$$

with $X(t)=(Q(t), P(t))^{T}$ and
$A=\left(\begin{array}{cc}\mathbb{O}_{3 N} & \mathbb{I}_{3 N} \\ -\Gamma^{2} & -2 \Gamma\end{array}\right), \quad N(X(t))=N(Q(t))=\binom{\mathbb{O}_{3 N}}{G(Q(t))}, \quad \Sigma_{0}=\binom{\mathbb{O}_{3 N}}{\Sigma}$.
We will use splitting schemes (\supseteq leap-frog) to simulate from it

Splitting integrators for the multi-population sJR-NMM

$$
\begin{aligned}
d X(t) & =[A X(t)+N(X(t))] d t+\Sigma_{0} d W(t) \\
& =\left(\left(\begin{array}{cc}
\mathbb{O}_{3 N} & \mathbb{I}_{3 N} \\
-\Gamma^{2} & -2 \Gamma
\end{array}\right) X(t)+\binom{\mathbb{O}_{3 N}}{G(Q(t))}\right) d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t) .
\end{aligned}
$$

Step 1: Split the equation into explicitly solvable subequations.

Step 2: Derive the explicit solutions of the subequations.

Step 3: Compose the derived explicit solutions.

Splitting integrators for the multi-population sJR-NMM

$$
\begin{aligned}
d X(t) & =[A X(t)+N(X(t))] d t+\Sigma_{0} d W(t) \\
& =\left(\left(\begin{array}{cc}
\mathbb{O}_{3 N} & \mathbb{I}_{3 N} \\
-\Gamma^{2} & -2 \Gamma
\end{array}\right) X(t)+\binom{\mathbb{O}_{3 N}}{G(Q(t))}\right) d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t) .
\end{aligned}
$$

Step 1: Split the equation into explicitly solvable subequations.

$$
\begin{aligned}
d X^{[1]}(t) & =A X^{[1]}(t) d t+\Sigma_{0} d W(t) \\
d X^{[2]}(t) & =N(X(t)) d t
\end{aligned}
$$

Step 2: Derive the explicit solutions of the subequations.

Step 3: Compose the derived explicit solutions.

Splitting integrators for the multi-population sJR-NMM

$$
\begin{aligned}
d X(t) & =[A X(t)+N(X(t))] d t+\Sigma_{0} d W(t) \\
& =\left(\left(\begin{array}{cc}
\mathbb{O}_{3 N} & \mathbb{I}_{3 N} \\
-\Gamma^{2} & -2 \Gamma
\end{array}\right) X(t)+\binom{\mathbb{O}_{3 N}}{G(Q(t)))}\right) d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t) .
\end{aligned}
$$

Step 1: Split the equation into explicitly solvable subequations.

$$
\begin{aligned}
d X^{[1]}(t) & =A X^{[1]}(t) d t+\Sigma_{0} d W(t) \\
d X^{[2]}(t) & =N(X(t)) d t
\end{aligned}
$$

Step 2: Derive the explicit solutions of the subequations.

$$
X^{[1]}\left(t_{i+1}\right)=\varphi_{\Delta}^{[1]}\left(X^{[1]}\left(t_{i}\right)\right)=e^{A \Delta} X^{[1]}\left(t_{i}\right)+\xi_{i}(\Delta)
$$

with $\xi(\Delta) \sim N\left(0_{6 N}, C(\Delta)\right), \operatorname{Cov}(\Delta)=\int_{0}^{\Delta} e^{A(\Delta-s)} \Sigma_{0} \Sigma_{0}^{\top}\left(e^{A(\Delta-s)}\right)^{\top} d s$ and

$$
e^{F \Delta}=\left(\begin{array}{cc}
e^{-\Gamma \Delta}\left(\mathbb{I}_{3 N}+\Gamma \Delta\right) & e^{-\Gamma \Delta \Delta} \\
-\Gamma^{2} e^{-\Gamma \Delta} \Delta & e^{-\Gamma \Delta}\left(\mathbb{I}_{3 N}-\Gamma \Delta\right)
\end{array}\right)=:\left(\begin{array}{cc}
\vartheta(\Delta) & \kappa(\Delta) \\
\vartheta^{\prime}(\Delta) & \kappa^{\prime}(\Delta)
\end{array}\right)
$$

Splitting integrators for the multi-population sJR-NMM

$$
\begin{aligned}
d X(t) & =[A X(t)+N(X(t))] d t+\Sigma_{0} d W(t) \\
& =\left(\left(\begin{array}{cc}
\mathbb{O}_{3 N} & \mathbb{I}_{3 N} \\
-\Gamma^{2} & -2 \Gamma
\end{array}\right) X(t)+\binom{\mathbb{O}_{3 N}}{G(Q(t)))}\right) d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t) .
\end{aligned}
$$

Step 1: Split the equation into explicitly solvable subequations.

$$
\begin{aligned}
d X^{[1]}(t) & =A X^{[1]}(t) d t+\Sigma_{0} d W(t) \\
d X^{[2]}(t) & =N(X(t)) d t
\end{aligned}
$$

Step 2: Derive the explicit solutions of the subequations.

$$
X^{[1]}\left(t_{i+1}\right)=\varphi_{\Delta}^{[1]}\left(X^{[1]}\left(t_{i}\right)\right)=e^{A \Delta} X^{[1]}\left(t_{i}\right)+\xi_{i}(\Delta)
$$

$\operatorname{Cov}(\Delta)=\left(\begin{array}{cc}\frac{1}{4} \Gamma^{-3} \Sigma^{2}\left(\mathbb{I}_{3 N}+\kappa(\Delta) \vartheta^{\prime}(\Delta)-\vartheta^{2}(\Delta)\right) & \frac{1}{2} \Sigma^{2} \kappa^{2}(\Delta) \\ \frac{1}{2} \Sigma^{2} \kappa^{2}(\Delta) & \frac{1}{4} \Gamma^{-1} \Sigma^{2}\left(\mathbb{I}_{3 N}+\kappa(\Delta) \vartheta^{\prime}(\Delta)-\kappa^{\prime 2}(\Delta)\right)\end{array}\right.$

Statistics

Step 3: Compose the derived explicit solutions.

Splitting integrators for the multi-population sJR-NMM

$$
\left.\left.\begin{array}{rl}
d X(t) & =[A X(t)+N(X(t))] d t+\Sigma_{0} d W(t) \\
& =\left(\left(\left(\begin{array}{c}
\mathbb{O}_{3 N} \\
-\Gamma_{3 N} \\
-\Gamma^{2}
\end{array}-2 \Gamma\right.\right.\right.
\end{array}\right) X(t)+\binom{\mathbb{O}_{3 N}}{G(Q(t))}\right) d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t) . .
$$

Step 1: Split the equation into explicitly solvable subequations.

$$
\begin{aligned}
d X^{[1]}(t) & =A X^{[1]}(t) d t+\Sigma_{0} d W(t) \\
d X^{[2]}(t) & =N(X(t)) d t
\end{aligned}
$$

Step 2: Derive the explicit solutions of the subequations.

$$
\begin{aligned}
& X^{[1]}\left(t_{i+1}\right)=\varphi_{\Delta}^{[1]}\left(X^{[1]}\left(t_{i}\right)\right)=e^{A \Delta} X^{[1]}\left(t_{i}\right)+\xi_{i}(\Delta) \\
& X^{[2]}\left(t_{i+1}\right)=\varphi_{\Delta}^{[2]}\left(X^{[2]}\left(t_{i}\right)\right)=X^{[2]}\left(t_{i}\right)+\Delta\binom{03 N}{G\left(Q^{[2]}\left(t_{i}\right)\right)}
\end{aligned}
$$

Step 3: Compose the derived explicit solutions.

Splitting integrators for the multi-population sJR-NMM

$$
\begin{aligned}
d X(t) & =[A X(t)+N(X(t))] d t+\Sigma_{0} d W(t) \\
& =\left(\left(\begin{array}{cc}
\mathbb{O}_{3 N} & \mathbb{I}_{3 N} \\
-\Gamma^{2} & -2 \Gamma
\end{array}\right) X(t)+\binom{\mathbb{O}_{3 N}}{G(Q(t)))}\right) d t+\binom{\mathbb{O}_{3 N}}{\Sigma} d W(t) .
\end{aligned}
$$

Step 1: Split the equation into explicitly solvable subequations.

$$
\begin{aligned}
d X^{[1]}(t) & =A X^{[1]}(t) d t+\Sigma_{0} d W(t) \\
d X^{[2]}(t) & =N(X(t)) d t
\end{aligned}
$$

Step 2: Derive the explicit solutions of the subequations.

$$
\begin{aligned}
& X^{[1]}\left(t_{i+1}\right)=\varphi_{\Delta}^{[1]}\left(X^{[1]}\left(t_{i}\right)\right)=e^{A \Delta} X^{[1]}\left(t_{i}\right)+\xi_{i}(\Delta), \\
& X^{[2]}\left(t_{i+1}\right)=\varphi_{\Delta}^{[2]}\left(X^{[2]}\left(t_{i}\right)\right)=X^{[2]}\left(t_{i}\right)+\Delta\binom{0_{3 N}}{G\left(Q^{[2]}\left(t_{i}\right)\right)} .
\end{aligned}
$$

Step 3: Compose the derived explicit solutions.

$$
\begin{equation*}
\widetilde{X}^{\mathrm{S}}\left(t_{i+1}\right)=\left(\varphi_{\Delta / 2}^{[2]} \circ \varphi_{\Delta}^{[1]} \circ \varphi_{\Delta / 2}^{[2]}\right)\left(\widetilde{X}^{\mathrm{S}}\left(t_{i}\right)\right) . \tag{2}
\end{equation*}
$$

Splitting integrators for the multi-population sJR-NMM

```
Algorithm 1 Strang splitting scheme for the \(N\)-population stochastic JR-NMM
Input: Initial value \(X_{0}\), step size \(\Delta\), number of time steps \(m\) in \([0, T]\) and model parameters
Output: Approximated path of \((X(t))_{t \in[0, T]}\) at discrete times \(t_{i}=i \Delta, i=0, \ldots, m, t_{m}=T\).
    1: Set \(\widetilde{X}^{\mathrm{S}}\left(t_{0}\right)=X_{0}\)
    2: for \(i=0:(m-1)\) do
    3: \(\quad\) Set \(X^{[2]}=\widetilde{X}^{\mathrm{S}}\left(t_{i}\right)+\frac{\Delta}{2}\binom{0_{3 N}}{G\left(\widetilde{Q}^{\mathrm{S}}\left(t_{i}\right)\right)}\)
    4: \(\quad\) Set \(X^{[1]}=e^{F \Delta} X^{[2]}+\xi_{i}(\Delta)\)
    5: \(\quad\) Set \(\widetilde{X}^{S}\left(t_{i+1}\right)=X^{[1]}+\frac{\Delta}{2}\binom{0_{3 N}}{G\left(Q^{[1]}\right)}\)
    6: end for
    7: Return \(\widetilde{X}^{\mathrm{S}}\left(t_{i}\right), i=0, \ldots, m\).
```


Properties of the derived splitting scheme

The derived splitting scheme

1. is mean-square convergent order 1 if $N(X(t))$ is globally Lipschitz (similar results for one-sided globally Lipschitz with polynomial growth ${ }^{2}$.
2. is 1-step hypoelliptic.
3. satisfies a discrete Lyapunov condition \Rightarrow it is geometrically ergodic.
[^0]
Properties of the derived splitting scheme

The derived splitting scheme

1. is mean-square convergent order 1 if $N(X(t))$ is globally Lipschitz (similar results for one-sided globally Lipschitz with polynomial growth ${ }^{2}$.
2. is 1 -step hypoelliptic.
3. satisfies a discrete Lyapunov condition \Rightarrow it is geometrically ergodic.

(More to be discussed):

- It could be used for simulating Langevin dynamics in HMC.
- Better than leap-frog/MALT.

[^1]
What about inference?

SMC-ABC

```
Algorithm 3 Sequential Monte Carlo ABC (SMC-ABC)
    Set \(t:=1\).
    for \(i=1, \ldots, N\) do
        repeat
            Sample \(\theta^{*} \sim \pi(\theta)\).
            Generate \(z^{i} \sim p\left(z \mid \theta^{*}\right)\) from the model.
            Compute summary statistic \(s^{i}=S\left(z^{i}\right)\).
        until \(\left\|s^{i}-s_{y}\right\|<\delta_{1}\)
        Set \(\theta_{1}^{(i)}:=\theta^{*}\)
        set \(\tilde{w}_{1}^{(i)}:=1\).
    end for
    Obtain \(\delta_{2}\) and update the scaling factors for the summary statistics.
    for \(t=2, \ldots, T\) do
        for \(i=1, \ldots, N\) do
            repeat
            Randomly pick (with replacement) \(\theta^{*}\) from the weighted set \(\left\{\theta_{t-1}^{(i)}, w_{t-1}^{(i)}\right\}_{i=1}^{N}\).
                Sample \(\theta^{* *} \sim q_{t}\left(\cdot \mid \theta^{*}\right)\).
                if \(\pi\left(\theta^{* *}\right)=0\) go to step 16 , otherwise continue.
                Generate \(z^{i} \sim p\left(z \mid \theta^{* *}\right)\) from the model.
                Compute summary statistic \(s^{i}=S\left(z^{i}\right)\).
            until \(\left\|s^{i}-s_{y}\right\|<\delta_{t}\)
            Set \(\theta_{t}^{(i)}:=\theta^{* *}\)
            set \(\tilde{w}_{t}^{(i)}=\pi\left(\theta_{t}^{(i)}\right) / \sum_{j=1}^{N} w_{t-1}^{(j)} q_{t}\left(\theta_{t}^{(i)} \mid \theta_{t-1}^{(j)}\right)\).
        end for
        Normalise the weights: \(w_{t}^{(i)}:=\tilde{w}_{t}^{(i)} / \sum_{j=1}^{N} \tilde{w}_{t}^{(j)}\).
        Decrease the current \(\delta\) and update the scaling factors for the summary statistics.
    end for
    Output:
28: A set of weighted parameter vectors \(\left(\theta_{T}^{(1)}, \tilde{w}_{T}^{(1)}\right), \ldots,\left(\theta_{T}^{(N)}, \tilde{w}_{T}^{(N)}\right) \sim \pi_{\delta_{T}}\left(\theta \mid s_{y}\right)\).
```


Adjusted SMC-ABC

: for $i=1: M$ do
2: repeat
3: \quad Randomly pick (with replacement) θ_{c} from the weighted set $\left\{\Theta_{c, t-1}, w_{t-1}\right\}$
4: \quad Perturb θ_{c} to obtain θ_{c}^{*} from $q_{t}^{c}\left(\cdot \mid \theta_{c}\right)$.
5: \quad Sample $\theta_{d}^{k}, k=1, \ldots, d_{n}$, from Bernoulli $\left(\hat{p}_{t}^{k}\right)$, where $\hat{p}_{t}^{k}=\frac{1}{M} \sum_{l=1}^{M} \theta_{d, t-1}^{k,(l)}$.
6: \quad Perturb $\theta_{d}=\left(\theta_{d}^{1}, \ldots, \theta_{d}^{d_{n}}\right)$ to obtain θ_{d}^{*} from $q_{t}^{d}\left(\cdot \mid \theta_{d}\right)$.
7: \quad Conditioned on $\theta^{*}=\left(\theta_{c}^{*}, \theta_{d}^{*}\right)$, simulate a dataset $\tilde{y}_{\theta^{*}}$ from the model.
8: \quad Compute the summaries $s\left(\tilde{y}_{\theta^{*}}\right)$.
9: \quad Calculate the distance $D=d\left(s(y), s\left(\tilde{y}_{\theta^{*}}\right)\right)$.
10
until $D<\delta_{t}$
11: \quad Set $\theta_{d, t}^{(i)}=\theta_{d}^{*}$ and $\theta_{c, t}^{(i)}=\theta_{c}^{*}$
12: \quad Set $\tilde{w}_{t}^{(i)}=\pi^{c}\left(\theta_{c, t}^{(i)}\right) / \sum_{l=1}^{M} w_{t-1}^{(I)} \mathscr{K}_{t}^{c}\left(\theta_{c, t}^{(i)} \mid \theta_{c, t-1}^{(I)}\right)$
13: end for
14: Normalise the weights $w_{t}^{(i)}=\tilde{w}_{t}^{(i)} / \sum_{l=1}^{M} \tilde{w}_{t}^{(i)}$, for $j=1, \ldots, M$

Choice of perturbation kernels

q_{θ}^{c} : Optimised Gaussian kernels as in Filippi et al. 2013
(alternatively: copula-based samplers, Picchini and Tamborrino, 2022).
Discrete kernel: a value $\theta_{k}^{d}, k=1, \ldots, d_{n}$, sampled from a Bernoulli distribution at iteration t is either kept with (fixed) probability $q_{\text {stay }}$ or perturbed to $1-\theta_{k}^{d}$, i.e.
$q_{t}^{d}\left(\theta_{d, t}^{(i)} \mid \theta_{d, t-1}^{(l)}\right)=\prod_{k=1}^{d_{n}} q_{t}^{d, k}\left(\theta_{d, t}^{k,(i)} \mid \theta_{d, t-1}^{k,(l)}\right)=\prod_{k=1}^{d_{n}}\left(p_{t}^{k,(l)}\right)^{\theta_{d, t}^{k,(i)}}\left(1-p_{t}^{k,(I)}\right)^{1-\theta_{d, t}^{k,(i)}}$,
where

$$
p_{t}^{k,(I)}=\left\{1-q_{\mathrm{stay}}, \quad \text { if } \theta_{d, t-1}^{k,(I)}=0\right.
$$

Choice of Summary Statistics

Accept θ^{*} if $d\left(s(y), s\left(\tilde{y}_{\theta^{*}}\right)\right)<\delta_{t}$.

Choice of Summary Statistics

Accept θ^{*} if $d\left(s(y), s\left(\tilde{y}_{\theta^{*}}\right)\right)<\delta_{t}$.

\Longrightarrow Derive summaries based on the characterising model properties: map the data into something fully characterised by θ.

Choice of Summary Statistics

$$
s(y):=\left\{f_{k}, S_{k}, Z_{j k}, R_{j k}\right\}_{j, k=1, \ldots, N, j \neq k}
$$

* f_{k} : invariant density of Y^{k}.
* Spectral density S_{k} of Y^{k} :

$$
S_{k}(v)=\mathscr{F}\left\{R_{k}\right\}(v)=\int_{-\infty}^{\infty} R_{k}(\tau) e^{-i 2 \pi v \tau} d \tau, \quad k \in\{1, \ldots, N\}
$$

where v denotes the frequency and $R_{k}(\tau)=\mathbb{E}\left[Y^{k}(t) Y^{k}(t+\tau)\right], \quad k \in\{1, \ldots, N\}$.

* Cross-spectral density $S_{j k}$ of Y^{j} and Y^{k} :

$$
S_{j k}(v)=\mathscr{F}\left\{R_{j k}\right\}(v)=\int_{-\infty}^{\infty} R_{j k}(\tau) e^{-i 2 \pi v \tau} d \tau
$$

where $R_{j k}(\tau)=\mathbb{E}\left[Y^{j}(t) Y^{k}(t+\tau)\right], \quad j, k \in\{1, \ldots, N\}, j \neq k$.

* Magnitude Square Coherence (MSC):

$$
Z_{j k}(v):=\frac{\left|S_{j k}(v)\right|^{2}}{S_{j}(v) S_{k}(v)}, \quad j, k \in\{1, \ldots, N\}, j \neq k
$$

where $|\cdot|$ denotes the magnitude.

Choice of distance measure

We use the Integrate Absolute Error (IAE) ${ }^{3}$

$$
\operatorname{IAE}\left(g_{1}, g_{2}\right):=\int_{\mathbb{R}}\left|g_{1}(x)-g_{2}(x)\right| d x \in \mathbb{R}^{+}
$$

to compute

$$
\begin{aligned}
D\left(s(y), s\left(\tilde{y}_{\theta}\right)\right):= & v_{1} \frac{1}{N} \sum_{k=1}^{N} \operatorname{IAE}\left(\hat{S}_{k}, \tilde{S}_{k}\right)+v_{2} \frac{1}{N(N-1) / 2} \sum_{j=1, k>j}^{N} \operatorname{IAE}\left(\hat{Z}_{j k}, \tilde{Z}_{j k}\right) \\
& +v_{3} \frac{1}{N(N-1)} \sum_{j, k=1, j \neq k}^{N} \operatorname{IAE}\left(\hat{R}_{j k}, \tilde{R}_{j k}\right)+v_{4} \frac{1}{N} \sum_{k=1}^{N} \operatorname{IAE}\left(\hat{f}_{k}, \tilde{f}_{k}\right)
\end{aligned}
$$

The weights $v_{l} \geq 0, I=1,2,3,4$, are chosen such that the different summary functions have a comparable impact on the distance measure.

[^2]
Parameters of interest

$(N+2+N(N-1))$-dimensional parameter vector

$$
\theta=(\underbrace{A_{1}, \ldots, A_{N}, L, c}_{\theta_{c}}, \underbrace{\operatorname{vec}(\mathscr{P})}_{\theta_{d}})
$$

with
A_{k} : Average excitatory synaptic gains.

- $\mathscr{P}:$ directed connectivity parameters $\theta_{d}=\mathscr{P}=\left(\rho_{j k}\right)_{j, k=1, \ldots, N}$, with $\rho_{j i}=\{0,1\}$.
- (L, c) entering into the coupling parameters $K_{j k}$ as

$$
K_{j k}:=c^{|j-k|-1} L
$$

- $L>0$: coupling strength parameter
- $0 \ll c<1$ determines how fast the the network coupling strength decreases with distance.

(c)

Partially connected network

Partially connected network

Back to real data

* b and C chosen from pilot study, other quantities fixed according to standard values.

Parameter of interest: $(10+12)$-dimensional

$$
\theta=\left(A_{1}, A_{2}, A_{3}, A_{4}, L, c, \sigma_{l}, \sigma_{r}, \mu_{l}, \mu_{r}, \operatorname{vec}(\mathscr{P})\right) .
$$

Before seizure: solid green $(N=4)$
During seizure: solid blue $(N=4)$

Before seizure: solid green $(N=4)$, dotted orange ($N=2$, LH) , dotted brown ($N=2, \mathrm{RH}$).
During seizure: solid blue $(N=4)$, dashed grey $(N=2, \mathrm{LH})$, dashed black ($N=2, \mathrm{RH}$).

Fitted summaries

Odd panels: before seizure.

Even panels: during seizure.
Solid black lines: Summaries derived from the EEG datasets.
Grey areas: Range of the summaries obtained from synthetic datasets simulated using the kept posterior samples from the full model.

Fitted summaries

Some references

Today Ditlevsen, Tamborrino, Tubikanec.
Network inference in a stochastic multi-population neural mass model via approximate Bayesian computation.
Preprint at arXiv:2306.15787, 2023.

- Buckwar, Tamborrino, Tubikanec.

Spectral density-based and measure-preserving ABC for partially observed diffusion processes. An illustration on Hamiltonian SDEs.
Stat. Comput., 30, 627-648, 2020.

- Picchini, Tamborrino.

Guided sequential ABC for intractable Bayesian models.
Preprint at arXiv:2206.12235, 2022.

- Buckwar, Samson, Tamborrino, Tubikanec.

A splitting method for SDEs with locally Lipschitz drift. An illustration on the FitzHugh-Nagumo model.
App. Num. Math. 179, 191-220, 2022.

Some interesting ongoing/forthcoming activities

- OneWorldABC (every last Thursday of the month) www.warwick.ac.uk/oneworldabc
- Biolnference2024, 5th-7th June 2024, Warwick. https://bioinference.github.io/2024/

Statistics

Specific choices

- $\mathrm{M}=500$.
- $T=20, \Delta_{\text {sim }}=10^{-4}, \Delta_{\text {obs }}=210^{-3} \Rightarrow n=10^{4}$.
- δ_{1} obtained via a reference table acceptance-rejection ABC pilot run. Under $\pi(\theta)$, we produce 10^{4} distances and then choose $\delta_{1}=\operatorname{median}\left(D_{1}, \ldots, D_{10^{4}}\right)$.
- $\delta_{t}=\operatorname{percentile}\left(D_{1}^{(t-1)}, \ldots, D_{M}^{(t-1)}\right)$, with percentile $=50 \%$ if accept. rate $>1 \%, 75 \%$ otherwise.
- Stopping criterion: acceptance rate below 0.1%.

Table 1: Standard parameter values for the Jansen and Rit Neural Mass Model [19, 48, 42].

Parameter	Meaning	Standard value
A	Average excitatory synaptic gain	3.25 mV
B	Average inhibitory synaptic gain	22 mV
a	Membrane time constant of excitatory postsynaptic potential	$100 \mathrm{~s}^{-1}$
b	Membrane time constant of inhibitory postsynaptic potential	$50 \mathrm{~s}^{-1}$
C	Average number of synapses between the subpopulations	135
C_{1}, C_{2}	Avg. no. of synaptic contacts in the excitatory feedback loop	$C, 0.8 C$
C_{3}, C_{4}	Avg. no. of synaptic contacts in the inhibitory feedback loop	$0.25 C, 0.25 C$
$\nu_{\max }$	Maximum firing rate (Maximum of the sigmoid function)	$5 \mathrm{~s}^{-1}$
v_{0}	Value for which 50% of the maximum firing rate is attained	6 mV
γ	Determines the slope of the sigmoid function at v_{0}	0.56 mV

```
Algorithm 2 Adjusted SMC-ABC for network inference (nSMC-ABC)
Input: Summaries \(s(y)\) of the observed data \(y\), prior distributions \(\pi^{c}\) and \(\pi^{d}\), perturbation kernels
\(\mathcal{K}_{r}^{c}\) and \(\mathcal{K}_{r}^{d}\), number of kept samples per iteration \(M\), initial threshold \(\delta_{1}\)
Output: Samples from the nSMC-ABC posterior
Set \(r=1\)
for \(j=1: M\) do
    repeat
        Sample \(\theta_{d}\) from \(\pi^{d}\) and \(\theta_{c}\) from \(\pi^{c}\), and set \(\theta=\left(\theta_{c}, \theta_{d}\right)\)
        Conditioned on \(\theta\), simulate a synthetic dataset \(\tilde{y}_{\theta}\) from the observed output \(Y\)
        Compute the summaries \(s\left(\tilde{y}_{\theta}\right)\)
        Calculate the distance \(D=d\left(s(y), s\left(\tilde{y}_{\theta}\right)\right)\)
    until \(D<\delta_{1}\)
    Set \(\theta_{d, 1}^{(j)}=\theta_{d}\) and \(\theta_{c, 1}^{(j)}=\theta_{c}\)
end for
Initialize the weights by setting each entry of \(w_{1}=\left(w_{1}^{(1)}, \ldots, w_{1}^{(M)}\right)\) to \(1 / M\)
repeat
    Set \(r=r+1\)
    Determine \(\delta_{r}<\delta_{r-1}\)
    for \(j=1: M\) do
        repeat
            Sample \(\theta_{c}\) from the weighted set \(\left\{\Theta_{c, r-1}, w_{r-1}\right\}\)
            Perturb \(\theta_{c}\) to obtain \(\theta_{c}^{*}\) from \(\mathcal{K}_{r}^{c}\left(\cdot \mid \theta_{c}\right)\)
            Sample \(\theta_{d}^{k}, k=1, \ldots, d_{n}\), from Bernoulli \(\left(\hat{p}_{r}^{k}\right)\), where \(\hat{p}_{r}^{k}=\frac{1}{M} \sum_{l=1}^{M} \theta_{d, r-1}^{k,(l)}\)
            Perturb \(\theta_{d}=\left(\theta_{d}^{1}, \ldots, \theta_{d}^{d_{n}}\right)\) to obtain \(\theta_{d}^{*}\) from \(\mathcal{K}_{r}^{d}\left(\cdot \mid \theta_{d}\right)\)
            Conditioned on \(\theta^{*}=\left(\theta_{c}^{*}, \theta_{d}^{*}\right)\), simulate a dataset \(\tilde{y}_{\theta^{*}}\) from the observed output \(Y\)
            Compute the summaries \(s\left(\tilde{y}_{\theta^{*}}\right)\)
            Calculate the distance \(D=d\left(s(y), s\left(\tilde{y}_{\theta^{*}}\right)\right)\)
        until \(D<\delta_{r}\)
        Set \(\theta_{d, r}^{(j)}=\theta_{d}^{*}\) and \(\theta_{c, r}^{(j)}=\theta_{c}^{*}\)
        Set \(\tilde{w}_{r}^{(j)}=\pi^{c}\left(\theta_{c, r}^{(j)}\right) / \sum_{l=1}^{M} w_{r-1}^{(l)} \mathcal{K}_{r}^{c}\left(\theta_{c, r}^{(j)} \mid \theta_{c, r-1}^{(l)}\right)\)
    end for
    Normalise the weights \(w_{r}^{(j)}=\tilde{w}_{r}^{(j)} / \sum_{l=1}^{M} \tilde{w}_{r}^{(l)}\), for \(j=1, \ldots, M\)
until stopping criterion is reached
```


[^0]: ${ }^{2}$ Buckwar et al. Appl. Num. Math. 2022

[^1]: ${ }^{2}$ Buckwar et al. Appl. Num. Math. 2022

[^2]: ${ }^{3}$ Buckwar, Tamborrino, Tubikanec, Stat. Comput. 2020

