Discrete-To-Continuum Limits in Graph-Based Semi-Supervised Learning

Algorithms \& Computationally Intensive Inference Seminar

University of Warwick

Matthew Thorpe

Joint Work with Andrea Bertozzi (UCLA), Jeff Calder (Minnesota), Brendan Cook (Minnesota), Matt Dunlop (Courant Institute), Tan Nguyen (National University of Singapore), Stanley Osher (UCLA), Dejan Slepčev (CMU), Thomas Strohmer (UC Davis), Andrew Stuart (Caltech), Bao Wang (Utah), Adrien Weihs (Manchester) and Hedi Xia (UCLA)

Department of Statistics
University of Warwick

$26^{\text {th }}$ January 2023

THE UNIVERSITY OF
WARwICK
No.MADS

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
- ‘Supervised classical’ approach: minimise $\left\|\nabla u_{n}\right\|_{L^{2}}^{2}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
- ‘Supervised classical’ approach: minimise $\left\|\nabla u_{n}\right\|_{L^{2}}^{2}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
- ‘Supervised classical’ approach: minimise $\left\|\nabla u_{n}\right\|_{L^{2}}^{2}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
- 'Supervised classical’ approach: minimise $\left\|\nabla u_{n}\right\|_{L^{2}}^{2}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Example by Jeff Calder.

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
- 'Supervised classical' approach: minimise $\left\|\nabla u_{n}\right\|_{L^{2}}^{2}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Example by Jeff Calder.

Semi-Supervised Learning

- Problem: Given data $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}} \subset \mathbb{R}$, where $\mathcal{I}_{n} \subseteq\{1, \ldots, n\}$, find the 'best' $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
- 'Supervised classical’ approach: minimise $\left\|\nabla u_{n}\right\|_{L^{2}}^{2}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Example by Jeff Calder.

Semi-Supervised Learning

(1) Aim: Given feature vectors $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}}$ find labels of the unlabelled feature vectors $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.

Semi-Supervised Learning

(1) Aim: Given feature vectors $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}}$ find labels of the unlabelled feature vectors $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.
(2) Graph: $G_{n}=\left(\Omega_{n}, W_{n}\right)$ where

Semi-Supervised Learning

(1) Aim: Given feature vectors $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}}$ find labels of the unlabelled feature vectors $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.
(2) Graph: $G_{n}=\left(\Omega_{n}, W_{n}\right)$ where
(1) $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n}$ are the vertices/nodes,

Semi-Supervised Learning

(1) Aim: Given feature vectors $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}}$ find labels of the unlabelled feature vectors $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.
(2) Graph: $G_{n}=\left(\Omega_{n}, W_{n}\right)$ where
(1) $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n}$ are the vertices/nodes,
(2) $W_{n}=\left(w_{i j}\right)_{i, j=1}^{n}$ are nonnegative and symmetric edge weights with $w_{i j} \gg 1$ if x_{i} and x_{j} are similar and $w_{i j} \approx 0$ if dissimilar.

Semi-Supervised Learning

(1) Aim: Given feature vectors $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}}$ find labels of the unlabelled feature vectors $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.
(2) Graph: $G_{n}=\left(\Omega_{n}, W_{n}\right)$ where
(1) $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n}$ are the vertices/nodes,
(2) $W_{n}=\left(w_{i j}\right)_{i, j=1}^{n}$ are nonnegative and symmetric edge weights with $w_{i j} \gg 1$ if x_{i} and x_{j} are similar and $w_{i j} \approx 0$ if dissimilar.
(3) Labels: $\ell_{j} \in\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{k}\right\} \in \mathbb{R}^{k}$ or $\ell_{j} \in \mathbb{R}$ depending on the setting.

Semi-Supervised Learning

(1) Aim: Given feature vectors $\left\{x_{i}\right\}_{i=1}^{n} \subset \mathbb{R}^{d}$ and a subset of labels $\left\{\ell_{i}\right\}_{i \in \mathcal{I}_{n}}$ find labels of the unlabelled feature vectors $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.
(2) Graph: $G_{n}=\left(\Omega_{n}, W_{n}\right)$ where
(1) $\Omega_{n}=\left\{x_{i}\right\}_{i=1}^{n}$ are the vertices/nodes,
(2) $W_{n}=\left(w_{i j}\right)_{i, j=1}^{n}$ are nonnegative and symmetric edge weights with $w_{i j} \gg 1$ if x_{i} and x_{j} are similar and $w_{i j} \approx 0$ if dissimilar.
(3) Labels: $\ell_{j} \in\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{k}\right\} \in \mathbb{R}^{k}$ or $\ell_{j} \in \mathbb{R}$ depending on the setting.
(9) Assumption: Similar feature vectors should have similar labels.

Laplace Learning

(1) Laplacian Regularisation: Zhu, Ghahramani and Lafferty (2003) or Zhou and Schölkopf (2005) define u_{n}^{*} as the minimiser of

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Laplace Learning

(1) Laplacian Regularisation: Zhu, Ghahramani and Lafferty (2003) or Zhou and Schölkopf (2005) define u_{n}^{*} as the minimiser of

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
(2) Laplacian Classification: We define

$$
\ell_{u_{n}^{*}}\left(x_{i}\right)=\underset{j \in\{1, \ldots, k\}}{\operatorname{argmax}} u_{n, j}^{*}\left(x_{i}\right)
$$

Laplace Learning

(1) Laplacian Regularisation: Zhu, Ghahramani and Lafferty (2003) or Zhou and Schölkopf (2005) define u_{n}^{*} as the minimiser of

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.
(2) Laplacian Classification: We define

$$
\ell_{u_{n}^{*}}\left(x_{i}\right)=\underset{j \in\{1, \ldots, k\}}{\operatorname{argmax}} u_{n, j}^{*}\left(x_{i}\right) .
$$

(3) If $p=2$ it follows that u_{n}^{*} satisfies the following Laplace equation

$$
\begin{aligned}
L_{n} u_{n}^{*}\left(x_{i}\right) & =0 & & \text { if } i \notin \mathcal{I}_{n} \\
u_{n}^{*}\left(x_{i}\right) & =\ell_{i} & & \text { if } i \in \mathcal{I}_{n}
\end{aligned}
$$

where $L_{n} u\left(x_{i}\right)=\sum_{j=1}^{n} w_{i j}\left(u\left(x_{i}\right)-u\left(x_{j}\right)\right)$ is the graph Laplacian.

Contents

(1) Discrete-To-Continuum Topology
(2) p-Laplace Learning
(3) Poisson Learning
(4) Fractional Laplace Learning
(5) Graph Neural Networks

Contents

(1) Discrete-To-Continuum Topology
(2) p-Laplace Learning
(3) Poisson Learning

4 Fractional Laplace Learning
(5) Graph Neural Networks

The TL ${ }^{p}$ Topology

(1) We want to compare $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to $u: \Omega \rightarrow \mathbb{R}$ where $\Omega \subset \mathbb{R}^{d}$.

The TL^{p} Topology

(1) We want to compare $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to $u: \Omega \rightarrow \mathbb{R}$ where $\Omega \subset \mathbb{R}^{d}$.
(2) Key idea: we extend each $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to a piecewise constant function $\tilde{u}_{n}: \Omega \rightarrow \mathbb{R}$ and compute $\left\|\tilde{u}_{n}-u\right\|_{\mathrm{L}^{p}}$.
(1) We want to compare $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to $u: \Omega \rightarrow \mathbb{R}$ where $\Omega \subset \mathbb{R}^{d}$.
(2) Key idea: we extend each $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to a piecewise constant function $\tilde{u}_{n}: \Omega \rightarrow \mathbb{R}$ and compute $\left\|\tilde{u}_{n}-u\right\|_{L^{p}}$.
(3) Let $\tilde{u}_{n}(x)=u_{n}\left(T_{n}(x)\right)$ for some function $T_{n}: \Omega \rightarrow \Omega_{n}$.
(1) We want to compare $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to $u: \Omega \rightarrow \mathbb{R}$ where $\Omega \subset \mathbb{R}^{d}$.
(2) Key idea: we extend each $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ to a piecewise constant function $\tilde{u}_{n}: \Omega \rightarrow \mathbb{R}$ and compute $\left\|\tilde{u}_{n}-u\right\|_{L^{p}}$.
(3) Let $\tilde{u}_{n}(x)=u_{n}\left(T_{n}(x)\right)$ for some function $T_{n}: \Omega \rightarrow \Omega_{n}$.
(9) We will choose T_{n} to be an optimal transport map.

The TL^{p} Metric

- As introduced by García Trillos and Slepčev (2016), let

$$
\mathrm{TL}^{p}:=\left\{(u, \mu): u \in \mathrm{~L}^{p}(\mu), \mu \in \mathcal{P}(\Omega)\right\} .
$$

- As introduced by García Trillos and Slepčev (2016), let

$$
\mathrm{TL}^{p}:=\left\{(u, \mu): u \in \mathrm{~L}^{p}(\mu), \mu \in \mathcal{P}(\Omega)\right\} .
$$

- The TL^{p} metric is defined by $d_{\mathrm{TL}^{p}}: \mathrm{TL}^{p} \times \mathrm{TL}^{p} \rightarrow[0, \infty)$, $d_{\mathrm{TL}}^{p}((u, \mu),(v, \nu))=\inf _{\pi \in \Pi(\mu, \nu)} \int_{\Omega \times \Omega}|x-y|^{p}+|u(x)-v(y)|^{p} \mathrm{~d} \pi(x, y)$
- As introduced by García Trillos and Slepčev (2016), let

$$
\mathrm{TL}^{p}:=\left\{(u, \mu): u \in \mathrm{~L}^{p}(\mu), \mu \in \mathcal{P}(\Omega)\right\} .
$$

- The TL^{p} metric is defined by $d_{\mathrm{TL}^{p}}: \mathrm{TL}^{p} \times \mathrm{TL}^{p} \rightarrow[0, \infty)$, $d_{\mathrm{TL}}{ }^{p}((u, \mu),(v, \nu))=\inf _{\pi \in \Pi(\mu, \nu)} \int_{\Omega \times \Omega}|x-y|^{p}+|u(x)-v(y)|^{p} \mathrm{~d} \pi(x, y)$
- Theoretically it is convenient to write:

$$
d_{\mathrm{TL}}{ }^{p}((u, \mu),(v, \nu))=d_{\mathrm{W}^{p}}(\tilde{\mu}, \tilde{\nu})=\inf _{\tilde{\pi} \in \Pi(\tilde{\mu}, \tilde{\nu})} \sqrt[p]{\int_{(\Omega \times \mathbb{R}) \times(\Omega \times \mathbb{R})}|x-y|^{p} \mathrm{~d} \tilde{\pi}(x, y)}
$$

$$
\text { where } \tilde{\mu}=(\operatorname{Id} \times u)_{\#} \mu \text { and } \tilde{\nu}=(\operatorname{Id} \times v)_{\#} \nu
$$

- As introduced by García Trillos and Slepčev (2016), let

$$
\mathrm{TL}^{p}:=\left\{(u, \mu): u \in \mathrm{~L}^{p}(\mu), \mu \in \mathcal{P}(\Omega)\right\}
$$

- The TL^{p} metric is defined by $d_{\mathrm{TL}^{p}}: \mathrm{TL}^{p} \times \mathrm{TL}^{p} \rightarrow[0, \infty)$, $d_{\mathrm{TL}^{p}}^{p}((u, \mu),(v, \nu))=\inf _{\pi \in \Pi(\mu, \nu)} \int_{\Omega \times \Omega}|x-y|^{p}+|u(x)-v(y)|^{p} \mathrm{~d} \pi(x, y)$
- Theoretically it is convenient to write:

$$
d_{\mathrm{TL}^{p}}((u, \mu),(v, \nu))=d_{\mathrm{W}^{p}}(\tilde{\mu}, \tilde{\nu})=\inf _{\tilde{\pi} \in \Pi(\tilde{\mu}, \tilde{\nu})} \sqrt[p]{\int_{(\Omega \times \mathbb{R}) \times(\Omega \times \mathbb{R})}|x-y|^{p} \mathrm{~d} \tilde{\pi}(x, y)}
$$

$$
\text { where } \tilde{\mu}=(\operatorname{Id} \times u)_{\#} \mu \text { and } \tilde{\nu}=(\operatorname{Id} \times v)_{\#} \nu
$$

- Numerically it is convenient to write:

$$
d_{\mathrm{TL}}{ }^{p}((u, \mu),(v, \nu))=\inf _{\pi \in \Pi(\mu, \nu)} \sqrt[p]{\int_{\Omega \times \Omega} c(x, y ; u, v) \mathrm{d} \pi(x, y)}
$$

where $c(x, y ; u, v)=|x-y|^{p}+|u(x)-v(y)|^{p}$.

Aside: A TL ${ }^{p}$ Approach to Histogram Specification

(a) Exemplar images.

(b) Original image to be shaded.

(c) The TL^{p} colour transfer solution.

Figure: More details and other applications in T., Park, Kolouri, Rohde and Slepčev (2017).

Theorem (García Trillos and Slepčev (2016))

If μ is absolutely continuous, then $\left(u_{n}, \mu_{n}\right) \rightarrow(u, \mu)$ in TL^{p} if and only if $\mu_{n} \rightharpoonup^{*} \mu$ and there exists a sequence of maps $T_{n}: \Omega \rightarrow \Omega$ such that $\left(T_{n}\right)_{\#} \mu=\mu_{n}, T_{n} \rightarrow \operatorname{Id}$ in $\mathrm{L}^{p}(\mu)$ and

$$
\left\|u_{n} \circ T_{n}-u\right\|_{L^{p}(\mu)} \rightarrow 0
$$

Theorem (García Trillos and Slepčev (2016))

If μ is absolutely continuous, then $\left(u_{n}, \mu_{n}\right) \rightarrow(u, \mu)$ in TL^{p} if and only if $\mu_{n} \rightharpoonup^{*} \mu$ and there exists a sequence of maps $T_{n}: \Omega \rightarrow \Omega$ such that $\left(T_{n}\right)_{\#} \mu=\mu_{n}, T_{n} \rightarrow \mathrm{Id}$ in $\mathrm{L}^{p}(\mu)$ and

$$
\left\|u_{n} \circ T_{n}-u\right\|_{L^{p}(\mu)} \rightarrow 0
$$

Theorem (García Trillos and Slepčev (2015))

Assume $x_{i} \stackrel{\text { iid }}{\sim} \mu$ and $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$. With probability one, there exists $T_{n}: \Omega \rightarrow \Omega_{n}$ such that $\left(T_{n}\right)_{\# \mu}=\mu_{n}$ and

$$
\left\|T_{n}-\operatorname{Id}\right\|_{L^{\infty}} \lesssim \begin{cases}\frac{(\log n)^{\frac{3}{4}}}{\sqrt{n}} & \text { if } d=2 \\ \left(\frac{\log n}{n}\right)^{\frac{1}{d}} & \text { if } d \geq 3\end{cases}
$$

Theorem (García Trillos and Slepčev (2016))

If μ is absolutely continuous, then $\left(u_{n}, \mu_{n}\right) \rightarrow(u, \mu)$ in TL^{p} if and only if $\mu_{n} \rightharpoonup^{*} \mu$ and there exists a sequence of maps $T_{n}: \Omega \rightarrow \Omega$ such that $\left(T_{n}\right)_{\#} \mu=\mu_{n}, T_{n} \rightarrow \mathrm{Id}$ in $\mathrm{L}^{p}(\mu)$ and

$$
\left\|u_{n} \circ T_{n}-u\right\|_{L^{p}(\mu)} \rightarrow 0
$$

Theorem (García Trillos and Slepčev (2015))

Assume $x_{i} \stackrel{\text { iid }}{\sim} \mu$ and $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{i}}$. With probability one, there exists $T_{n}: \Omega \rightarrow \Omega_{n}$ such that $\left(T_{n}\right)_{\# \mu}=\mu_{n}$ and

$$
\left\|T_{n}-\operatorname{Id}\right\|_{L^{\infty}} \lesssim \begin{cases}\frac{(\log n)^{\frac{3}{4}}}{\sqrt{n}} & \text { if } d=2 \\ \left(\frac{\log n}{n}\right)^{\frac{1}{d}} & \text { if } d \geq 3\end{cases}
$$

Remark: by (for example) Penrose (2003) the connectivity radius of the geometric random graph scales as $\left(\frac{\log n}{n}\right)^{\frac{1}{d}}$ for all $d \in \mathbb{N}$.

Contents

(1) Discrete-To-Continuum Topology
(2) p-Laplace Learning
(3) Poisson Learning

4 Fractional Laplace Learning
(5) Graph Neural Networks

Asymptotic Setting

- Aim: minimise

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

Asymptotic Setting

- Aim: minimise

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

- Assume

$$
w_{i j}=\eta_{\varepsilon}\left(\left|x_{i}-x_{j}\right|\right)=\frac{1}{\varepsilon^{d}} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right) .
$$

Asymptotic Setting

- Aim: minimise

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

- Assume

$$
w_{i j}=\eta_{\varepsilon}\left(\left|x_{i}-x_{j}\right|\right)=\frac{1}{\varepsilon^{d}} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right) .
$$

- Formal Definition: The Laplacian regression problem is asymptotically well-posed if constrained minimisers of $\mathcal{E}_{n}^{(p)}$ converge to constrained minimisers of some $\mathcal{E}_{\infty}^{(p)}$ (to be defined).

Asymptotic Setting

- Aim: minimise

$$
\mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{p}
$$

over all $u_{n}: \Omega_{n} \rightarrow \mathbb{R}^{k}$ such that $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$.

- Assume

$$
w_{i j}=\eta_{\varepsilon}\left(\left|x_{i}-x_{j}\right|\right)=\frac{1}{\varepsilon^{d}} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right) .
$$

- Formal Definition: The Laplacian regression problem is asymptotically well-posed if constrained minimisers of $\mathcal{E}_{n}^{(p)}$ converge to constrained minimisers of some $\mathcal{E}_{\infty}^{(p)}$ (to be defined).
- Formal Definition: The Laplacian regression problem is asymptotically ill-posed if constrained minimisers of $\mathcal{E}_{n}^{(p)}$ converge to constants.

Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we should expect.

Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we should expect.

$$
\frac{1}{n^{2} \varepsilon^{p}} \mathcal{E}_{n}^{(p)}(u)=\frac{1}{n^{2} \varepsilon^{p+d}} \sum_{i, j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right|^{p}
$$

Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we should expect.

$$
\begin{aligned}
\frac{1}{n^{2} \varepsilon^{p}} \mathcal{E}_{n}^{(p)}(u) & =\frac{1}{n^{2} \varepsilon^{p+d}} \sum_{i, j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right|^{p} \\
& \approx \frac{1}{\varepsilon^{p+d}} \iint \eta\left(\frac{|x-y|}{\varepsilon}\right)|u(x)-u(y)|^{p} \rho(x) \rho(y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we should expect.

$$
\begin{aligned}
\frac{1}{n^{2} \varepsilon^{p}} \mathcal{E}_{n}^{(p)}(u) & =\frac{1}{n^{2} \varepsilon^{p+d}} \sum_{i, j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right|^{p} \\
& \approx \frac{1}{\varepsilon^{p+d}} \iint \eta\left(\frac{|x-y|}{\varepsilon}\right)|u(x)-u(y)|^{p} \rho(x) \rho(y) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{\varepsilon^{p}} \iint \eta(|z|)|u(y+\varepsilon z)-u(y)|^{p} \rho(y+\varepsilon z) \rho(y) \mathrm{d} y \mathrm{~d} z
\end{aligned}
$$

Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we should expect.

$$
\begin{aligned}
\frac{1}{n^{2} \varepsilon^{p}} \mathcal{E}_{n}^{(p)}(u) & =\frac{1}{n^{2} \varepsilon^{p+d}} \sum_{i, j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right|^{p} \\
& \approx \frac{1}{\varepsilon^{p+d}} \iint \eta\left(\frac{|x-y|}{\varepsilon}\right)|u(x)-u(y)|^{p} \rho(x) \rho(y) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{\varepsilon^{p}} \iint \eta(|z|)|u(y+\varepsilon z)-u(y)|^{p} \rho(y+\varepsilon z) \rho(y) \mathrm{d} y \mathrm{~d} z \\
& \approx \iint \eta(|z|)|\nabla u(y) \cdot z|^{p} \rho^{2}(y) \mathrm{d} y \mathrm{~d} z
\end{aligned}
$$

Formal Derivation of Limit

The following (formal) calculation gives intuition as to what we should expect.

$$
\begin{aligned}
\frac{1}{n^{2} \varepsilon^{p}} \mathcal{E}_{n}^{(p)}(u) & =\frac{1}{n^{2} \varepsilon^{p+d}} \sum_{i, j=1}^{n} \eta\left(\frac{\left|x_{i}-x_{j}\right|}{\varepsilon}\right)\left|u\left(x_{i}\right)-u\left(x_{j}\right)\right|^{p} \\
& \approx \frac{1}{\varepsilon^{p+d}} \iint \eta\left(\frac{|x-y|}{\varepsilon}\right)|u(x)-u(y)|^{p} \rho(x) \rho(y) \mathrm{d} x \mathrm{~d} y \\
& =\frac{1}{\varepsilon^{p}} \iint \eta(|z|)|u(y+\varepsilon z)-u(y)|^{p} \rho(y+\varepsilon z) \rho(y) \mathrm{d} y \mathrm{~d} z \\
& \approx \iint \eta(|z|)|\nabla u(y) \cdot z|^{p} \rho^{2}(y) \mathrm{d} y \mathrm{~d} z \\
& =\sigma_{\eta} \int|\nabla u(y)|^{p} \rho^{2}(y) \mathrm{d} y=: \mathcal{E}_{\infty}^{(p)}(u)
\end{aligned}
$$

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No!

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

- Problems occur when spikes have low energy.

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

- Problems occur when spikes have low energy.
- Consider the function $u_{n}\left(x_{1}\right)=1$ and $u_{n}\left(x_{i}\right)=0$ for all $i \geq 2$.

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

- Problems occur when spikes have low energy.
- Consider the function $u_{n}\left(x_{1}\right)=1$ and $u_{n}\left(x_{i}\right)=0$ for all $i \geq 2$.
- $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\frac{2}{\varepsilon_{n}^{p+{ }_{n}^{2}}} \sum_{j=2}^{n} \eta\left(\frac{\left|x_{1}-x_{j}\right|}{\varepsilon_{n}}\right)$

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

- Problems occur when spikes have low energy.
- Consider the function $u_{n}\left(x_{1}\right)=1$ and $u_{n}\left(x_{i}\right)=0$ for all $i \geq 2$.
- $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\frac{2}{\varepsilon_{n}^{p+d} n^{2}} \sum_{j=2}^{n} \eta\left(\frac{\left|x_{1}-x_{j}\right|}{\varepsilon_{n}}\right)$
$=\left(\frac{2}{\varepsilon_{n}^{\rho} n}\right) \times\left(\frac{1}{n \varepsilon_{n}^{d}} \#\left\{\Omega_{n} \cap B\left(x_{1}, \varepsilon_{n}\right)\right\}\right)$.

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

- Problems occur when spikes have low energy.
- Consider the function $u_{n}\left(x_{1}\right)=1$ and $u_{n}\left(x_{i}\right)=0$ for all $i \geq 2$.
- $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\frac{2}{\varepsilon_{n}^{p+d_{n}}} \sum_{j=2}^{n} \eta\left(\frac{\left|x_{1}-x_{j}\right|}{\varepsilon_{n}}\right)$
$=\left(\frac{2}{\varepsilon_{n}^{p} n}\right) \times\left(\frac{1}{n \varepsilon_{n}^{d}} \#\left\{\Omega_{n} \cap B\left(x_{1}, \varepsilon_{n}\right)\right\}\right)$.
- If $\varepsilon_{n}^{p} n \rightarrow \infty$ then $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right) \rightarrow 0$ and the spike pays no cost in the limit!

Limiting Constraints - Intuition

We intuitively see that $p>d$ is necessary if the constrain set is finite, i.e. $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$, is it sufficient?

No! Why not?

- Problems occur when spikes have low energy.
- Consider the function $u_{n}\left(x_{1}\right)=1$ and $u_{n}\left(x_{i}\right)=0$ for all $i \geq 2$.
- $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)=\frac{2}{\varepsilon_{n}^{p+d_{n}}} \sum_{j=2}^{n} \eta\left(\frac{\left|x_{1}-x_{j}\right|}{\varepsilon_{n}}\right)$
$=\left(\frac{2}{\varepsilon_{n}^{p} n}\right) \times\left(\frac{1}{n \varepsilon_{n}^{d}} \#\left\{\Omega_{n} \cap B\left(x_{1}, \varepsilon_{n}\right)\right\}\right)$.
- If $\varepsilon_{n}^{p} n \rightarrow \infty$ then $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right) \rightarrow 0$ and the spike pays no cost in the limit!
This example turns out to be sharp: $\varepsilon_{n}^{p} n \rightarrow \infty$ implies ill-posedness and $\varepsilon_{n}^{p} n \rightarrow 0$ implies well-posedness.

Continuum Limit of p-Laplace Learning

Theorem (Slepčev and T., 17)

Let $p>1$. Let u_{n}^{*} be a sequence of minimizers of $\mathcal{E}_{n}^{(p)}$ satisfying the $u_{n}^{*}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$ where $\max _{n \in \mathbb{N}}\left|\mathcal{I}_{n}\right|<+\infty$. Then, almost surely, the sequence $\left(u_{n}^{*}, \mu_{n}\right)$ is precompact in TL^{p}. The TL^{p} limit of any convergent subsequence, $\left(u_{n_{m}}^{*}, \mu_{n_{m}}\right)$, is of the form (u, μ) where $u \in W^{1, p}(\Omega)$. Furthermore,
(i) if $n \varepsilon_{n}^{p} \rightarrow 0$ as $n \rightarrow \infty$ then u is continuous and
(a) the whole sequence u_{n}^{*} converges to u both in TL^{p} and locally uniformly, meaning that for any Ω^{\prime} with $\overline{\Omega^{\prime}} \subset \Omega$

$$
\lim _{n \rightarrow \infty} \max _{\left\{k \in\{1, \ldots, n\}: x_{k} \in \Omega^{\prime}\right\}}\left|u\left(x_{k}\right)-u_{n}^{*}\left(x_{k}\right)\right|=0
$$

(b) u is a minimizer of $\mathcal{E}_{\infty}^{(p)}$ with constraints;
(ii) if $n \varepsilon_{n}^{p} \rightarrow \infty$ as $n \rightarrow \infty$ then u is constant.

Numerical Comparisons

(a) $p=4$ continuum limit minimiser.

(b) $p=4$ minimiser
($\varepsilon=0.06, n=1280$).

(c) $p=2$ minimiser
($\varepsilon=0.06, n=1280$).

Development of Spikes $(p=4)$

(a) $\varepsilon=0.05$.

(b) $\varepsilon=0.1$.

(c) $\varepsilon=0.2$.

Variational Convergence

Green $-\mathcal{E}_{n}$, Blue - \mathcal{E}_{m} for $m>n$, Red - weak limit, Black $-\Gamma$-limit.

Variational Convergence

Green - \mathcal{E}_{n}, Blue - \mathcal{E}_{m} for $m>n$, Red - weak limit, Black - Г-limit.

We say $\mathcal{E}_{\infty}=\Gamma$ - $\lim _{n} \mathcal{E}_{n}$, if for all u we have
(i) $\forall u_{n} \rightarrow u$,
$\mathcal{E}_{\infty}(u) \leq \liminf _{n \rightarrow \infty} \mathcal{E}_{n}\left(u_{n}\right) ;$
(ii) $\exists u_{n} \rightarrow u$,
$\mathcal{E}_{\infty}(u) \geq \lim \sup _{n \rightarrow \infty} \mathcal{E}_{n}\left(u_{n}\right)$.

Variational Convergence

Green - \mathcal{E}_{n}, Blue - \mathcal{E}_{m} for $m>n$, Red - weak limit, Black - Г-limit.

We say $\mathcal{E}_{\infty}=\Gamma$ - $\lim _{n} \mathcal{E}_{n}$, if for all u we have
(i) $\forall u_{n} \rightarrow u$, $\mathcal{E}_{\infty}(u) \leq \liminf _{n \rightarrow \infty} \mathcal{E}_{n}\left(u_{n}\right) ;$
(ii) $\exists u_{n} \rightarrow u$, $\mathcal{E}_{\infty}(u) \geq \lim \sup _{n \rightarrow \infty} \mathcal{E}_{n}\left(u_{n}\right)$.

Theorem

Let u_{n} be a sequence of almost minimizers of \mathcal{E}_{n}. If u_{n} are precompact and $\mathcal{E}_{\infty}=\Gamma-\lim _{n} \mathcal{E}_{n}$ where \mathcal{E}_{∞} is not identically $+\infty$ then

$$
\min \mathcal{E}_{\infty}=\lim _{n \rightarrow \infty} \inf \mathcal{E}_{n}
$$

Furthermore any cluster point of $\left\{u_{n}\right\}_{n=1}^{\infty}$ minimizes \mathcal{E}_{∞}.

Intuition on the Proof

(1) Step 1: We show $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right) \approx \mathcal{E}_{\infty}^{(p)}\left(J_{\varepsilon_{n}} * \tilde{u}_{n}\right)$ where $\tilde{u}_{n}=u_{n} \circ T_{n}$ and J is a mollifier.

Intuition on the Proof

(1) Step 1: We show $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right) \approx \mathcal{E}_{\infty}^{(p)}\left(J_{\varepsilon_{n}} * \tilde{u}_{n}\right)$ where $\tilde{u}_{n}=u_{n} \circ T_{n}$ and J is a mollifier.
(2) Step 2: We show $\operatorname{osc}_{\varepsilon_{n}}^{(n)}\left(u_{n}\right) \leq C \sqrt[p]{n \varepsilon_{n}^{p}\left(\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)\right)}$ where

$$
\operatorname{osc}_{\varepsilon}^{(n)}\left(u_{n}\right)\left(x_{k}\right)=\max _{z \in B\left(x_{k}, \varepsilon\right) \cap \Omega_{n}} u_{n}(z)-\min _{z \in B\left(x_{k}, \varepsilon\right) \cap \Omega_{n}} u_{n}(z)
$$

Intuition on the Proof

(1) Step 1: We show $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right) \approx \mathcal{E}_{\infty}^{(p)}\left(J_{\varepsilon_{n}} * \tilde{u}_{n}\right)$ where $\tilde{u}_{n}=u_{n} \circ T_{n}$ and J is a mollifier.
(2. Step 2: We show $\operatorname{osc}_{\varepsilon_{n}}^{(n)}\left(u_{n}\right) \leq C \sqrt[p]{n \varepsilon_{n}^{p}\left(\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)\right)}$ where

$$
\operatorname{osc}_{\varepsilon}^{(n)}\left(u_{n}\right)\left(x_{k}\right)=\max _{z \in B\left(x_{k}, \varepsilon\right) \cap \Omega_{n}} u_{n}(z)-\min _{z \in B\left(x_{k}, \varepsilon\right) \cap \Omega_{n}} u_{n}(z) .
$$

(3) Step 3: Sobolev embedding of $J_{\varepsilon_{n}} * \tilde{u}_{n}$ plus the control over oscillations is enough to infer uniform convergence:

$$
\lim _{n \rightarrow \infty} \max _{\left\{k \in\{1, \ldots, n\}: x_{k} \in \Omega^{\prime}\right\}}\left|u\left(x_{k}\right)-u_{n}\left(x_{k}\right)\right|=0 .
$$

Intuition on the Proof

(1) Step 1: We show $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right) \approx \mathcal{E}_{\infty}^{(p)}\left(J_{\varepsilon_{n}} * \tilde{u}_{n}\right)$ where $\tilde{u}_{n}=u_{n} \circ T_{n}$ and J is a mollifier.
(2. Step 2: We show $\operatorname{osc}_{\varepsilon_{n}}^{(n)}\left(u_{n}\right) \leq C \sqrt[p]{n \varepsilon_{n}^{p}\left(\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}\left(u_{n}\right)\right)}$ where

$$
\operatorname{osc}_{\varepsilon}^{(n)}\left(u_{n}\right)\left(x_{k}\right)=\max _{z \in B\left(x_{k}, s\right) \cap \Omega_{n}} u_{n}(z)-\min _{z \in B\left(x_{k}, \varepsilon\right) \cap \Omega_{n}} u_{n}(z) .
$$

(3) Step 3: Sobolev embedding of $J_{\varepsilon_{n}} * \tilde{u}_{n}$ plus the control over oscillations is enough to infer uniform convergence:

$$
\lim _{n \rightarrow \infty} \max _{\left\{k \in\{1, \ldots, n\}: x_{k} \in \Omega^{\prime}\right\}}\left|u\left(x_{k}\right)-u_{n}\left(x_{k}\right)\right|=0
$$

(1) Step 4: 「-convergence of $\frac{1}{n^{2} \varepsilon_{n}^{p}} \mathcal{E}_{n}^{(p)}$ to $\mathcal{E}_{\infty}^{(p)}$ plus a TL^{p} compactness result is now enough to get convergence of constrained minimizers.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.
- Questions: What happens in between?

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.
- Questions: What happens in between?
- Model: Recall $\left\{\left(x_{i}, \ell_{i}\right)\right\}_{i \in \mathcal{I}_{n}}$ is the labelled data.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.
- Questions: What happens in between?
- Model: Recall $\left\{\left(x_{i}, \ell_{i}\right)\right\}_{i \in \mathcal{I}_{n}}$ is the labelled data.
(1) Assume $\mathbb{P}\left(i \in \mathcal{I}_{n}\right)=\beta_{n} \mathbb{1}_{\tilde{\Omega}}, \tilde{\Omega} \subset \Omega$ is open and bounded.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.
- Questions: What happens in between?
- Model: Recall $\left\{\left(x_{i}, \ell_{i}\right)\right\}_{i \in \mathcal{I}_{n}}$ is the labelled data.
(1) Assume $\mathbb{P}\left(i \in \mathcal{I}_{n}\right)=\beta_{n} \mathbb{1}_{\tilde{\Omega}}, \tilde{\Omega} \subset \Omega$ is open and bounded.
(2) If $i \in \mathcal{I}_{n}$ we set $\ell_{i}=g^{\dagger}\left(x_{i}\right)$.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.
- Questions: What happens in between?
- Model: Recall $\left\{\left(x_{i}, \ell_{i}\right)\right\}_{i \in \mathcal{I}_{n}}$ is the labelled data.
(1) Assume $\mathbb{P}\left(i \in \mathcal{I}_{n}\right)=\beta_{n} \mathbb{1}_{\tilde{\Omega}}, \tilde{\Omega} \subset \Omega$ is open and bounded.
(2) If $i \in \mathcal{I}_{n}$ we set $\ell_{i}=g^{\dagger}\left(x_{i}\right)$.
- Well-posed case: Minimisers of $\mathcal{E}_{n}^{(p)}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$ converge to minimisers of $\mathcal{E}_{\infty}^{(p)}$ subject to $u(x)=g^{\dagger}(x)$ for all $x \in \tilde{\Omega}$.

Minimal Number of Labels

- Sobolev regularity implies that we can't minimise $\mathcal{E}_{\infty}^{(p)}$ with finite constraints, but the problem is well-posed if labels are imposed on an open subset.
- We expect asymptotic ill-posedness if $\left|\mathcal{I}_{n}\right| \sim 1$ and asymptotic well-posedness if $\left|\mathcal{I}_{n}\right| \sim n$.
- Questions: What happens in between?
- Model: Recall $\left\{\left(x_{i}, \ell_{i}\right)\right\}_{i \in \mathcal{I}_{n}}$ is the labelled data.
(1) Assume $\mathbb{P}\left(i \in \mathcal{I}_{n}\right)=\beta_{n} \mathbb{1}_{\tilde{\Omega}}, \tilde{\Omega} \subset \Omega$ is open and bounded.
(2. If $i \in \mathcal{I}_{n}$ we set $\ell_{i}=g^{\dagger}\left(x_{i}\right)$.
- Well-posed case: Minimisers of $\mathcal{E}_{n}^{(p)}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$ converge to minimisers of $\mathcal{E}_{\infty}^{(p)}$ subject to $u(x)=g^{\dagger}(x)$ for all $x \in \tilde{\Omega}$.
- III-posed case: Minimisers of $\mathcal{E}_{n}^{(p)}$ subject to $u_{n}\left(x_{i}\right)=\ell_{i}$ for all $i \in \mathcal{I}_{n}$ converge to constants.

Random Walks on Graphs

- Let $G_{n}=\left(\Omega_{n}, W\right)$ be the graph with edge weights $W=\left(w_{i j}\right)$.

Random Walks on Graphs

- Let $G_{n}=\left(\Omega_{n}, W\right)$ be the graph with edge weights $W=\left(w_{i j}\right)$.
- Let B_{t}^{\times}be the random walk on Ω_{n} starting from $B_{0}^{\times}=x \in \Omega_{n}$ and transitioning with probability

$$
\mathbb{P}\left(B_{t+1}^{\times}=x_{j} \mid B_{t}^{\times}=x_{i}\right)=\frac{w_{i j}}{d_{i}}
$$

where $d_{i}=\sum_{j=1}^{n} w_{i j}$.

Random Walks on Graphs

- Let $G_{n}=\left(\Omega_{n}, W\right)$ be the graph with edge weights $W=\left(w_{i j}\right)$.
- Let B_{t}^{\times}be the random walk on Ω_{n} starting from $B_{0}^{\times}=x \in \Omega_{n}$ and transitioning with probability

$$
\mathbb{P}\left(B_{t+1}^{\times}=x_{j} \mid B_{t}^{\times}=x_{i}\right)=\frac{w_{i j}}{d_{i}}
$$

where $d_{i}=\sum_{j=1}^{n} w_{i j}$.

- Define the stopping time

$$
S(x)=\min \left\{t \in \mathbb{N}: B_{t}^{x} \in\left\{x_{i}\right\}_{i \in \mathcal{I}_{n}}\right\}
$$

Random Walks on Graphs

- Let $G_{n}=\left(\Omega_{n}, W\right)$ be the graph with edge weights $W=\left(w_{i j}\right)$.
- Let B_{t}^{\times}be the random walk on Ω_{n} starting from $B_{0}^{\times}=x \in \Omega_{n}$ and transitioning with probability

$$
\mathbb{P}\left(B_{t+1}^{\times}=x_{j} \mid B_{t}^{\times}=x_{i}\right)=\frac{w_{i j}}{d_{i}}
$$

where $d_{i}=\sum_{j=1}^{n} w_{i j}$.

- Define the stopping time

$$
S(x)=\min \left\{t \in \mathbb{N}: B_{t}^{x} \in\left\{x_{i}\right\}_{i \in \mathcal{I}_{n}}\right\} .
$$

Proposition

Define $u_{n}^{*}(x)=\mathbb{E}\left[g^{\dagger}\left(B_{S(x)}^{\times}\right)\right]$. Then u_{n}^{*} minimises $\mathcal{E}_{n}^{(2)}$ subject to the constraints.

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{x} behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{\times}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{\times}behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{x}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

(2) Step 2: Within the labelled domain we have a probability β of stopping and so

$$
\mathbb{P}(S(x)>k) \leq(1-\beta)^{k} \leq e^{-c k \beta} \quad \forall x \in \tilde{\Omega}
$$

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{\times}behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{x}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

(2) Step 2: Within the labelled domain we have a probability β of stopping and so

$$
\mathbb{P}(S(x)>k) \leq(1-\beta)^{k} \leq e^{-c k \beta} \quad \forall x \in \tilde{\Omega}
$$

(3) Step 3: Combining the previous results, for all $x \in \tilde{\Omega}$,
$\left|u_{n}^{*}(x)-g^{\dagger}(x)\right|$

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{\times}behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{x}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

(2) Step 2: Within the labelled domain we have a probability β of stopping and so

$$
\mathbb{P}(S(x)>k) \leq(1-\beta)^{k} \leq e^{-c k \beta} \quad \forall x \in \tilde{\Omega}
$$

(3) Step 3: Combining the previous results, for all $x \in \tilde{\Omega}$,
$\left|u_{n}^{*}(x)-g^{\dagger}(x)\right| \leq \mathbb{E}\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right|$

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{\times}behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{x}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

(2) Step 2: Within the labelled domain we have a probability β of stopping and so

$$
\mathbb{P}(S(x)>k) \leq(1-\beta)^{k} \leq e^{-c k \beta} \quad \forall x \in \tilde{\Omega}
$$

(3) Step 3: Combining the previous results, for all $x \in \tilde{\Omega}$,

$$
\begin{aligned}
\left|u_{n}^{*}(x)-g^{\dagger}(x)\right| & \leq \mathbb{E}\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right| \\
& =\mathbb{E}\left[\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right| \mid S(x) \leq k\right] \mathbb{P}(S(x) \leq k) \\
& +\mathbb{E}\left[\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right| \mid S(x)>k\right] \mathbb{P}(S(x)>k)
\end{aligned}
$$

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{x} behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{x}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

(2) Step 2: Within the labelled domain we have a probability β of stopping and so

$$
\mathbb{P}(S(x)>k) \leq(1-\beta)^{k} \leq e^{-c k \beta} \quad \forall x \in \tilde{\Omega}
$$

(3) Step 3: Combining the previous results, for all $x \in \tilde{\Omega}$,

$$
\begin{aligned}
\left|u_{n}^{*}(x)-g^{\dagger}(x)\right| & \leq \mathbb{E}\left|g^{\dagger}\left(B_{S(x)}^{\times}\right)-g^{\dagger}(x)\right| \\
& =\mathbb{E}\left[\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right| \mid S(x) \leq k\right] \mathbb{P}(S(x) \leq k) \\
& +\mathbb{E}\left[\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right| \mid S(x)>k\right] \mathbb{P}(S(x)>k) \\
& \leq \alpha \operatorname{Lip}\left(g^{\dagger}\right) \sqrt{k} \varepsilon+2\left\|g^{\dagger}\right\|_{L \infty} e^{-c k \beta} .
\end{aligned}
$$

Intuition on the Minimal Number of Labels Proof I

(1) Step 1: We show B_{t}^{\times}behaves approximately as a Brownian motion and therefore

$$
\mathbb{P}\left(\max _{t=1, \ldots, k}\left|B_{t}^{x}-x\right|>\alpha \sqrt{k} \varepsilon\right) \leq e^{-c \alpha^{2}}
$$

(2) Step 2: Within the labelled domain we have a probability β of stopping and so

$$
\mathbb{P}(S(x)>k) \leq(1-\beta)^{k} \leq e^{-c k \beta} \quad \forall x \in \tilde{\Omega}
$$

(3) Step 3: Combining the previous results, for all $x \in \tilde{\Omega}$,
$\left|u_{n}^{*}(x)-g^{\dagger}(x)\right| \leq \mathbb{E}\left|g^{\dagger}\left(B_{S(x)}^{x}\right)-g^{\dagger}(x)\right|$

$$
=\mathbb{E}\left[\left|g^{\dagger}\left(B_{S(x)}^{\times}\right)-g^{\dagger}(x)\right| \mid S(x) \leq k\right] \mathbb{P}(S(x) \leq k)
$$

$$
+\mathbb{E}\left[\left|g^{\dagger}\left(B_{S(x)}^{\times}\right)-g^{\dagger}(x)\right| \mid S(x)>k\right] \mathbb{P}(S(x)>k)
$$

$$
\leq \alpha \operatorname{Lip}\left(g^{\dagger}\right) \sqrt{k} \varepsilon+2\left\|g^{\dagger}\right\|_{L \infty} e^{-c k \beta}
$$

Choosing $k=\frac{C}{\beta} \log \frac{\sqrt{\beta}}{\varepsilon}$ implies (with high probability)

$$
\left|u_{n}^{*}(x)-g^{\dagger}(x)\right| \leq C \frac{\varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon}
$$

Euler-Lagrange Equations

(1) Discrete variational problem: minimise
$\mathcal{E}_{n}^{(2)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{2}$
s.t. $u_{n}\left(x_{i}\right)=\ell_{i} \forall i \in \mathcal{I}_{n}$.

Euler-Lagrange Equations

(1) Discrete variational problem:
minimise
$\mathcal{E}_{n}^{(2)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{2}$
s.t. $u_{n}\left(x_{i}\right)=\ell_{i} \forall i \in \mathcal{I}_{n}$.
(2) Euler-Lagrange equation:

$$
\begin{aligned}
L_{n} u_{n}^{*}\left(x_{i}\right) & =0 & & \text { for } i \notin \mathcal{I}_{n} \\
u_{n}^{*}\left(x_{i}\right) & =\ell_{i} & & \text { for } i \in \mathcal{I}_{n}
\end{aligned}
$$

where
$L_{n} u_{n}\left(x_{i}\right)=\sum_{j=1}^{n} w_{i j}\left(u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right)$.

Euler-Lagrange Equations

(1) Discrete variational problem: minimise
$\mathcal{E}_{n}^{(2)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{2}$
s.t. $u_{n}\left(x_{i}\right)=\ell_{i} \forall i \in \mathcal{I}_{n}$.
(3) Continuum variational problem: minimise

$$
\begin{gathered}
\mathcal{E}_{\infty}^{(2)}(u)=\sigma_{\eta} \int_{\Omega}\|\nabla u(x)\|^{2} \rho^{2}(x) \mathrm{d} x \\
\text { s.t. } u(x)=g^{\dagger}(x) \forall x \in \tilde{\Omega} .
\end{gathered}
$$

(2) Euler-Lagrange equation:

$$
\begin{aligned}
L_{n} u_{n}^{*}\left(x_{i}\right) & =0 & & \text { for } i \notin \mathcal{I}_{n} \\
u_{n}^{*}\left(x_{i}\right) & =\ell_{i} & & \text { for } i \in \mathcal{I}_{n}
\end{aligned}
$$

where
$L_{n} u_{n}\left(x_{i}\right)=\sum_{j=1}^{n} w_{i j}\left(u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right)$.

Euler-Lagrange Equations

(1) Discrete variational problem: minimise
$\mathcal{E}_{n}^{(2)}\left(u_{n}\right)=\sum_{i, j=1}^{n} w_{i j}\left|u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right|^{2}$
s.t. $u_{n}\left(x_{i}\right)=\ell_{i} \forall i \in \mathcal{I}_{n}$.
(2) Euler-Lagrange equation:

$$
\begin{aligned}
L_{n} u_{n}^{*}\left(x_{i}\right) & =0 & & \text { for } i \notin \mathcal{I}_{n} \\
u_{n}^{*}\left(x_{i}\right) & =\ell_{i} & & \text { for } i \in \mathcal{I}_{n}
\end{aligned}
$$

where
$L_{n} u_{n}\left(x_{i}\right)=\sum_{j=1}^{n} w_{i j}\left(u_{n}\left(x_{i}\right)-u_{n}\left(x_{j}\right)\right)$.
(3) Continuum variational problem: minimise

$$
\begin{gathered}
\mathcal{E}_{\infty}^{(2)}(u)=\sigma_{\eta} \int_{\Omega}\|\nabla u(x)\|^{2} \rho^{2}(x) \mathrm{d} x \\
\text { s.t. } u(x)=g^{\dagger}(x) \forall x \in \tilde{\Omega} .
\end{gathered}
$$

(9) Euler-Lagrange equation:

$$
\begin{aligned}
\mathcal{L} u^{*}(x) & =0 & & \text { for } x \in \Omega \backslash \tilde{\Omega} \\
u^{*}(x) & =g^{\dagger}(x) & & \text { for } x \in \tilde{\Omega}
\end{aligned}
$$

$$
\frac{\partial u^{*}}{\partial \mathrm{n}}(x)=0 \quad \text { for } x \in \partial \Omega
$$

where

$$
\mathcal{L} u(x)=-\frac{1}{\rho(x)} \operatorname{div}\left(\rho^{2} \nabla u\right)(x)
$$

Intuition on the Minimal Number of Labels Proof II

From Step 3, we have

$$
\max _{x_{i} \in \tilde{\Omega}}\left|u_{n}^{*}\left(x_{i}\right)-g^{\dagger}\left(x_{i}\right)\right| \leq C \frac{\varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon}
$$

and now we need to extend the convergence to the whole domain.

Intuition on the Minimal Number of Labels Proof II

From Step 3, we have

$$
\max _{x_{i} \in \tilde{\Omega}}\left|u_{n}^{*}\left(x_{i}\right)-g^{\dagger}\left(x_{i}\right)\right| \leq C \frac{\varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon}
$$

and now we need to extend the convergence to the whole domain.
(4) Step 4: Pointwise convergence of the graph Laplacian.

Theorem (Calder, Slepčev and T. (2020))

There exists $C>c>0$ such that for any $\varphi \in C^{3}(\bar{\Omega})$ and any $\varepsilon \leq \vartheta \leq \frac{1}{\varepsilon}$,

$$
\sup _{x \in \Omega_{n}} \mid L_{n} \varphi(x)-\mathcal{L} \varphi(x)+\text { b.c.'s } \mid \leq C\|\varphi\|_{C^{3}(\bar{\Omega})}(\varepsilon+\vartheta)
$$

with probability at least $1-C n e^{-c n \varepsilon^{d+2} \vartheta^{2}}$.

Intuition on the Minimal Number of Labels Proof III

(3) Step 5: u^{*} solves

$$
\left\{\begin{aligned}
\mathcal{L} u^{*} & =0 & & \text { in } \Omega \backslash \tilde{\Omega} \\
u^{*} & =g^{\dagger} & & \text { in } \tilde{\Omega} \\
\frac{\partial u^{*}}{\partial n} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Intuition on the Minimal Number of Labels Proof III

(6) Step 5: u^{*} solves

$$
\left\{\begin{aligned}
\mathcal{L} u^{*} & =0 & & \text { in } \Omega \backslash \tilde{\Omega} \\
u^{*} & =g^{\dagger} & & \text { in } \tilde{\Omega} \\
\frac{\partial u^{*}}{\partial n} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Let φ solve

$$
\left\{\begin{aligned}
\mathcal{L} \varphi & =1 & & \text { in } \Omega \backslash \tilde{\Omega} \\
\varphi & =0 & & \text { in } \tilde{\Omega} \\
\frac{\partial \varphi}{\partial n} & =1 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

Intuition on the Minimal Number of Labels Proof III

(5) Step 5: u^{*} solves

$$
\left\{\begin{aligned}
\mathcal{L} u^{*} & =0 & & \text { in } \Omega \backslash \tilde{\Omega} \\
u^{*} & =g^{\dagger} & & \text { in } \tilde{\Omega} \\
\frac{\partial u^{*}}{\partial n} & =0 & & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Let φ solve

$$
\left\{\begin{aligned}
& \mathcal{L} \varphi=1 \\
& \text { in } \Omega \backslash \tilde{\Omega} \\
& \varphi=0 \\
& \text { in } \tilde{\Omega} \\
& \frac{\partial \varphi}{\partial n}=1 \\
& \text { on } \partial \Omega
\end{aligned}\right.
$$

Then let

$$
v= \begin{cases}u^{*}+M \vartheta \varphi & \text { in } \Omega \backslash \tilde{\Omega} \\ g^{\dagger} & \text { on } \tilde{\Omega} .\end{cases}
$$

Intuition on the Minimal Number of Labels Proof IV

© Step 6: Choosing M large enough we have

$$
L_{n} v=
$$

Intuition on the Minimal Number of Labels Proof IV

(© Step 6: Choosing M large enough we have

$$
L_{n} v=\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta)
$$

Intuition on the Minimal Number of Labels Proof IV

(© Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0 .
\end{aligned}
$$

Intuition on the Minimal Number of Labels Proof IV

(0) Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0
\end{aligned}
$$

By the max principle, and since $L_{n}\left(u_{n}^{*}-v\right)<0$ on $\Omega \backslash \tilde{\Omega}$,

$$
\max _{\Omega_{n}}\left(u_{n}^{*}-v\right)
$$

Intuition on the Minimal Number of Labels Proof IV

(0) Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0
\end{aligned}
$$

By the max principle, and since $L_{n}\left(u_{n}^{*}-v\right)<0$ on $\Omega \backslash \tilde{\Omega}$,

$$
\max _{\Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-v\right)
$$

Intuition on the Minimal Number of Labels Proof IV

(0) Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0
\end{aligned}
$$

By the max principle, and since $L_{n}\left(u_{n}^{*}-v\right)<0$ on $\Omega \backslash \tilde{\Omega}$,

$$
\max _{\Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-g^{\dagger}\right)
$$

Intuition on the Minimal Number of Labels Proof IV

(© Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0
\end{aligned}
$$

By the max principle, and since $L_{n}\left(u_{n}^{*}-v\right)<0$ on $\Omega \backslash \tilde{\Omega}$,

$$
\max _{\Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-g^{\dagger}\right) \leq \frac{C \varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon} .
$$

Intuition on the Minimal Number of Labels Proof IV

© Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0
\end{aligned}
$$

By the max principle, and since $L_{n}\left(u_{n}^{*}-v\right)<0$ on $\Omega \backslash \tilde{\Omega}$,

$$
\max _{\Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-g^{\dagger}\right) \leq \frac{C \varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon} .
$$

Using the same argument on $v-u_{n}^{*}$ we have

$$
\left\|u_{n}^{*}-v\right\|_{L^{\infty}\left(\Omega_{n}\right)} \leq \frac{C \varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon} .
$$

Intuition on the Minimal Number of Labels Proof IV

(6) Step 6: Choosing M large enough we have

$$
\begin{aligned}
L_{n} v & =\mathcal{L} u^{*}+M \vartheta \mathcal{L} \varphi+O(\varepsilon+\vartheta) \\
& =M \vartheta+O(\varepsilon+\vartheta)>0
\end{aligned}
$$

By the max principle, and since $L_{n}\left(u_{n}^{*}-v\right)<0$ on $\Omega \backslash \tilde{\Omega}$,

$$
\max _{\Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-v\right)=\max _{\tilde{\Omega} \cap \Omega_{n}}\left(u_{n}^{*}-g^{\dagger}\right) \leq \frac{C \varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon} .
$$

Using the same argument on $v-u_{n}^{*}$ we have

$$
\left\|u_{n}^{*}-v\right\|_{L^{\infty}\left(\Omega_{n}\right)} \leq \frac{C \varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon} .
$$

(1) Step 7: Since $\|\varphi\|_{\mathrm{L}^{\infty}} \leq C$ then

$$
\left\|u_{n}^{*}-u^{*}\right\|_{L^{\infty}\left(\Omega_{n}\right)} \leq \frac{C \varepsilon}{\sqrt{\beta}} \log \frac{\sqrt{\beta}}{\varepsilon}
$$

Large Data Limits for $\left|\mathcal{I}_{n}\right| \rightarrow \infty$

Theorem (Calder, Slepčev and T. (2020))
III-Posed Regime. Let ε_{n} satisfy a lower bound. Let u_{n}^{*} be a sequence of minimizers of $\mathcal{E}_{n}^{(2)}$ satisfying the constraints. Assume $\beta_{n} \ll \varepsilon_{n}^{2}$. Then, almost surely, $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ is precompact and any convergent subsequence converges to a constant.

Large Data Limits for $\left|\mathcal{I}_{n}\right| \rightarrow \infty$

Theorem (Calder, Slepčev and T. (2020))

III-Posed Regime. Let ε_{n} satisfy a lower bound. Let u_{n}^{*} be a sequence of minimizers of $\mathcal{E}_{n}^{(2)}$ satisfying the constraints. Assume $\beta_{n} \ll \varepsilon_{n}^{2}$. Then, almost surely, $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ is precompact and any convergent subsequence converges to a constant.

Theorem (Calder, Slepčev and T. (2020))

Well-Posed Regime. Let ε_{n} satisfy a lower bound. Let u_{n}^{*} be a sequence of minimizers of $\mathcal{E}_{n}^{(2)}$ satisfying the constraints and u^{*} be the minimiser of $\mathcal{E}_{\infty}^{(2)}$ with constraints. Assume $\beta_{n} \gg \varepsilon_{n}^{2}$. Then, almost surely, u_{n}^{*} converges to u^{*} uniformly, in particular

$$
\max _{i=1, \ldots, n}\left|u_{n}^{*}\left(x_{i}\right)-u^{*}\left(x_{i}\right)\right| \lesssim \frac{\varepsilon_{n}}{\sqrt{\beta_{n}}} \log \frac{\sqrt{\beta_{n}}}{\varepsilon_{n}}
$$

Contents

(1) Discrete-To-Continuum Topology
(2) p-Laplace Learning
(3) Poisson Learning

4 Fractional Laplace Learning
(5) Graph Neural Networks

Finite Constraint Degeneracy

(1) Let us assume $\mathcal{I}_{n}=\{1, \ldots, m\}$.

Figure: A toy example with two labels which are seen as spikes.
${ }^{1}$ Nadler, Srebro and Zhou, Statistical Analysis of Semi-Supervised Learning, NeurIPS, 2009, pp. 1330-1338

Finite Constraint Degeneracy

(1) Let us assume $\mathcal{I}_{n}=\{1, \ldots, m\}$.
(2) We have that $u_{n}^{*}\left(x_{i}\right) \approx c$ for

$$
i \notin \mathcal{I}_{n}{ }^{1}
$$

Figure: A toy example with two labels which are seen as spikes.
${ }^{1}$ Nadler, Srebro and Zhou, Statistical Analysis of Semi-Supervised Learning, NeurIPS, 2009, pp. 1330-1338

Finite Constraint Degeneracy

(1) Let us assume $\mathcal{I}_{n}=\{1, \ldots, m\}$.
(2) We have that $u_{n}^{*}\left(x_{i}\right) \approx c$ for $i \notin \mathcal{I}_{n} .{ }^{1}$
(3) Say $c>0$, then this means the majority of labels, classified using $\ell_{u_{n}^{*}}\left(x_{i}\right)=\operatorname{sign}\left(u_{n}^{*}\left(x_{i}\right)\right)$, will be classed as $\ell_{u_{n}^{*}}\left(x_{i}\right)=1$.

Figure: A toy example with two labels which are seen as spikes.

[^0]
Finite Constraint Degeneracy

Figure: A toy example with two labels which are seen as spikes.
(1) Let us assume $\mathcal{I}_{n}=\{1, \ldots, m\}$.
(2) We have that $u_{n}^{*}\left(x_{i}\right) \approx c$ for $i \notin \mathcal{I}_{n} .{ }^{1}$
(3) Say $c>0$, then this means the majority of labels, classified using $\ell_{u_{n}^{*}}\left(x_{i}\right)=\operatorname{sign}\left(u_{n}^{*}\left(x_{i}\right)\right)$, will be classed as $\ell_{u_{n}^{*}}\left(x_{i}\right)=1$.
(1) One way to correct this bias would be to consider $u_{n}^{*}-c$, but this is just the solution Laplace Learning with the labels $\ell_{i}-c$, why would we expect to do better with the the wrong label?

[^1]
Laplace Learning on MNIST

\# Labels/class	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Laplace	$16.1(6.2)$	$28.2(10)$	$42.0(12)$	$57.8(12)$
Graph NN	$58.8(5.6)$	$66.6(2.8)$	$70.2(4)$	$71.3(2.6)$
\# Labels/class	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$
Laplace	$69.5(12)$	$93.2(2.3)$	$96.9(0.1)$	$97.1(0.1)$
Graph NN	$73.4(1.9)$	$82.3(1.0)$	$89.0(0.5)$	$90.6(0.4)$

Average accuracy over 10 trials with standard deviation in brackets.
C.f. for 1 label per class the shifted Laplacian method achieves 85.9\% accuracy.

Graph NN: 1-nearest neighbour using graph geodesic distance.

Random Walks at Low Labelling Rates

(1) The random walk interpretation of Laplace learning explains the ill-posedness...

Random Walks at Low Labelling Rates

(1) The random walk interpretation of Laplace learning explains the ill-posedness...
(2) If $\left|\mathcal{I}_{n}\right| \ll n$ then the probability of hitting a label is low.

Random Walks at Low Labelling Rates

(1) The random walk interpretation of Laplace learning explains the ill-posedness...
(2) If $\left|\mathcal{I}_{n}\right| \ll n$ then the probability of hitting a label is low.
(3) Hence, we expect $S(x) \gg 1$, and in particular $S(x)$ may be greater than the mixing time of the random walk.

Random Walks at Low Labelling Rates

(1) The random walk interpretation of Laplace learning explains the ill-posedness...
(2) If $\left|\mathcal{I}_{n}\right| \ll n$ then the probability of hitting a label is low.
(3) Hence, we expect $S(x) \gg 1$, and in particular $S(x)$ may be greater than the mixing time of the random walk.
(9) This means $B_{S(x)}^{\times}$is distributionally independent of x.

Random Walks at Low Labelling Rates

(1) The random walk interpretation of Laplace learning explains the ill-posedness...
(2) If $\left|\mathcal{I}_{n}\right| \ll n$ then the probability of hitting a label is low.
(3) Hence, we expect $S(x) \gg 1$, and in particular $S(x)$ may be greater than the mixing time of the random walk.
(9) This means $B_{S(x)}^{\times}$is distributionally independent of x.
(5) This implies u_{n}^{*} is approximately a constant on $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.

Random Walks at Low Labelling Rates

(1) The random walk interpretation of Laplace learning explains the ill-posedness...
(2) If $\left|\mathcal{I}_{n}\right| \ll n$ then the probability of hitting a label is low.
(3) Hence, we expect $S(x) \gg 1$, and in particular $S(x)$ may be greater than the mixing time of the random walk.
(9) This means $B_{S(x)}^{x}$ is distributionally independent of x.
(6) This implies u_{n}^{*} is approximately a constant on $\left\{x_{i}\right\}_{i \notin \mathcal{I}_{n}}$.
(6) The stationary distribution of B_{t}^{\times}is $\pi\left(x_{i}\right)=\frac{d_{i}}{\sum_{j=1}^{n} d_{j}}$, so it follows that

$$
u_{n}^{*}\left(x_{i}\right)=\mathbb{E}\left[\ell\left(B_{S(x)}^{\times}\right)\right] \approx \frac{\sum_{i \in \mathcal{I}_{n}} d_{i} \ell_{i}}{\sum_{i \in \mathcal{I}_{n}} d_{i}}=: c
$$

for all $i \notin \mathcal{I}_{n}$.

Laplace's Equation at Low Labelling Rates I

(1) Assume no labels are connected, i.e. $w_{i j}=0$ for all $i, j \in \mathcal{I}_{n}$.

Laplace's Equation at Low Labelling Rates I

(1) Assume no labels are connected, i.e. $w_{i j}=0$ for all $i, j \in \mathcal{I}_{n}$.
(2) Then, for $i \in \mathcal{I}_{n}=\{1, \ldots, m\}$ and $c=\frac{\sum_{i \in \mathcal{I}_{n}} d_{i} \ell_{i}}{\sum_{i \in \mathcal{I}_{n}} d_{i}}$,

$$
\begin{aligned}
L_{n} u_{n}^{*}\left(x_{i}\right) & =\sum_{j=1}^{n} w_{i j}\left(u_{n}^{*}\left(x_{i}\right)-u_{n}^{*}\left(x_{j}\right)\right) \\
& \approx \sum_{j \notin \mathcal{I}_{n}} w_{i j}\left(\ell_{i}-c\right) \\
& =d_{i}\left(\ell_{i}-c\right)
\end{aligned}
$$

Laplace's Equation at Low Labelling Rates I

(1) Assume no labels are connected, i.e. $w_{i j}=0$ for all $i, j \in \mathcal{I}_{n}$.
(2) Then, for $i \in \mathcal{I}_{n}=\{1, \ldots, m\}$ and $c=\frac{\sum_{i \in \mathcal{I}_{n}} d_{i} \ell_{i}}{\sum_{i \in \mathcal{I}_{n}} d_{i}}$,

$$
\begin{aligned}
L_{n} u_{n}^{*}\left(x_{i}\right) & =\sum_{j=1}^{n} w_{i j}\left(u_{n}^{*}\left(x_{i}\right)-u_{n}^{*}\left(x_{j}\right)\right) \\
& \approx \sum_{j \notin \mathcal{I}_{n}} w_{i j}\left(\ell_{i}-c\right) \\
& =d_{i}\left(\ell_{i}-c\right)
\end{aligned}
$$

(3) We also have

$$
\sum_{i=1}^{n} d_{i} u_{n}\left(x_{i}\right) \approx \sum_{i \in \mathcal{I}_{n}} d_{i} \ell_{i}+c \sum_{i \notin \mathcal{I}_{n}} d_{i}=c \sum_{i=1}^{n} d_{i}
$$

Laplace's Equation at Low Labelling Rates II

- For $\left|\mathcal{I}_{n}\right| \ll n, u_{n}^{*}$ approximately satisfies

$$
L_{n} u_{n}^{*}\left(x_{i}\right) \approx \sum_{j \in \mathcal{I}_{n}} d_{j}\left(\ell_{j}-c\right) \delta_{i j}, \quad \frac{1}{\sum_{i=1}^{n} d_{i}} \sum_{i=1}^{n} d_{i} u_{n}^{*}\left(x_{i}\right) \approx c
$$

Laplace's Equation at Low Labelling Rates II

- For $\left|\mathcal{I}_{n}\right| \ll n, u_{n}^{*}$ approximately satisfies

$$
L_{n} u_{n}^{*}\left(x_{i}\right) \approx \sum_{j \in \mathcal{I}_{n}} d_{j}\left(\ell_{j}-c\right) \delta_{i j}, \quad \frac{1}{\sum_{i=1}^{n} d_{i}} \sum_{i=1}^{n} d_{i} u_{n}^{*}\left(x_{i}\right) \approx c
$$

- Shifting by c we could define v_{n}^{*} by

$$
L_{n} v_{n}^{*}\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{n}} d_{j}\left(\ell_{j}-c\right) \delta_{i j}, \quad \sum_{i=1}^{n} d_{i} v_{n}^{*}\left(x_{i}\right)=0
$$

Laplace's Equation at Low Labelling Rates II

- For $\left|\mathcal{I}_{n}\right| \ll n, u_{n}^{*}$ approximately satisfies

$$
L_{n} u_{n}^{*}\left(x_{i}\right) \approx \sum_{j \in \mathcal{I}_{n}} d_{j}\left(\ell_{j}-c\right) \delta_{i j}, \quad \frac{1}{\sum_{i=1}^{n} d_{i}} \sum_{i=1}^{n} d_{i} u_{n}^{*}\left(x_{i}\right) \approx c
$$

- Shifting by c we could define v_{n}^{*} by

$$
L_{n} v_{n}^{*}\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{n}} d_{j}\left(\ell_{j}-c\right) \delta_{i j}, \quad \sum_{i=1}^{n} d_{i} v_{n}^{*}\left(x_{i}\right)=0
$$

- However, we find a slight improvement in performance if we additionally normalise each node and therefore we define v_{n}^{*} to satisfy

$$
L_{n} v_{n}^{*}\left(x_{i}\right)=\sum_{j \in \mathcal{I}_{n}}\left(\ell_{j}-\bar{c}\right) \delta_{i j}, \quad \sum_{i=1}^{n} v_{n}^{*}\left(x_{i}\right)=0
$$

where $\bar{c}=\frac{1}{\left|\mathcal{I}_{n}\right|} \sum_{i \in \mathcal{I}_{n}} \ell_{i}$.

Poisson Random Walk

Recall that B_{t}^{x} is the random walk starting from x and transitioning from x_{i} to x_{j} with probability proportional to $w_{i j}$.

Poisson Random Walk

Recall that B_{t}^{x} is the random walk starting from x and transitioning from x_{i} to x_{j} with probability proportional to $w_{i j}$.

Theorem (Calder, Cook, Slepčev and T. (2020))

Let

$$
v_{n}^{(T)}\left(x_{i}\right)=\mathbb{E}\left[\frac{1}{d_{i}} \sum_{t=0}^{T} \sum_{j \in \mathcal{I}_{n}}\left(\ell_{j}-\bar{c}\right) \mathbb{1}_{B_{t}^{x_{j}}=x_{i}}\right] .
$$

Then,

$$
v_{n}^{(T+1)}\left(x_{i}\right)=v_{n}^{(T)}\left(x_{i}\right)+\frac{1}{d_{i}}\left(\sum_{j \in \mathcal{I}_{n}}\left(\ell_{j}-\bar{c}\right) \delta_{i j}-L_{n} v_{n}^{(T)}\left(x_{i}\right)\right)
$$

and moreover $v_{n}^{(T)} \rightarrow v_{n}^{*}$ as $T \rightarrow \infty$.

Laplace's Random Walk (Again)

Red - labelled nodes, grey unlabelled nodes.

$$
u_{n}^{*}(x)=\mathbb{E}\left[\sum_{j \in \mathcal{I}_{n}} \ell_{j} \mathbb{1}_{B_{S(x)}^{\times}=x_{j}}\right]
$$

Poisson's Random Walk

MNIST Results

	\# Labels per class				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Laplace/LP	$16.1(6.2)$	$28.2(10.3)$	$42.0(12.4)$	$57.8(12.3)$	$69.5(12.2)$
NN	$55.8(5.1)$	$65.0(3.2)$	$68.9(3.2)$	$72.1(2.8)$	$74.1(2.4)$
Random Walk	$66.4(5.3)$	$76.2(3.3)$	$80.0(2.7)$	$82.8(2.3)$	$84.5(2.0)$
MBO	$19.4(6.2)$	$29.3(6.9)$	$40.2(7.4)$	$50.7(6.0)$	$59.2(6.0)$
VolumeMBO	$89.9(7.3)$	$95.6(1.9)$	$96.2(1.2)$	$96.6(0.6)$	$96.7(0.6)$
WNLL	$55.8(15.2)$	$82.8(7.6)$	$90.5(3.3)$	$93.6(1.5)$	$94.6(1.1)$
Centered Kernel	$19.1(1.9)$	$24.2(2.3)$	$28.8(3.4)$	$32.6(4.1)$	$35.6(4.6)$
Sparse LP	$14.0(5.5)$	$14.0(4.0)$	$14.5(4.0)$	$18.0(5.9)$	$16.2(4.2)$
p-Laplace	$72.3(9.1)$	$86.5(3.9)$	$89.7(1.6)$	$90.3(1.6)$	$91.9(1.0)$
Poisson	$90.2(4.0)$	$93.6(1.6)$	$94.5(1.1)$	$94.9(0.8)$	$95.3(0.7)$
PoissonMBO	$\mathbf{9 6 . 5 (\mathbf { 2 . 6 })}$	$\mathbf{9 7 . 2 (\mathbf { 0 . 1 })}$	$\mathbf{9 7 . 2 (\mathbf { 0 . 1 })}$	$\mathbf{9 7 . 2 (0 . 1)}$	$\mathbf{9 7 . 2 (\mathbf { 0 . 1 })}$

Average (standard deviation) classification accuracy over 100 trials.

FashionMNIST Results

	\# Labels per class				
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Laplace/LP	$18.4(7.3)$	$32.5(8.2)$	$44.0(8.6)$	$52.2(6.2)$	$57.9(6.7)$
NN	$44.5(4.2)$	$50.8(3.5)$	$54.6(3.0)$	$56.6(2.5)$	$58.3(2.4)$
Random Walk	$49.0(4.4)$	$55.6(3.8)$	$59.4(3.0)$	$61.6(2.5)$	$63.4(2.5)$
MBO	$15.7(4.1)$	$20.1(4.6)$	$25.7(4.9)$	$30.7(4.9)$	$34.8(4.3)$
VolumeMBO	$54.7(5.2)$	$61.7(4.4)$	$66.1(3.3)$	$68.5(2.8)$	$70.1(2.8)$
WNLL	$44.6(7.1)$	$59.1(4.7)$	$64.7(3.5)$	$67.4(3.3)$	$70.0(2.8)$
Centered Kernel	$11.8(0.4)$	$13.1(0.7)$	$14.3(0.8)$	$15.2(0.9)$	$16.3(1.1)$
Sparse LP	$14.1(3.8)$	$16.5(2.0)$	$13.7(3.3)$	$13.8(3.3)$	$16.1(2.5)$
p-Laplace	$54.6(4.0)$	$57.4(3.8)$	$65.4(2.8)$	$68.0(2.9)$	$68.4(0.5)$
Poisson	$60.8(4.6)$	$66.1(3.9)$	$69.6(2.6)$	$71.2(2.2)$	$72.4(2.3)$
PoissonMBO	$\mathbf{6 2 . 0 (5 . 7)}$	$\mathbf{6 7 . 2 (4 . 8)}$	$\mathbf{7 0 . 4 (2 . 9)}$	$\mathbf{7 2 . 1}(\mathbf{2 . 5)}$	$\mathbf{7 3 . 1 (2 . 7)}$

Average (standard deviation) classification accuracy over 100 trials.
C.f. state-of-the-art clustering result of 67.2% [McConville et al., 2019].

CIFAR-10 Results

		\# Labels per class			
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Laplace/LP	$10.5(1.3)$	$12.5(4.4)$	$13.1(3.8)$	$14.5(4.7)$	$18.0(6.9)$
NN	$33.6(4.4)$	$37.3(3.3)$	$40.3(3.0)$	$40.9(2.7)$	$42.1(2.4)$
Random Walk	$37.1(5.0)$	$42.1(3.7)$	$45.8(3.4)$	$47.0(2.8)$	$48.8(2.5)$
MBO	$15.2(4.1)$	$20.4(4.8)$	$25.9(4.1)$	$29.6(4.3)$	$34.5(4.2)$
VolumeMBO	$40.3(8.0)$	$47.2(7.1)$	$52.2(5.3)$	$53.3(4.7)$	$55.9(4.0)$
WNLL	$20.8(6.4)$	$34.5(6.2)$	$42.1(5.2)$	$46.1(4.4)$	$50.2(3.5)$
Centered Kernel	$13.8(1.1)$	$15.5(1.2)$	$17.3(1.4)$	$18.8(1.7)$	$20.4(1.6)$
Sparse LP	$10.4(2.1)$	$11.1(1.4)$	$11.8(2.1)$	$12.8(4.4)$	$13.6(3.3)$
p-Laplace	$28.7(6.6)$	$39.8(6.4)$	$45.7(2.6)$	$46.8(1.7)$	$50.4(2.9)$
Poisson	$41.6(5.4)$	$46.9(4.2)$	$51.1(3.4)$	$52.5(3.0)$	$54.5(3.0)$
PoissonMBO	$\mathbf{4 2 . 1 (7 . 0)}$	$\mathbf{4 9 . 1 (5 . 3)}$	$\mathbf{5 3 . 8}(4.4)$	$\mathbf{5 5 . 6}(\mathbf{3 . 7)}$	$\mathbf{5 7 . 4 (3 . 4)}$

Average (standard deviation) classification accuracy over 100 trials.
C.f. state-of-the-art clustering result of 41.2% [Mukherjee et al., ClusterGAN, CVPR 2019].

Contents

(1) Discrete-To-Continuum Topology
(2) p-Laplace Learning
(3) Poisson Learning

4 Fractional Laplace Learning
(5) Graph Neural Networks

The Fractional Graph Laplacian

- Let $\left(\lambda_{i}^{(n)}, q_{i}^{(n)}\right)$ be the eigenvalues and eigenvectors of the normalised graph Laplacian $\frac{1}{n \varepsilon_{n}^{2} \sigma_{\eta}} L_{n}$.

The Fractional Graph Laplacian

- Let $\left(\lambda_{i}^{(n)}, q_{i}^{(n)}\right)$ be the eigenvalues and eigenvectors of the normalised graph Laplacian $\frac{1}{n \varepsilon_{n}^{2} \sigma_{\eta}} L_{n}$.
- We define the fractional graph Laplacian energy $\mathcal{J}_{n}^{(\alpha, \tau)}$ by

$$
\mathcal{J}_{n}^{(\alpha, \tau)}\left(u_{n}\right)=\sum_{i=1}^{n}\left(\lambda_{i}^{(n)}+\tau^{2}\right)^{\alpha}\left\langle u_{n}, q_{i}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}^{2} .
$$

The Fractional Graph Laplacian

- Let $\left(\lambda_{i}^{(n)}, q_{i}^{(n)}\right)$ be the eigenvalues and eigenvectors of the normalised graph Laplacian $\frac{1}{n \varepsilon_{n}^{2} \sigma_{\eta}} L_{n}$.
- We define the fractional graph Laplacian energy $\mathcal{J}_{n}^{(\alpha, \tau)}$ by

$$
\mathcal{J}_{n}^{(\alpha, \tau)}\left(u_{n}\right)=\sum_{i=1}^{n}\left(\lambda_{i}^{(n)}+\tau^{2}\right)^{\alpha}\left\langle u_{n}, q_{i}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}^{2}
$$

- When $\alpha=1$ and $\tau=0$,

$$
\begin{aligned}
\mathcal{J}_{n}^{(1,0)}\left(u_{n}\right) & =\sum_{i=1}^{n} \lambda_{i}^{(n)}\left\langle u_{n}, q_{i}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}^{2} \\
& =\left\langle u_{n}, L_{n} u_{n}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)} \\
& =\frac{1}{2} \mathcal{E}_{n}^{(2)}\left(u_{n}\right) .
\end{aligned}
$$

Continuum Limit of the Graph Fractional Laplacian

- Let $\left(\lambda_{i}, q_{i}\right)$ be the eigenvalues and eigenfunctions of the continuum operator \mathcal{L}.

Continuum Limit of the Graph Fractional Laplacian

- Let $\left(\lambda_{i}, q_{i}\right)$ be the eigenvalues and eigenfunctions of the continuum operator \mathcal{L}.
- We define $\mathcal{J}_{\infty}^{(\alpha, \tau)}$ by

$$
\mathcal{J}_{\infty}^{(\alpha, \tau)}(u)=\sum_{i=1}^{\infty}\left(\lambda_{i}+\tau^{2}\right)^{\alpha}\left\langle u, q_{i}\right\rangle_{\mathrm{L}^{2}(\mu)}^{2}
$$

Continuum Limit of the Graph Fractional Laplacian

- Let $\left(\lambda_{i}, q_{i}\right)$ be the eigenvalues and eigenfunctions of the continuum operator \mathcal{L}.
- We define $\mathcal{J}_{\infty}^{(\alpha, \tau)}$ by

$$
\mathcal{J}_{\infty}^{(\alpha, \tau)}(u)=\sum_{i=1}^{\infty}\left(\lambda_{i}+\tau^{2}\right)^{\alpha}\left\langle u, q_{i}\right\rangle_{\mathrm{L}^{2}(\mu)}^{2} .
$$

- When $\alpha=1$ and $\tau=0$ we have

$$
\mathcal{J}_{\infty}^{(1,0)}(u)=\int_{\Omega}|\nabla u(x)|^{2} \rho^{2}(x) \mathrm{d} x=\frac{1}{\sigma_{\eta}} \mathcal{E}_{\infty}^{(2)}(u)
$$

Convergence of the Fractional Graph Laplacian

Theorem (Dunlop, Slepčev, Stuart and T. (2017))

Under assumptions on η, Ω, μ and a lower bound on $\epsilon_{n} \rightarrow 0$ we have, with probability one,
(1) 「- $\lim _{n \rightarrow \infty} 2 \sigma_{\eta} \mathcal{J}_{n}^{(\alpha, \tau)}=\mathcal{J}_{\infty}^{(\alpha, \tau)}$ with respect to the TL^{2} topology;
(2) if $\tau=0$, any sequence $\left\{u_{n}\right\}$ with $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying $\sup _{n}\left\|u_{n}\right\|_{\mathrm{L}^{2}\left(\mu_{n}\right)}<\infty$ and $\sup _{n \in \mathbb{N}} \mathcal{J}_{n}^{(\alpha, 0)}\left(u_{n}\right)<\infty$ is pre-compact in the TL^{2} topology;
(3) if $\tau>0$, any sequence $\left\{u_{n}\right\}$ with $u_{n}: \Omega_{n} \rightarrow \mathbb{R}$ satisfying $\sup _{n \in \mathbb{N}} \mathcal{J}_{n}^{(\alpha, \tau)}\left(u_{n}\right)<\infty$ is pre-compact in the TL^{2} topology.

Large Data Limits of Fractional Laplace Learning: III-Posed Case

Theorem (Dunlop, Slepčev, Stuart and T. (2017) and Weihs and T.(2023))

Assume $\varepsilon_{n}^{2 \alpha} n \rightarrow \infty$ and $\left|\mathcal{I}_{n}\right|=m$ is fixed. Let $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ be constrained minimisers of $\mathcal{J}_{n}^{(\alpha, \tau)}$. Assume $\sup _{n \in \mathbb{N}}\left\|u_{n}^{*}\right\|_{L^{2}\left(\mu_{n}\right)}<+\infty$. Then, with probability one, $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ are precompact in TL^{2} and any converging subsequence converges to a constant.

Large Data Limits of Fractional Laplace Learning: III-Posed Case

Theorem (Dunlop, Slepčev, Stuart and T. (2017) and Weihs and T.(2023))

Assume $\varepsilon_{n}^{2 \alpha} n \rightarrow \infty$ and $\left|\mathcal{I}_{n}\right|=m$ is fixed. Let $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ be constrained minimisers of $\mathcal{J}_{n}^{(\alpha, \tau)}$. Assume $\sup _{n \in \mathbb{N}}\left\|u_{n}^{*}\right\|_{L^{2}\left(\mu_{n}\right)}<+\infty$. Then, with probability one, $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ are precompact in TL^{2} and any converging subsequence converges to a constant.

- Remark 1: $\varepsilon_{n}^{2 \alpha} n \rightarrow \infty$ is always true if $\alpha \leq \frac{d}{2}$ (due to the lower bound on ε_{n}).

Large Data Limits of Fractional Laplace Learning: III-Posed Case

Theorem (Dunlop, Slepčev, Stuart and T. (2017) and Weihs and T.(2023))

Assume $\varepsilon_{n}^{2 \alpha} n \rightarrow \infty$ and $\left|\mathcal{I}_{n}\right|=m$ is fixed. Let $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ be constrained minimisers of $\mathcal{J}_{n}^{(\alpha, \tau)}$. Assume $\sup _{n \in \mathbb{N}}\left\|u_{n}^{*}\right\|_{L^{2}\left(\mu_{n}\right)}<+\infty$. Then, with probability one, $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ are precompact in TL^{2} and any converging subsequence converges to a constant.

- Remark 1: $\varepsilon_{n}^{2 \alpha} n \rightarrow \infty$ is always true if $\alpha \leq \frac{d}{2}$ (due to the lower bound on ε_{n}).
- Remark 2: The idea behind the proof is the same as in the p-Laplacian: measure the cost of a spike $u_{n}\left(x_{i}\right)=1$ for $i=1$ and $u\left(x_{i}\right)=0$ otherwise.

Large Data Limits of Fractional Laplace Learning: Well-Posed Case

Theorem (Weihs and T. (2023))

Let $\Omega=[0,1]^{d}$ be the torus. Assume $\varepsilon_{n}^{\frac{\alpha-1}{2}} n$ is bounded, $\alpha>\frac{5 d}{2}+4$ and $\left|\mathcal{I}_{n}\right|=m$ is fixed. Let $\left\{u_{n}^{*}\right\}_{n \in \mathbb{N}}$ be constrained minimisers of $\mathcal{J}_{n}^{(\alpha, \tau)}$. Then, with probability one, the sequence u_{n}^{*} converges uniformly to the constrained minimizer of $\mathcal{J}_{\infty}^{(\alpha, \tau)}$.

Intuition on the Proof I

- As in the p-Laplacian case we want to control

$$
u_{n}(x)-u_{n}(y)=\sum_{k=1}^{n}\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}\left(q_{k}^{(n)}(x)-q_{k}^{(n)}(y)\right)
$$

Intuition on the Proof I

- As in the p-Laplacian case we want to control

$$
u_{n}(x)-u_{n}(y)=\sum_{k=1}^{n}\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{L^{2}\left(\mu_{n}\right)}\left(q_{k}^{(n)}(x)-q_{k}^{(n)}(y)\right)
$$

- We split the summation at $K_{n} \sim \varepsilon_{n}^{-\frac{d}{2}}$.

Intuition on the Proof I

- As in the p-Laplacian case we want to control

$$
u_{n}(x)-u_{n}(y)=\sum_{k=1}^{n}\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}\left(q_{k}^{(n)}(x)-q_{k}^{(n)}(y)\right)
$$

- We split the summation at $K_{n} \sim \varepsilon_{n}^{-\frac{d}{2}}$.
- For $k=K_{n}$ we use Weyl's law: $\lambda_{n, K_{n}}^{-1} \sim K_{n}^{-\frac{2}{d}} \sim \varepsilon_{n}$.

Intuition on the Proof I

- As in the p-Laplacian case we want to control

$$
u_{n}(x)-u_{n}(y)=\sum_{k=1}^{n}\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}\left(q_{k}^{(n)}(x)-q_{k}^{(n)}(y)\right)
$$

- We split the summation at $K_{n} \sim \varepsilon_{n}^{-\frac{d}{2}}$.
- For $k=K_{n}$ we use Weyl's law: $\lambda_{n, K_{n}}^{-1} \sim K_{n}^{-\frac{2}{d}} \sim \varepsilon_{n}$.
- For $k=K_{n}, \ldots, n$ we use

$$
\left|q_{k}^{(n)}(x)-q_{k}^{(n)}(y)\right| \lesssim \sqrt{n \mathcal{E}_{n}^{(2)}\left(q_{k}^{(n)}\right)}|x-y|=\sqrt{n \lambda_{k}^{(n)}}|x-y|
$$

to show that

$$
\begin{aligned}
& \sum_{k=K_{n}}^{n}\left|\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}\right|\left|q_{k}^{(n)}(x)-q_{k}^{(n)}(y)\right| \leq \sqrt{n}|x-y| \sum_{k=K_{n}}^{n} \sqrt{\lambda_{k}^{(n)}}\left|\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)}\right| \\
& \quad \lesssim n|x-y|\left(\sum_{k=1}^{n} \lambda_{k}^{(n)}\left|\left\langle u_{n}, q_{k}^{(n)}\right\rangle_{\mathrm{L}^{2}\left(\mu_{n}\right)^{2}}\right|^{2}\right)^{\frac{1}{2}} \\
& \quad \lesssim n|x-y| \sqrt{\mathcal{J}_{n}^{(\alpha, 0)}\left(u_{n}\right)}\left(\lambda_{K_{n}}^{(n)}\right)^{\frac{1-\alpha}{2}} \lesssim n \varepsilon_{n}^{\frac{\alpha-1}{2}}|x-y| \sqrt{\mathcal{J}_{n}^{(\alpha, 0)}}
\end{aligned}
$$

Intuition on the Proof II

- For $k=1, \ldots, K_{n}$ we can control

$$
\begin{aligned}
\left|\lambda_{n, k}-\lambda_{k}\right| & \lesssim \lambda_{k}\left(\sqrt{\lambda_{k}} \varepsilon_{n}+\frac{d_{\mathrm{W} \infty}\left(\mu_{n}, \mu\right)}{\varepsilon_{n}}\right) \\
\left\|q_{i}^{(n)}\right\|_{\mathrm{L}^{\infty}} & \lesssim \lambda_{k}^{d+1}
\end{aligned}
$$

thanks to García Trillos, Gerlach, Hein and Slepčev (2020) and Calder, García Trillos and Lewicka (2022).

Intuition on the Proof II

- For $k=1, \ldots, K_{n}$ we can control

$$
\begin{aligned}
\left|\lambda_{n, k}-\lambda_{k}\right| & \lesssim \lambda_{k}\left(\sqrt{\lambda_{k}} \varepsilon_{n}+\frac{d_{\mathrm{W}^{\infty}}\left(\mu_{n}, \mu\right)}{\varepsilon_{n}}\right) \\
\left\|q_{i}^{(n)}\right\|_{\mathrm{L}^{\infty}} & \lesssim \lambda_{k}^{d+1}
\end{aligned}
$$

thanks to García Trillos, Gerlach, Hein and Slepčev (2020) and Calder, García Trillos and Lewicka (2022).

- Putting everything together implies

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|+d_{\mathrm{W}^{\infty}}\left(\mu_{n}, \mu\right)} \lesssim \sqrt{\mathcal{J}_{n}^{(\alpha, 0)}\left(u_{n}\right)}\left(1+n \varepsilon_{n}^{\frac{\alpha-1}{2}}\right)+\left\|u_{n}\right\|_{\mathrm{L}^{2}\left(\mu_{n}\right)} .
$$

Intuition on the Proof II

- For $k=1, \ldots, K_{n}$ we can control

$$
\begin{aligned}
\left|\lambda_{n, k}-\lambda_{k}\right| & \lesssim \lambda_{k}\left(\sqrt{\lambda_{k}} \varepsilon_{n}+\frac{d_{\mathrm{W} \infty}\left(\mu_{n}, \mu\right)}{\varepsilon_{n}}\right) \\
\left\|q_{i}^{(n)}\right\|_{\mathrm{L}^{\infty}} & \lesssim \lambda_{k}^{d+1}
\end{aligned}
$$

thanks to García Trillos, Gerlach, Hein and Slepčev (2020) and Calder, García Trillos and Lewicka (2022).

- Putting everything together implies

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|+d_{\mathrm{W}^{\infty}}\left(\mu_{n}, \mu\right)} \lesssim \sqrt{\mathcal{J}_{n}^{(\alpha, 0)}\left(u_{n}\right)\left(1+n \varepsilon_{n}^{\frac{\alpha-1}{2}}\right)+\left\|u_{n}\right\|_{\mathrm{L}^{2}\left(\mu_{n}\right)} .}
$$

- Compactness: after (piecewise) extension and mollification use the above Lipschitz bound and the Arzela-Ascoli theorem to infer the existence of a uniformly converging subsequence.

Intuition on the Proof II

- For $k=1, \ldots, K_{n}$ we can control

$$
\begin{aligned}
\left|\lambda_{n, k}-\lambda_{k}\right| & \lesssim \lambda_{k}\left(\sqrt{\lambda_{k}} \varepsilon_{n}+\frac{d_{\mathrm{W} \infty}\left(\mu_{n}, \mu\right)}{\varepsilon_{n}}\right) \\
\left\|q_{i}^{(n)}\right\|_{\mathrm{L}^{\infty}} & \lesssim \lambda_{k}^{d+1}
\end{aligned}
$$

thanks to García Trillos, Gerlach, Hein and Slepčev (2020) and Calder, García Trillos and Lewicka (2022).

- Putting everything together implies

$$
\frac{\left|u_{n}(x)-u_{n}(y)\right|}{|x-y|+d_{\mathrm{W}^{\infty}}\left(\mu_{n}, \mu\right)} \lesssim \sqrt{\mathcal{J}_{n}^{(\alpha, 0)}\left(u_{n}\right)}\left(1+n \varepsilon_{n}^{\frac{\alpha-1}{2}}\right)+\left\|u_{n}\right\|_{\mathrm{L}^{2}\left(\mu_{n}\right)}
$$

- Compactness: after (piecewise) extension and mollification use the above Lipschitz bound and the Arzela-Ascoli theorem to infer the existence of a uniformly converging subsequence.
- Combined with the Γ-convergence result we can conclude the theorem.

Contents

(1) Discrete-To-Continuum Topology

(2) p-Laplace Learning
(3) Poisson Learning

4 Fractional Laplace Learning
(5) Graph Neural Networks

Graph Diffusions

- Let $X(t)=\left[x_{1}(t)^{\top}, x_{2}(t)^{\top}, \ldots, x_{n}(t)^{\top}\right]^{\top} \in \mathbb{R}^{n \times d}$ satisfy

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}(t)=\operatorname{div}(F(X(t), t) \odot \nabla X(t))
$$

where $F: \mathbb{R}^{n \times d} \times[0, \infty) \rightarrow \mathbb{R}^{n \times n}$ is a given function, ∇ is the graph gradient operator and div is the graph divergence operator.

Graph Diffusions

- Let $X(t)=\left[x_{1}(t)^{\top}, x_{2}(t)^{\top}, \ldots, x_{n}(t)^{\top}\right]^{\top} \in \mathbb{R}^{n \times d}$ satisfy

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}(t)=\operatorname{div}(F(X(t), t) \odot \nabla X(t))
$$

where $F: \mathbb{R}^{n \times d} \times[0, \infty) \rightarrow \mathbb{R}^{n \times n}$ is a given function, ∇ is the graph gradient operator and div is the graph divergence operator.

- Special case: Assume $[F(X, t)]_{i j}=\frac{1}{d_{i}}$ where $d_{i}=\sum_{j=1}^{n} w_{i j}$ then

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}(t)=-\tilde{L}_{n} X(t)
$$

where $\tilde{L}=\operatorname{Id}-D^{-1} W=D^{-1} L_{n}$ is the random walk Laplacian.

Graph Diffusions

- Let $X(t)=\left[x_{1}(t)^{\top}, x_{2}(t)^{\top}, \ldots, x_{n}(t)^{\top}\right]^{\top} \in \mathbb{R}^{n \times d}$ satisfy

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}(t)=\operatorname{div}(F(X(t), t) \odot \nabla X(t))
$$

where $F: \mathbb{R}^{n \times d} \times[0, \infty) \rightarrow \mathbb{R}^{n \times n}$ is a given function, ∇ is the graph gradient operator and div is the graph divergence operator.

- Special case: Assume $[F(X, t)]_{i j}=\frac{1}{d_{i}}$ where $d_{i}=\sum_{j=1}^{n} w_{i j}$ then

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}(t)=-\tilde{L}_{n} X(t)
$$

where $\tilde{L}=\operatorname{Id}-D^{-1} W=D^{-1} L_{n}$ is the random walk Laplacian.

- Remark: This is the gradient flow corresponding to minimising a Dirichlet energy (without constraints). In particular, $x_{i}(t) \rightarrow c \in \mathbb{R}^{d}$, as $t \rightarrow \infty$, for all $i=1,2, \ldots, n$.

GRAph Neural Diffusion (GRAND) networks were proposed by Chamberlain et. al. ${ }^{2}$ as a architecture for graph neural networks.

The architecture is based on

$$
X(T)=X(0)+\int_{0}^{T} \frac{\mathrm{~d} X}{\mathrm{~d} t}(t) \mathrm{d} t
$$

where

$$
\frac{\mathrm{d} X}{\mathrm{~d} t}(t)=\operatorname{div}(F(X(t), t) \odot \nabla X(t))
$$

and the parameter values that define F are to be learned.

[^2]
Random Walk Viewpoint of GRAND

- We consider the (slightly modified) random walk B_{t}^{x} on $\left\{x_{i}(0)\right\}_{i=1}^{n}$

$$
\begin{aligned}
B_{0}^{\times} & =x \in\left\{x_{i}(0)\right\}_{i=1}^{n} \\
\mathbb{P}\left(B_{t+1}^{\times}=x_{j}(0) \mid B_{t}^{\times}=x_{i}(0)\right) & = \begin{cases}1-\delta_{t} & \text { if } i=j \\
\frac{\delta_{t} W_{i j}}{d_{i}} & \text { if } i \neq j\end{cases}
\end{aligned}
$$

Random Walk Viewpoint of GRAND

- We consider the (slightly modified) random walk B_{t}^{x} on $\left\{x_{i}(0)\right\}_{i=1}^{n}$

$$
\begin{aligned}
B_{0}^{\times} & =x \in\left\{x_{i}(0)\right\}_{i=1}^{n} \\
\mathbb{P}\left(B_{t+1}^{\times}=x_{j}(0) \mid B_{t}^{\times}=x_{i}(0)\right) & = \begin{cases}1-\delta_{t} & \text { if } i=j \\
\frac{\delta_{t} W_{i j}}{d_{i}} & \text { if } i \neq j\end{cases}
\end{aligned}
$$

- Result: Let $X(t)=\left[x_{1}(t)^{\top}, x_{2}(t)^{\top}, \ldots, x_{n}(t)^{\top}\right]^{\top}$ solve

$$
\begin{aligned}
X(0) & =\left[\bar{x}_{1}^{\top}, \bar{x}_{2}^{\top}, \ldots, \bar{x}_{n}^{\top}\right]^{\top} \\
X\left(k \delta_{t}\right) & =X\left((k-1) \delta_{t}\right)-\delta_{t} \tilde{L}_{n} X\left((k-1) \delta_{t}\right) .
\end{aligned}
$$

Then,

$$
x_{i}\left(k \delta_{t}\right)=\mathbb{E}\left[B_{k}^{\bar{x}_{i}}\right] .
$$

Random Walk Viewpoint of GRAND

- We consider the (slightly modified) random walk B_{t}^{x} on $\left\{x_{i}(0)\right\}_{i=1}^{n}$

$$
\begin{aligned}
B_{0}^{\times} & =x \in\left\{x_{i}(0)\right\}_{i=1}^{n} \\
\mathbb{P}\left(B_{t+1}^{\times}=x_{j}(0) \mid B_{t}^{\times}=x_{i}(0)\right) & = \begin{cases}1-\delta_{t} & \text { if } i=j \\
\frac{\delta_{t} W_{i j}}{d_{i}} & \text { if } i \neq j\end{cases}
\end{aligned}
$$

- Result: Let $X(t)=\left[x_{1}(t)^{\top}, x_{2}(t)^{\top}, \ldots, x_{n}(t)^{\top}\right]^{\top}$ solve

$$
\begin{aligned}
X(0) & =\left[\bar{x}_{1}^{\top}, \bar{x}_{2}^{\top}, \ldots, \bar{x}_{n}^{\top}\right]^{\top} \\
X\left(k \delta_{t}\right) & =X\left((k-1) \delta_{t}\right)-\delta_{t} \tilde{L}_{n} X\left((k-1) \delta_{t}\right) .
\end{aligned}
$$

Then,

$$
x_{i}\left(k \delta_{t}\right)=\mathbb{E}\left[B_{k}^{\bar{x}_{i}}\right] .
$$

- Result: As $k \rightarrow \infty$

$$
x_{i}\left(k \delta_{t}\right) \rightarrow \tilde{x}:=\sum_{j=1}^{n} \bar{x}_{j} \pi_{j}, \quad \pi_{j}=\frac{d_{j}}{\sum_{i=1}^{n} d_{i}}
$$

- Problem: In GRAND we suffer from the oversmoothing phenomena.
- Problem: In GRAND we suffer from the oversmoothing phenomena.
- Solution: Add a source term: let $Z(t)=\left[z_{1}(t)^{\top}, z_{2}(t)^{\top}, \ldots, z_{n}(t)^{\top}\right]^{\top}$ solve

$$
\frac{\mathrm{d} z_{i}}{\mathrm{~d} t}(t)=[\operatorname{div}(F(Z(t), t) \odot \nabla Z(t))]_{i}+\sum_{j \in \mathcal{I}_{n}} \delta_{i j} C_{j}
$$

where C_{j} is the source added at nodes $j \in \mathcal{I}_{n}$.

- Problem: In GRAND we suffer from the oversmoothing phenomena.
- Solution: Add a source term: let

$$
\begin{aligned}
Z(t)= & {\left[z_{1}(t)^{\top}, z_{2}(t)^{\top}, \ldots, z_{n}(t)^{\top}\right]^{\top} \text { solve } } \\
& \frac{\mathrm{d} z_{i}}{\mathrm{~d} t}(t)=[\operatorname{div}(F(Z(t), t) \odot \nabla Z(t))]_{i}+\sum_{j \in \mathcal{I}_{n}} \delta_{i j} C_{j}
\end{aligned}
$$

where C_{j} is the source added at nodes $j \in \mathcal{I}_{n}$.

- We choose

$$
C_{j}=\bar{x}_{j}-\hat{x}, \quad \hat{x}=\frac{1}{\left|\mathcal{I}_{n}\right|} \sum_{j \in \mathcal{I}_{n}} \bar{x}_{j}
$$

GRAND++

- Problem: In GRAND we suffer from the oversmoothing phenomena.
- Solution: Add a source term: let

$$
\left.\begin{array}{rl}
Z(t)= & {\left[z_{1}(t)^{\top}, z_{2}(t)^{\top}, \ldots, z_{n}(t)^{\top}\right]^{\top} \text { solve }} \\
& \frac{\mathrm{d} z_{i}}{\mathrm{~d} t}(t)
\end{array}\right)=[\operatorname{div}(F(Z(t), t) \odot \nabla Z(t))]_{i}+\sum_{j \in \mathcal{I}_{n}} \delta_{i j} C_{j} .
$$

where C_{j} is the source added at nodes $j \in \mathcal{I}_{n}$.

- We choose

$$
C_{j}=\bar{x}_{j}-\hat{x}, \quad \hat{x}=\frac{1}{\left|\mathcal{I}_{n}\right|} \sum_{j \in \mathcal{I}_{n}} \bar{x}_{j}
$$

- GRAph Neural Diffusion with source (GRAND++) is based on this architecture.

Random Walk Viewpoint of GRAND++

Assume that the initial condition satisfies

$$
\sum_{i=1}^{n} z_{i}(0)=\sum_{i \in \mathcal{I}_{n}} \frac{1}{d_{i}}\left(\bar{x}_{i}-\hat{x}\right)
$$

Random Walk Viewpoint of GRAND++

Assume that the initial condition satisfies

$$
\sum_{i=1}^{n} z_{i}(0)=\sum_{i \in \mathcal{I}_{n}} \frac{1}{d_{i}}\left(\bar{x}_{i}-\hat{x}\right) .
$$

Theorem (T., Nguyen, Xia, Strohmer, Bertozzi, Osher and Wang (2021))

Let $Z(t)=\left[z_{1}(t)^{\top}, z_{2}(t)^{\top}, \ldots, z_{n}(t)^{\top}\right]^{\top}$ solve

$$
z_{i}\left(k \delta_{t}\right)=z_{i}\left((k-1) \delta_{t}\right)-\delta_{t}\left[\tilde{L}_{n} Z\left((k-1) \delta_{t}\right)\right]_{i}+\sum_{j \in \mathcal{I}_{n}} \delta_{i j}\left(\bar{x}_{j}-\hat{x}\right) .
$$

Then,

$$
\left|z_{i}\left(k \delta_{t}\right)-\mathbb{E}\left[\sum_{s=0}^{k} \frac{1}{d_{i}} \sum_{j \in \mathcal{I}_{n}}\left(\bar{x}_{j}-\hat{x}\right) \mathbb{1}_{B_{s}^{\bar{x}_{j}}=\bar{x}_{i}}\right]\right| \rightarrow 0
$$

as $k \rightarrow \infty$.

	Depth	GRAND-nl	GRAND-nl-rw	GRAND++-nl	GRAND++-nl-rw
CORA	1	$\mathbf{7 9 . 7 0 (1 . 8 8)}$	$79.07(3.05)$	$79.24(1.48)$	$79.24(1.48)$
	4	$82.31(0.91)$	$82.47(1.32)$	$\mathbf{8 2 . 6 4 (0 . 8 9)}$	$82.23(1.14)$
	16	$82.11(1.42)$	$82.05(1.31)$	$\mathbf{8 3 . 2 4 (0 . 2 0)}$	$81.48(1.07)$
	32	$79.42(0.64)$	$81.01(0.81)$	$81.21(0.37)$	$\mathbf{8 2 . 2 0 (1 . 1 5)}$
CiteSeer	1	$71.84(2.98)$	$\mathbf{7 1 . 8 4 (2 . 6 6)}$	$70.45(2.12)$	$71.74(1.37)$
	16	$72.65(2.42)$	$73.06(2.98)$	$72.48(1.10)$	$\mathbf{7 3 . 2 9 (1 . 3 7)}$
	64	$70.29(2.58)$	$69.65(2.50)$	$72.64(0.93)$	$\mathbf{7 3 . 3 8 (0 . 9 5)}$
	128	$65.19(6.77)$	$65.45(7.18)$	$\mathbf{7 4 . 2 4 (0 . 7 0)}$	$74.23(0.70)$
PubMed	1	$77.93(1.27)$	$77.93(1.26)$	$\mathbf{7 8 . 0 1 (0 . 6 8)}$	$78.01(0.68)$
	4	$77.95(1.28)$	$78.02(1.14)$	$\mathbf{7 8 . 4 1 (0 . 8 8)}$	$78.17(0.93)$
	16	$76.51(2.73)$	$76.88(2.57)$	$\mathbf{7 8 . 4 3 (0 . 7 8)}$	$78.12(0.87)$

Table: Classification accuracy of GRAND and GRAND++ variants of different depth trained with 20 labels per class. (Unit: \%)

Model	Labels/Class	CORA	CiteSeer	PubMed	CoauthorCS	Computer	Photo
GRAND++-I	1	54.94 (16.09)	58.95 (9.59)	65.94 (4.87)	60.30 (1.50)	67.65 (0.37)	83.12 (0.78)
	2	66.92 (10.04)	64.98 (8.31)	69.31 (4.87)	76.53 (1.85)	76.47 (1.48)	83.71 (0.90)
	5	77.80 (4.46)	70.03 (3.63)	71.99 (1.91)	84.83 (0.84)	82.64 (0.56)	88.33 (1.21)
	10	80.86 (2.99)	72.34 (2.42)	75.13 (3.88)	86.94 (0.46)	82.99 (0.81)	90.65 (1.19)
	20	82.95 (1.37)	73.53 (3.31)	79.16 (1.37)	90.80 (0.34)	85.73 (0.50)	93.55 (0.38)
GRAND-I	1	52.53 (16.40)	50.06 (17.98)	62.11 (10.58)	59.15 (5.73)	48.67 (1.66)	81.25 (2.50)
	2	64.82 (11.16)	59.55 (10.89)	69.00 (7.55)	73.83 (5.58)	74.77 (1.85)	82.13 (3.27)
	5	76.07 (5.08)	68.37 (5.00)	73.98 (5.08)	85.29 (2.19)	80.72 (1.09)	88.27 (1.94)
	10	80.25 (3.40)	71.90 (7.66)	76.33 (3.41)	87.81 (1.36)	82.42 (1.10)	90.98 (0.93)
	20	82.86 (2.39)	73.02 (5.89)	78.76 (1.69)	91.03 (0.47)	84.54 (0.90)	93.53 (0.47)
GCN	1	47.72 (15.33)	48.94 (10.24)	58.61 (12.83)	65.22 (2.25)	49.46 (1.65)	82.94 (2.17)
	2	60.85 (14.01)	58.06 (9.76)	60.45 (16.20)	83.61 (1.49)	76.90 (1.49)	83.61 (0.71)
	5	73.86 (7.97)	67.24 (4.19)	68.69 (7.93)	86.66 (0.43)	82.47 (0.97)	88.86 (1.56)
	10	78.82 (5.38)	72.18 (3.47)	72.59 (3.19)	88.60 (0.50)	82.53 (0.74)	90.41 (0.35)
	20	82.07 (2.03)	74.21 (2.90)	76.89 (3.27)	91.09 (0.35)	82.94 (1.54)	91.95 (0.11)
GAT			50.31 (14.27)		51.13 (5.24)	37.14 (7.81)	
	2	58.30 (13.55)	55.55 (9.19)	60.24 (14.44)	63.12 (6.09)	65.07 (8.86)	76.89 (4.89)
	5	71.04 (5.74)	67.37 (5.08)	68.54 (5.75)	71.65 (4.53)	71.43 (7.34)	83.01 (3.64)
	10	76.31 (4.87)	71.35 (4.92)	72.44 (3.50)	74.71 (3.35)	76.04 (0.35)	87.42 (2.38)
	20	79.92 (2.28)	73.22 (2.90)	75.55 (4.11)	79.95 (2.88)	80.05 (1.81)	89.38 (2.48)
GraphSage	1	43.04 (14.01)	48.81 (11.45)	55.53 (12.71)	61.35 (1.35)	27.65 (2.39)	45.36 (7.13)
	2	53.96 (12.18)	54.39 (11.37)	58.97 (12.65)	76.51 (1.31)	42.63 (4.29)	51.93 (4.21)
	5	68.14 (6.95)	64.79 (5.16)	66.07 (6.16)	89.06 (0.69)	64.83 (1.62)	78.26 (1.93)
	10	75.04 (5.03)	68.90 (5.08)	70.74 (3.11)	89.68 (0.39)	74.66 (1.29)	84.38 (1.75)
	20	80.04 (2.54)	72.02 (2.82)	74.55 (3.09)	91.33 (0.36)	79.98 (0.96)	91.29 (0.67)
MoNet	1	47.72 (15.53)	39.13 (11.37)	56.47 (4.67)	58.99 (5.17)	23.78 (7.57)	34.72 (8.18)
	2	60.85 (14.01)	48.52 (9.52)	61.03 (6.93)	76.57 (4.06)	38.19 (3.72)	43.03 (8.22)
	5	73.86 (7.97)	61.66 (6.61)	67.92 (2.50)	87.02 (1.67)	59.38 (4.73)	71.80 (5.02)
	10	78.82 (5.38)	68.08 (6.29)	71.24 (1.54)	88.76 (0.49)	68.66 (3.30)	78.66 (3.17)
	20	82.07 (2.03)	71.52 (4.11)	76.49 (1.75)	90.31 (0.41)	73.66 (2.87)	88.61 (1.18)

Table: Classification accuracy of different GNNs trained with different number of labelled data per class (\#per class) on six benchmark graph node classification tasks. (Unit: \%)

Thank you for listening!

In theory, there is no difference between theory and practice. But in practice, there is.

- Yogi Berra

[^0]: ${ }^{1}$ Nadler, Srebro and Zhou, Statistical Analysis of Semi-Supervised Learning, NeurIPS, 2009, pp. 1330-1338

[^1]: ${ }^{1}$ Nadler, Srebro and Zhou, Statistical Analysis of Semi-Supervised Learning, NeurIPS, 2009, pp. 1330-1338

[^2]: ${ }^{2}$ Chamberlain, Rowbottom, Gorinova, Bronstein, Webb and Rossi, GRAND: Graph neural diffusion, ICML, 2021, pp. 1407-1418.

