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Individual-based models (IBMs)



ABC-MCMC
• Approximate Bayesian computation

• For the case where  cannot be evaluated pointwise at , use the ABC likelihood

•  is estimated, , through using simulations  .

• ABC-MCMC. At iteration :

• , and for , 

• With probability

• let  and for , .

• otherwise let let  and for , .

f θ

lABC (y |θ) = ∫y
f (y |θ) Kϵ (S (yobs) |S (y)) dy

lABC ̂lABC (y |θ) y ∼ f ( ⋅ ∣ θ)

i
θ* ∼ q ( ⋅ ∣ θi) j = 1 : M y*i+1, j ∼ f ( ⋅ ∣ θ*)

1 ∧
p (θ*) 1

M ∑M
j=1 Kϵ (S (y) ∣ S (y*i+1, j))

p (θi) 1
M ∑M

j=1 Kϵ (S (y) ∣ S (yi, j))
θi+1 = θ* j = 1 : M yi+1, j = y*i+1, j

θi+1 = θi j = 1 : M yi+1, j = yi, j



ABC-MCMC properties
• Efficiency of ABC-MCMC depends on controlling the variance of the likelihood 

estimator.

• Theory suggests to ensure .

• To achieve this, with  and small , we need the number of 
simulations  to be exponential in .

Prangle, Everitt and Kypraios, A rare event approach to high dimensional Approximate Bayesian computation, 
2018.
Sherlock, Thiery, Roberts and Rosenthal, On the efficiency of pseudo-marginal random walk Metropolis algorithms, 
2015.

𝕍 [log ̂lABC (y |θ)] ≈ 3

dS = dim S (y) ϵ
M dS

lABC (y |θ) = ∫y
f (y |θ) Kϵ (S (yobs) |S (y)) dy



Rare event ABC
• Rare event ABC (Prangle, Everitt and Kypraios, 2018)

• reparameterise the simulator
• instead of using 

• call  then take , where we can evaluate  pointwise and  is a 
deterministic function.

• Estimate  with an SMC sampler with a decreasing sequence of 
tolerances .

y ∼ f ( ⋅ ∣ θ)
u ∼ ϕ y = G (θ, u) ϕ G

lABC (y |θ)
∞ = ϵ0 > . . . > ϵT = ϵ

• Cost of stabilising the variance 
of the likelihood estimator 
changes to .

• Requires MCMC moves for 
exploring -space.

• Not possible for IBMs.

O (d2
s )

u

lABC (y |θ) = ∫y
f (y |θ) Kϵ (S (yobs) |S (y)) dy



SMC samplers recap
• SMC sampler with annealing:

•  is a prior and  a likelihood

• iterate from  with 
target distribution at iteration 

with 

• a collection of importance 
points is iteratively reweighted, 
resampled and moved, as  
changes.

p l

t = 0 : T
t

πt (x) ∝ p (x) lαt (x)
0 = α0 < . . . < αT = 1

αt



Iterative ensemble Kalman inversion

• Assume that

• Use the sequence of targets

• We have

l (x) = (2π)−dx/2 det (Σ)−1/2 exp (−
1
2 (yobs − H (x))T Σ−1 (yobs − H (x)))

πt (x) = p (x) lαt (x) .

lαt (x) = (2π)−αtd/2 det (Σ)−αt/2 exp (−
1
2 (yobs − H (x))T (Σ/αt)−1 (yobs − H (x)))



Iterative ensemble Kalman inversion
• Like an SMC sampler, iterative EnKI performs iterative updates to move from 

target  to . We use

• At each iteration an update is performed using the likelihood

• The “ensemble Kalman” idea is to:
• suppose that  is Gaussian;
• suppose that  (and hence that ) is linear-Gaussian;
• use conjugate Bayesian analysis to work out what the mean and covariance of 

 would be when the Gaussian  is updated with the linear-Gaussian 
;

• represent  and  with Monte Carlo points, and construct updates such 
that their sample means and covariances match the analytic versions.

t t + 1
πt+1 (x) ∝ πt (x) lαt+1−αt (x)

lαt+1−αt (x) ∝ exp (−
1
2 (yobs − H (x))T (Σ/(αt+1 − αt))

−1
(yobs − H (x)))

πt (x)
l (x) lαt+1−αt (x)

πt+1 (x) πt (x)
lαt+1−αt (x)

πt (x) πt+1 (x)



Iterative ensemble Kalman inversion
• Begin by simulating points from the prior. For 

.
• Perform an ensemble Kalman update of these points at each iteration.
• At iteration , for 

with

where  and

 

j = 1 : M
x( j) ∼ p

t + 1 j = 1 : M

x( j)
t+1 = x( j)

t + K̂t+1 (yobs − ỹ( j)
t+1)

ỹ( j)
t+1 ∼ 𝒩 (h( j)

t , (αt+1 − αt)−1 Σ)
h( j)

t = H (x( j)
t )

K̂t+1 = Ĉxtht
t (Ĉhtht

t + (αt+1 − αt)−1 Σ)
−1

Ĉytht
t =

1
M − 1

M

∑
j=1 (x( j)

t −
1
M

M

∑
k=1

x( j)
t ) (h( j)

t −
1
M

M

∑
k=1

h( j)
t )

T

Ĉhtht
t

1
M − 1

M

∑
j=1 (h( j)

t −
1
M

M

∑
k=1

h( j)
t ) (h( j)

t −
1
M

M

∑
k=1

h( j)
t )

T



Normalising constants from IEnKI

• To obtain an estimate of  we could use 

       where     

• Observation: the sequence of distributions used in IEnKI is not

it is

• Approach:
• use an ensemble-Kalman approximation of the ratio of normalising constants for 

the latter sequence of targets;
• apply a correction to obtain an estimate of .  

Z = ∫x
p (x) l (x) dx

̂Z =
T−1

∏
t=0

̂Zt+1

Zt

Zt+1

Zt
= ∫x

p (x) l(αt+1−αt) (x) dx

p (x) (𝒩 (yobs ∣ x, Σ))
αt

p (x) (𝒩 (yobs ∣ x, αtΣ)) .

Zt+1/Zt



Use in ABC

• Let

• Recall we set up IEnKI to estimate

•

• To estimate , we can use IEnKI:

• simulate   points  , then find  for each;

• perform IEnKI steps on each  until we reach the desired target.
• Note:

• we only need to simulate from  the same number of times as in standard ABC;
• the IEnKI moves on the summary statistics.

Kϵ (S(yobs) |S(y)) = 𝒩 (S(yobs) ∣ S(y), ϵIdS) .

Z = ∫x
p (x) l (x) dx

lABC (y |θ)
M f (y |θ) S (y)

S (y)

f

lABC (y |θ) = ∫y
f (y |θ) Kϵ (S(yobs) |S(y)) dy



IEnKI-ABC
• For each …
• Simulate points from the model and take the summary for each. For 

.

• Perform an ensemble Kalman update of these points for .
• At iteration , for 

where

and

 

θ
j = 1 : M

y( j) ∼ f ( ⋅ ∣ θ) s( j) = S (y( j))
t = 0 : T − 1

t + 1 j = 1 : M

s( j)
t+1 = s( j)

t + K̂t+1 (sobs − s̃( j)
t+1)

s̃( j)
t+1 ∼ 𝒩 (s( j)

t , (αt+1 − αt)−1 ϵIdS)

K̂t+1 = Ĉstst
t (Ĉstst

t + (αt+1 − αt)−1 ϵIdS)
−1

Ĉstst
t

1
M − 1

M

∑
j=1 (s( j)

t −
1
M

M

∑
k=1

s( j)
t ) (s( j)

t −
1
M

M

∑
k=1

s( j)
t )

T



Modelling animal populations



ABC simulation



IEnKI-ABC simulation



ABC simulation



IEnKI-ABC simulation



ABC-MCMC results



IEnKI-ABC-MCMC results



Conclusions

• An improved pseudo-marginal-style ABC-MCMC
• scales to higher dimensions than ABC;
• uses an IEnKI “correction” on simulations from the model - IEnKI runs on the 

observation/summary statistic space (contrast to particle filter);
• IEnKI can choose the sequence of targets adaptively - only one additional 

parameter to ABC.
• Software: ilike, ggsmc.


