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Imputation/Disaggregation

Consider a set of random variables Y (1), Y (2), Y (3), . . . , Y (m) with a known constraint S ;

S =
m∑
i=1

Y (i).

Problem: impute Y (1), . . . , Y (m) given S ;

Use case: (energy consumption) time series imputation, oversampling;

▶ Given a known time series with low resolution (once per day), and a time series with high resolution
(48 readings per day) but has missing values (Peppanen et al., 2016);

▶ Given a time series, oversample to estimate a time series with m times the frequency (Allard and
Bourotte, 2015);
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Constrained Imputation

Product density given by

fH(y (1), . . . , y (m)) ∝

[
m∏
i=1

fi (y (i))

]
IH(y (1), . . . , y (m))

▶ each fi is easier to sample from;
▶ H is a (linear) equality constraint.

Usually intractable;

Hard to sample directly from an equality constraint.
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Key Idea

Two Brownian bridges with restriction on the end points

fH(y (1), y (2)) ∼ N (µ,Σ) δ(y (1) + y (2))

Brownian bridge
Rejection Sampling−−−−−−−−−−−→ Desired diffusion bridge
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What is the Target Distribution/Diffusion?
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Biased Diffusion Process
Start Diffusion bridge Endy y

X (i)
s∈[0,T ] : x −→ Xs∈[0,T ]|X0 = x ,XT = y −→ y

x x
X̃ (i)

s∈[0,T ] : bias bias

Conditioned on the starting point x and ending point y , the diffusion process X (i)
s and the biased

process X̃ (i)
s has the same measure.

Set the biased joint distribution on the endpoints to

p
(
X̃ (i)

0 = x , X̃ (i)
T = y

)
∝ f 2(x)p(y |x)f (y)−1.

Assume X (i)
s is f 2-invariant, the marginal distribution of X̃ (i)

T is

p(X̃ (i)
T = y) = f (y)
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Biased Diffusion Process

Target Distribution

Consider an md-dimension diffusion process comprised of m instances of biased diffusion, such that
each unbiased process has a different invariant distribution ∝ f 2i and transition density pi (·|·),
i ∈ {1, . . . ,m} respectively.

If we impose the equality constraint H on the endpoints, and require the probability measure induced by

the biased diffusion on (X (1,...,m)
0 ,X (1,...,m)

T ) = (x (1), . . . , x (m), y (1), . . . , y (m)) to follow

gH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

f 2i (x
(i))pi (y (i)|x (i))fi (y (i))−1

]
IH(y (1), . . . , y (m)).

Then the marginal distribution of XT =
(
X (1)

T , . . . ,X (m)
T

)
is exactly the constrained product density

fH(y (1), . . . , y (m)) ∝

[
m∏
i=1

fi (y (i))

]
IH(y (1), . . . , y (m)).

Hu et. al. Statistical Disaggregation January 12th, 2024 7 / 26



Biased Diffusion Process

Target Distribution

Consider an md-dimension diffusion process comprised of m instances of biased diffusion, such that
each unbiased process has a different invariant distribution ∝ f 2i and transition density pi (·|·),
i ∈ {1, . . . ,m} respectively.
If we impose the equality constraint H on the endpoints, and require the probability measure induced by

the biased diffusion on (X (1,...,m)
0 ,X (1,...,m)

T ) = (x (1), . . . , x (m), y (1), . . . , y (m)) to follow

gH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

f 2i (x
(i))pi (y (i)|x (i))fi (y (i))−1

]
IH(y (1), . . . , y (m)).

Then the marginal distribution of XT =
(
X (1)

T , . . . ,X (m)
T

)
is exactly the constrained product density

fH(y (1), . . . , y (m)) ∝

[
m∏
i=1

fi (y (i))

]
IH(y (1), . . . , y (m)).

Hu et. al. Statistical Disaggregation January 12th, 2024 7 / 26



Biased Diffusion Process

Target Distribution

Consider an md-dimension diffusion process comprised of m instances of biased diffusion, such that
each unbiased process has a different invariant distribution ∝ f 2i and transition density pi (·|·),
i ∈ {1, . . . ,m} respectively.
If we impose the equality constraint H on the endpoints, and require the probability measure induced by

the biased diffusion on (X (1,...,m)
0 ,X (1,...,m)

T ) = (x (1), . . . , x (m), y (1), . . . , y (m)) to follow

gH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

f 2i (x
(i))pi (y (i)|x (i))fi (y (i))−1

]
IH(y (1), . . . , y (m)).

Then the marginal distribution of XT =
(
X (1)

T , . . . ,X (m)
T

)
is exactly the constrained product density

fH(y (1), . . . , y (m)) ∝

[
m∏
i=1

fi (y (i))

]
IH(y (1), . . . , y (m)).

Hu et. al. Statistical Disaggregation January 12th, 2024 7 / 26



Construction with Langevin Diffusion

Consider a d-dimensional Langevin process Xs , s ∈ [0,T ], driven by

dX (i)
s = ∇ log fi (Xs)ds + dW (i)

s ,

where fi is the density function of the ith component, and W (i)
s is a d-dimensional Wiener process.

X (i)
s has invariant distribution ∝ f 2i (x)

The transition density pi (xT |x0) conditioned on (x0, xT ) is given by

pi (y |x) ∝
fi (y)
fi (x)

×
(

1√
2πT

)d

exp

(
−∥y − x∥22

2T

)
EW

[
exp

(
−
∫ T

0

ϕi (xs)ds

)]

where W is the measure induced by the Brownian bridge conditioned on W0 = x0 and WT = xT and

ϕi (x) =
∆fi (x)
2fi (x)

.
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Now

gH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

fi (x (i))

(
1√
2πT

)d

exp

(
−∥y (i) − x (i)∥22

2T

)]

× EW

[
exp

(
−
∫ T

0

ϕi (xs)ds

)]
IH(y (1), . . . , y (m)).

Proposal distribution/diffusion?
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Proposal and Rejection

Proposal Disribution

Consider the proposal distribution on the end points (X (1,...,m)
0 ,X (1,...,m)

T ) given by

hH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

fi (x (i)) exp

(
−||y (i) − x (i)||2

2T

)]
IH(y (1), . . . , y (m)).

Disregarding the constraint,

g
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
h
(
x (1), . . . , x (m), y (1), . . . , y (m)

) ∝ EW̄

[
exp

{
−

m∑
i=1

∫ T

0

ϕi (x (i)
s )ds

}]
≤ 1,

where W̄ is the measured induced by a Brownian bridge conditioned on X (1:m)
0 = (x (1), . . . , x (m)) and

X (1:m)
T = (y (1), . . . , y (m)).
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How to deal with the rejection weight:

EW̄

[
exp

{
−

m∑
i=1

∫ T

0

ϕi (x (i)
s )ds

}]
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One-Sample Rejection Step

Poisson Point Process
Suppose that 0 < ϕ < M, and let Φ be a Poisson point process of intensity 1 defined on the space
[0,T ]× [0,M].
Let A := {(t, u) ∈ [0,T ]× [0,M] : u ≤ ϕ(ωt)} denote the region under curve ϕ(ωt), ωt ∼ W̄, then

P(NΦ(A) = 0|ω) = exp

{
−
∫ T

0

ϕ(ωs)ds

}
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Is ϕ =
∑

i

∆fi
2fi

bounded?
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Layered Brownian Bridge
Deciding on the layer also determines the bounds on Xt , t ∈ [0,T ] and subsequently ϕ(Xt).

Figure: A sample path from X0 = x to XT = y . The trajectory landed in the fourth layer. (Beskos et al., 2008)
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Are the following definitions mathematically rigorous?

fH(y (1), . . . , y (m)) ∝

[
m∏
i=1

fi (y (i))

]
IH(y (1), . . . , y (m))

gH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

f 2i (x
(i))pi (y (i)|x (i))fi (y (i))−1

]
IH(y (1), . . . , y (m))

hH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

fi (x (i)) exp

(
−||y (i) − x (i)||2

2T

)]
IH(y (1), . . . , y (m))
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Existence of Equality-Constrained Density

Lemma (Regular Value Theorem)

Let h⃗ : Rn+k → Rk , 0 < k < md be a smooth function such that ∀u ∈ h⃗−1(0), the derivative

dh⃗u : Rn+k → Rk is surjective. Then, the set

H := h⃗−1(0) =
{
u ∈ Rn+k : h⃗(u) = 0

}
,

is a n-dimensional manifold. Moreover, there exists a canonical volume form VolH defined on H such
that ∫

H
dVolH = Volume of H.
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Existence of Equality-Constrained Density

Theorem

If H ⊂ Rn+k is an n-dimensional manifold, then the following holds:

1 we may define naturally the measures Pf ,Pg : B(H) → [0, 1] induced by restricting f , g on H such
that the Radon-Nikodym derivative with respect to the volume measure

∫
· dVolH is proportional to

their corresponding density on the full space;

2 if f ≪ g, then Pf ≪ Pg with
dPf

dPg
∝ f

g
.

Thus indeed,

gH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
hH
(
x (1), . . . , x (m), y (1), . . . , y (m)

) ∝ EW̄

[
exp

{
−

m∑
i=1

∫ T

0

ϕi (x (i)
s )ds

}]
IH(y (1), . . . , y (m))).
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Sampling from Proposal

Recall the proposal distribution

hH
(
x (1), . . . , x (m), y (1), . . . , y (m)

)
∝

[
m∏
i=1

fi (x (i)) exp

(
−||y (i) − x (i)||2

2T

)]
IH(y (1), . . . , y (m)).

If N (x ,TImd)IH(y (1), . . . , y (m)) can be analytically simplified, e.g.,
▶ linear constraint → Gaussian distribution;
▶ Spherical/Elliptical constraint → von Mises-Fisher distribution.

Sample y ∼ N (x ,TImd)IH(y (1), . . . , y (m)) and correct for
∫
H N (x ,TImd)IH(y (1), . . . , y (m))dVolH.

For arbitrary manifold constraint,
1 Sample x (i) ∼ fi ;
2 Sample y (1:m) uniformly from H (e.g., by constrained HMC);
3 Correct for exp(−∥y (i) − x (i)∥2/2T );
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Daily to Tridaily Imputation

Coming back to the imputation problem on energy consumption:

total peak off-peak night
↓ ↓ ↓ ↓
St = Y

(1)
t + Y

(2)
t + Y

(3)
t

where St is the total consumption on the day t.

The time series St is known,

impute the segmented consumption Y
(i)
t given St .

Implemented model: treat Y
(1)
t , Y

(2)
t , Y

(3)
t as separate time series.
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Daily to Tridaily Imputation
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Model

Definition (Generalized Logistic Distribution)

Let α, β, γ > 0, C ∈ R, and X1 ∼ Γ(α, 1), X2 ∼ Γ(β, 1). Let

Y := γ log

(
X1

X2

)
+ C ,

then X is said to follow a Generalized Logistic distribution with parameter (α, β, γ,C ), denoted
X ∼ GenLog(α, β, γ,C ).

Autoregressive model for Y
(i)
t where Ξt are the extra regressors,

Y
(i)
t ∼ GenLog

(
α(j), β(j), γ(j),C (j) + µ

(j)
t

)
, µ

(j)
t =

K∑
r=1

Φ(j)
r Y

(j)
t−r +Ξtψ

(j)

such that E[Y (i)
t |Y (i)

s<t ] = µ
(i)
t .
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Daily to Tridaily Imputation

(a) Constrained simulation

(b) Unconstrained simulation
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Peak-Trough Estimation

Predict the peak and trough consumption of at 6-minute level in each 30-minute intervals:

30-min total interval 1 interval 2 interval 3 interval 4 interval 5
↓ ↓ ↓ ↓ ↓ ↓
St = Y

(1)
t + Y

(2)
t + Y

(3)
t + Y

(4)
t + Y

(5)
t

where each interval represents a reading average of 6 minutes.

Want to predict min{Y (1:5)
t } and max{Y (1:5)

t } for every 30-minute period given St .

Use the average reading St as the baseline.
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Peak-Trough Estimation
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Consider sampling three shifted T-distribution X1 ∼ T2.01(−2), X2 ∼ T2.01(3) and X3 ∼ T2.01(5)
subject to the constraint X1 + X2 + X3 = 10.
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