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Imputation/Disaggregation

@ Consider a set of random variables YV, Y@ Y3  y(m with a known constraint S;
m .
S= Z y ()
i—1
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@ Consider a set of random variables YV, Y@ Y3  y(m with a known constraint S;
m .
S= Z y ()
i—1
e Problem: impute Y, ..., Y(™ given S;

Hu et. al. Statistical Disaggregation January 12th, 2024 2/26



Imputation/Disaggregation

@ Consider a set of random variables YV, Y@ Y3  y(m with a known constraint S;

e Problem: impute Y, ..., Y(™ given S;
@ Use case: (energy consumption) time series imputation, oversampling;

> Given a known time series with low resolution (once per day), and a time series with high resolution
(48 readings per day) but has missing values (Peppanen et al., 2016);
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Imputation/Disaggregation

o Consider a set of random variables YU, Y3 yG3) y(m with a known constraint S;

e Problem: impute Y, ..., Y(™ given S;

@ Use case: (energy consumption) time series imputation, oversampling;

> Given a known time series with low resolution (once per day), and a time series with high resolution
(48 readings per day) but has missing values (Peppanen et al., 2016);

> Given a time series, oversample to estimate a time series with m times the frequency (Allard and
Bourotte, 2015);
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Constrained Imputation

@ Product density given by

Auy®,...y™) lH fi(y?)

] ]IH(y(l)v s 7y(m))
i=1

o F = £ DAl
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Constrained Imputation

@ Product density given by

Auy®,...y™) lH f,-(y("))] Iu(y™, ..., ym)

i=1

» each f; is easier to sample from;
> H is a (linear) equality constraint.
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Constrained Imputation

@ Product density given by

Auy®,...y™) lH ﬁ-(y("))] Iu(y™, ..., ym)

i=1

» each f; is easier to sample from;
> H is a (linear) equality constraint.

@ Usually intractable;

@ Hard to sample directly from an equality constraint.
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Key ldea
Two Brownian bridges with restriction on the end points
F(y ™,y @) ~ N (1, 2) 5y D + y)

y®

y®@

Rejection Sampling

Brownian bridge Desired diffusion bridge
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What is the Target Distribution/Diffusion?

Statistical Disaggregation



Biased Diffusion Process

Start
X(i)

s€[0,T] :

X

Diffusion bridge

End

|

y

o F = £ DAl
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Biased Diffusion Process

Start Diffusion bridge
() : l

XsE[O,T] : T
Xig[o,T] bias

End

|

y

bias
o F = = SLENE
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Biased Diffusion Process
Start Diffusion bridge End

| |

XS(Q[O,T] )f —  Xsep,mXo=x,Xr=y — T’
X0 bias bias
s€[0,T] -

Conditioned on the starting point x and ending point y, the diffusion process Xs(i) and the biased
process )N(s(’) has the same measure.
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Biased Diffusion Process

Start Diffusion bridge End
XS(Q[O)T] : X — XSG[O,T]|X0 = X, XT =y — y
X.e . bias bias
s€l0,T] -

Conditioned on the starting point x and ending point y, the diffusion process Xs(i) and the biased
process Xs,(’) has the same measure.
Set the biased joint distribution on the endpoints to

p (X =x, %P = y) o P(x)p(ylx)F(y) .
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Biased Diffusion Process

Start Diffusion bridge End
XS(Q[O)T] : X — XSG[O,T]|XO = X,XT =y — y
X.e . bias bias
s€l0,T] -

Conditioned on the starting point x and ending point y, the diffusion process Xs(i) and the biased
process Xs,(’) has the same measure.
Set the biased joint distribution on the endpoints to

p (X =x, %P = y) o P(x)p(ylx)F(y) .

Assume Xs,(i) is f2-invariant, the marginal distribution of )N(g-') is

p(X) = y) = f(y)
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Biased Diffusion Process

Target Distribution

Consider an md-dimension diffusion process comprised of m instances of biased diffusion, such that
each unbiased process has a different invariant distribution o £ and transition density p;(-|-),
i €{1,..., m} respectively.
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Biased Diffusion Process

Target Distribution

Consider an md-dimension diffusion process comprised of m instances of biased diffusion, such that
each unbiased process has a different invariant distribution o £ and transition density p;(-|-),

i €{1,..., m} respectively.

If we impose the equality constraint  on the endpoints, and require the probability measure induced by

the biased diffusion on (X(l’ »m) X( " ’m)) (x®, . xtm y@) o y(m) to follow

m
gr (O, x(m,y @, ) o [H2 Npily D x D)y D)1 Ty (y®, .. y™).
i=1
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Biased Diffusion Process

Target Distribution

Consider an md-dimension diffusion process comprised of m instances of biased diffusion, such that
each unbiased process has a different invariant distribution o £ and transition density p;(-|-),

i € {1,..., m} respectively.

If we impose the equality constraint  on the endpoints, and require the probability measure induced by
the biased diffusion on (Xé reesm) X( " ’m)) (x®, . xtm y@) o y(m) to follow

m
gH (X(l)""7x(m)’y(1)7"'7y(m)> lH 2 )p’ I)|X(I))fl‘(y(’))_1‘| ]IH(y(l)7"‘7y(m))'
i=1

Then the marginal distribution of X1 = <X(Tl), e Xg-m)> is exactly the constrained product density

Ay ™, .. y™) o lH f,-(y("))] Iu(y™,...,y(™).
i=1
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Construction with Langevin Diffusion
Consider a d-dimensional Langevin process Xs, s € [0, T], driven by
ax) = Vlog fi(X;)ds + aw,

where f; is the density function of the ith component, and Ws(i) is a d-dimensional Wiener process.

o X! has invariant distribution x f2(x)
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Construction with Langevin Diffusion
Consider a d-dimensional Langevin process X, s € [0, T], driven by
ax) = Vlog fi(X;)ds + aw,

where f; is the density function of the ith component, and Ws(i) is a d-dimensional Wiener process.
o X! has invariant distribution x f2(x)

The transition density p;(x7|xo) conditioned on (xo, x7) is given by

pily1x) o 1 (\/;TT)dexp (—”yz}*') Ew |exp (— / T¢,-(xs)ds>]

where W is the measure induced by the Brownian bridge conditioned on Wy = xp and Wt = x5 and

_ Af(x)
O
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Now

m

d . B
VAR (i) _ x(p2
o (X, Xy 0y ) o [H F(x) (W) exp CM)

i=1
T
exp (—/ gb,-(xs)ds)] ]Ia,t(y(l), o 7y(’")).
0

XEW

Proposal distribution /diffusion?
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Proposal and Rejection

Proposal Disribution

Consider the proposal distribution on the end points (Xél"”’m),Xg"“’m)) given by

mo @) _ P2
hH (x(l)) 00 '7x(m))y(1)7 000 7y(m)) X [H f}(x(’))exp (_%)1 ]IH(y(l)7 000 7y(m))
i=1
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Proposal and Rejection

Proposal Disribution

Consider the proposal distribution on the end points (Xél"”’m), X(Tl""’m)) given by

mo @) _ P2
hH (X(l), GO0C ax(m)7y(1)7 000 7y(m)) X [H f}(x(l))exp (_%)1 ]IH(y(l)7 000 uy(m))
i=1

Disregarding the constraint,
g(x(l)’..'7x(m)7y(1)’_'_’y(m)) m T (l)
- _ : <
h D, . x, y @,y ) x Eg |exp ; ; di(x{N)ds 5 | <1,

where W is the measured induced by a Brownian bridge conditioned on X{*™ = (x(),... x(™) and
XM (1) (m)
T (y PR 7y )

Hu et. al. Statistical Disaggregation January 12th, 2024 10/26



How to deal with the rejection weight:

Eg

o)

o F = £ DAl
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One-Sample Rejection Step

Poisson Point Process

Suppose that 0 < ¢ < M, and let ® be a Poisson point process of intensity 1 defined on the space
[0, T] % [0, M].

Let A:= {(t,u) € [0, T] x [0, M] : u < ¢(w:)} denote the region under curve ¢(w;), ws ~ W, then

P(No(A) = 0Jw) = exp {—/0 ¢>(ws)d5}
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One-Sample Rejection Step
Poisson Point Process

Suppose that 0 < ¢ < M, and let ® be a Poisson point process of intensity 1 defined on the space
[0, T] % [0, M].

Let A:= {(t,u) € [0, T] x [0, M] : u < ¢(w:)} denote the region under curve ¢(w;), ws ~ W, then

P(No(A) = 0Jw) = exp {—/0 ¢(ws)d5}
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Is ¢ = Z — bounded7

o F = = DA
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Layered Brownian Bridge
Deciding on the layer also determines the bounds on X;, t € [0, T] and subsequently ¢(X;).

N

S

e

yt+aq

y+as

ytaz
ytai

Yy

Figure: A sample path from Xp = x to X7 = y. The trajectory landed in the fourth layer. (Beskos et al., 2008)
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Are the following definitions mathematically rigorous?

1)

f';.[(y( g

®

g1 (x(l),...,x(m),y yeen

hy (x(l), coxtm oy @

Ly o

—:

Il
-

fi(y("))] I (yW,...,y™)

—:-

Il
-

ﬂz(x(”)Pi(y")IX("))ﬁ(y("))‘ll Lu(y®,....y(™)

—:-

Il
-

(1) — x(N1]2
i y X
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Existence of Equality-Constrained Density

Lemma (Regular Value Theorem)

Let h: Rk — Rk 0 < k < md be a smooth function such that Yu € h=(0), the derivative
dh, : R™* — Rk js surjective. Then, the set

M= h~1(0) = {u € R : h(u) = 0} :

is a n-dimensional manifold. Moreover, there exists a canonical volume form Voly defined on ‘H such
that

/ dVoly = Volume of H.
H
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Existence of Equality-Constrained Density

Theorem

If H C R™¥ s an n-dimensional manifold, then the following holds:

@ we may define naturally the measures Pr, Py : B(H) — [0, 1] induced by restricting f,g on H such

that the Radon-Nikodym derivative with respect to the volume measure [ dVoly is proportional to
their corresponding density on the full space;

@ iff < g, then Py < Py with
ar; f
dPg X g

Thus indeed,

&1 (x(1)7 s 7X(m)7y(1), s 7y(m))
by (x) o x(m) y (D) y(m))

O(EW

{5 o)
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Sampling from Proposal

Recall the proposal distribution

mo () _ x(|2
h'H (X(l)," .,x(m),y(l)" B ,y(m)) o8 [H f,-(x(’))exp (_%)] ]I'H(.y(l)) ’y(m))
i=1

o If N(x, Tlng) Tz (y™, ..., y(™) can be analytically simplified, e.g.,
> linear constraint — Gaussian distribution;
> Spherical /Elliptical constraint — von Mises-Fisher distribution.
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Sampling from Proposal

Recall the proposal distribution

mo () _ x(|2
h'H (X(l)," .,X(m),y(l)" B ,y(m)) o8 [H f,-(x(’))exp (_%)] ]IH(y(l)) ’y(m))
i=1

o If N(x, Tlng) Tz (y™, ..., y(™) can be analytically simplified, e.g.,
> linear constraint — Gaussian distribution;
> Spherical /Elliptical constraint — von Mises-Fisher distribution.

Sample y ~ N (x, Thna)Ix(y™, ..., y(™) and correct for Sy N(x, Thna ) (y @D, ..., y(™)dVoly.
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Sampling from Proposal

Recall the proposal distribution

m . () — ()2
h'H (X(1)7" .,X(m),y(l)" N ,y(m)) o8 [H f,-(x(’))exp <w>] ]IH(y(l), . ’y(m))
i=1

o If N(X, Tlna) T (y®, ..., y(™) can be analytically simplified, e.g.,
» linear constraint — Gaussian distribution;
> Spherical /Elliptical constraint — von Mises-Fisher distribution.

Sample y ~ N (x, Tlna)lz(y®, ..., y(™) and correct for [, N'(x, Tlna)lz(y™®, ..., y(™)dVoly.

@ For arbitrary manifold constraint,
@ Sample xD ~ £
@ Sample y*™ uniformly from # (e.g., by constrained HMC);
@ Correct for exp(—|ly — x|2/27T);
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Daily to Tridaily Imputation

@ Coming back to the imputation problem on energy consumption:

total peak off-peak night
1 1 1 1
S = v+ ¥P 4P

where S; is the total consumption on the day t.
@ The time series S; is known,

@ impute the segmented consumption Yt(i) given 5;.
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Daily to Tridaily Imputation

@ Coming back to the imputation problem on energy consumption:

total peak off-peak night
1 1 1 1
S = v+ ¥P 4P

where S; is the total consumption on the day t.
@ The time series S; is known,

@ impute the segmented consumption Yt(i) given 5;.

@ Implemented model: treat Yt(l), Yt(2), Yt(3) as separate time series.
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Daily to Tridaily Imputation

Time
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Model

Definition (Generalized Logistic Distribution)
Let o, 8,7 >0, C € R, and X; ~ [ (a,1), Xo ~T(5,1). Let

X
Y :=log (i) + C,

then X is said to follow a Generalized Logistic distribution with parameter (o, 3,7, C), denoted
X ~ GenlLog(a, 8,7, C).
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Model

Definition (Generalized Logistic Distribution)
Let o, 8,7 >0, C € R, and X; ~ [ (a,1), Xo ~T(5,1). Let

X
Y :=log (i) + C,

then X is said to follow a Generalized Logistic distribution with parameter (o, 3,7, C), denoted
X ~ GenlLog(a, 8,7, C).

Autoregressive model for Yt(') where E; are the extra regressors,

K
Y ~ Genlog (), 800,70, O 4 uf) 4 = 3" 00V, 4 B

r=1

such that ]E[Yt(i)| Ys(Qt] = Ngi)-
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Daily to Tridaily Imputation

7.00-15.00 15.00-23.00 23.00-7.00
25 25 25
c 20 20 20
2
‘%15 15 15 a
- S = -
g0 0 AR~ 10 ///\\\_/’
—_——SeeT : =
O e e e e O S et O — e
5 10 5 10 5 10
Day Day Day

Consumption = Mean = Ground Truth — 2.5%-quantile

(a) Constrained simulation

7.00-15.00 15.00-23.00 23.00-7.00
25 25 25 —_—
=20 20 N P e
8 =r= -
815 15 15
£
210 - 10 W 0 e
2 10— —
3s 5 5 e A NN
S = — — — N
- Y R e S S 0 IR K S P (e S S W S o
5 10 5 10 5 10
Day Day Day

Consumption = Mean = Ground Truth — 2.5%-quantile

(b) Unconstrained simulation
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Peak-Trough Estimation

o Predict the peak and trough consumption of at 6-minute level in each 30-minute intervals:

30-min total interval 1 interval 2 interval 3 interval 4 interval 5
{ { { { { {
S, _ Yt( 1) + Yt(2) + Yt(3) + Yt(4) + Yt(S)

where each interval represents a reading average of 6 minutes.

Hu et. al. Statistical Disaggregation January 12th, 2024 23/26



Peak-Trough Estimation

o Predict the peak and trough consumption of at 6-minute level in each 30-minute intervals:

30-min total interval 1 interval 2 interval 3 interval 4 interval 5
{ { { { { {
S, _ Yt( 1) + Yt(2) + Yt(3) + Yt(4) + Yt(S)

where each interval represents a reading average of 6 minutes.
o Want to predict min{ Y{**} and max{Y{*®)} for every 30-minute period given S,.

@ Use the average reading S; as the baseline.
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Peak-Trough Estimation
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Consider sampling three shifted T-distribution X ~ T501(—2), Xo ~ T2.01(3) and X3z ~ T5.01(5)
subject to the constraint X; + X, + X3 = 10.

T-Distribution Case

Mean
40-

Percentage Error
9
3

5000 25000 50000 75000 100000
N

Variance

Percentage Error
Y
8

5000 25000 50000 75000 100000
N

« CHMC = LCF = MH — PF
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