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I. Introduction 



Starting point: Subcellular pathway models in neuroscience
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π(y) ∝ exp{−U(y)}, U : S → ℝ .

Example I: Bayesian inference. Posterior distributions on the form 

π(ξ) ∝ π0(ξ)L(x1:n |ξ),

with unknown normalising constant .Z = ∫ π0(ξ)L(x1:n |ξ)dξ

Main question: How to sample from a distribution  know only up 
to a normalising constant?

π



Example II: Computational chemistry. Compute thermodynamic 
properties with respect to the Gibbs measure .∝ e−U

Main question: How to sample from a distribution  know only up 
to a normalising constant?

π

Source: Schwantes, Shukla, Pande

Biophysical Journal, 2016. 


π(y) ∝ exp{−U(y)}, U : S → ℝ .



Example III: Counting problems. Determine the number of objects 
in a large (finite) class that satisfy certain constraints.

Ex: Number of binary contingency tables with row and column 
sums  and .r = (r1, …, rm) c = (c1, …, cn) .

𝒳* = x ∈ {0,1}m+n :
m

∑
i=1

xi,j = cj, j = 1,…, n,
n

∑
j=1

xi,j = ri, i = 1,…, m .

Main question: How to sample from a distribution  know only up 
to a normalising constant?

π

π(y) ∝ exp{−U(y)}, U : S → ℝ .
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Idea: Construct a Markov process with  as invariant measure.π
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Idea: Construct a Markov process with  as invariant measure.π

(Metropolis et al. 1953, Hastings 1970.)

Infinitely many possibilities. How to choose?

Main hindrance: Poor communication / complex energy landscape.

Main question: How to sample from a distribution  know only up 
to a normalising constant?

π

π(y) ∝ exp{−U(y)}, U : S → ℝ .







Idea: Construct a Markov process with  as invariant measure.π

(Metropolis et al. 1953, Hastings 1970.)

Main hindrance: Poor communication / complex energy landscape.

Main question: How to sample from a distribution  know only up 
to a normalising constant?

π

π(y) ∝ exp{−U(y)}, U : S → ℝ .

Q: How to analyse the efficiency of MCMC methods?

Infinitely many possibilities. How to choose?



Performance analysis of MCMC methods: 

Q: How to analyse the efficiency of MCMC methods?



Performance analysis of MCMC methods: 

Beyond ergodicity, tools include empirical observations, spectral 
properties (“2nd eigenvalue information”), asymptotic variance and 
functional inequalities (Poincaré, log-Sobolev).
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Performance analysis of MCMC methods: 

Beyond ergodicity, tools include empirical observations, spectral 
properties (“2nd eigenvalue information”), asymptotic variance and 
functional inequalities (Poincaré, log-Sobolev).

Q: How to analyse the efficiency of MCMC methods?

Step 1: Ergodicity of the underlying process .X = {X(t)}t≥0

ηT =
1
T ∫

T

0
δX(t)( ⋅ )dt .

In practice: approximation of  built on the empirical measureπ

Under ergodicity .ηT → π

Empirical measure large deviations: Relates directly to the 
behaviour of  as . So far (severely) underutilised.ηT T → ∞



II. Primer on Large deviations



Large deviation principle:

A sequence         of random elements satisfy the large deviation 
principle (LDP), with rate function  and speed  ifI : 𝒳 → [0,∞], n

{Xn}n

− inf
x∈G∘

I(x) ≤ lim inf
n

1
n

log P(Xn ∈ G∘)

≤ lim sup
n

1
n

log P(Xn ∈ Ḡ) ≤ − inf
x∈Ḡ

I(x) .



Large deviation principle:

A sequence         of random elements satisfy the large deviation 
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Gist: For measurable ,G ⊂ 𝒳
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I(x) .

Minimisers of  characterise how 
events occur.

I



Example: Schilders theorem

Consider scaled BM:  standard BM in , , , 
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I(φ) =
1
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.

{B(t)}t∈[0,T] ℝ2 B(0) = 0 ϵ > 0
Xϵ(t) = ϵB(t)

Q2: How does  exit ?Xϵ D

Ans:  satisfies LDP with rate function{Xϵ}ϵ>0

I(φ) =
1
2 ∫

T

0
| | ·φ(s) | |2 ds; φ ∈ AC([0,T ] : ℝ2), φ(0) = 0.

Roughly: 

P(Xϵ leaves D) ≈ exp {−
1
ϵ

inf
φ

{I(φ) : φ(0) = 0, ∃τ ∈ [0,T ] s.t. φ(τ) ∈ ∂D}}
Solution  where . Linear towrds , 
reach at .

φ(s) = (C1s, C2s) C2
1 + C2

2 = 1/T2 ∂D
T

Q1: Probability  leaves  in ?Xϵ D = {x ∈ ℝ2 : | |x | |2 < 1} [0,T ]



5 of 100K trajectories





Probability 

ϵ = 0.044

≈ 10−5

Example: Schilders theorem (cont’d)
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LDP: Empirical measures of a Markov chain
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x∈Ḡ
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LDP: Empirical measures of a Markov chain

A sequence         of random elements satisfy the large deviation 
principle (LDP), with rate function  and speed  ifI : 𝒳 → [0,∞], n

{Xn}n

Consider a Markov chain  {Yn}n≥0 .

Ln =
1
n

n−1

∑
i=0

δXi
, n ≥ 1.

− inf
x∈G∘

I(x) ≤ lim inf
n

1
n

log P(Xn ∈ G∘)

≤ lim sup
n

1
n

log P(Xn ∈ Ḡ) ≤ − inf
x∈Ḡ

I(x) .

Empirical measure LDP: LDP for .{Ln}n≥1

Define corresponding sequence of empirical measures: 



?
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Bucklew - Introduction to rare event simulation.

Springer-Verlag, 2004


Dupuis, Wang - Subsolutions of an Isaacs equation and efficient schemes for 
importance sampling. 

Math. Oper. Res. 32(3), 723–757, 2007


Budhiraja, Dupuis - Analysis and approximation of rare events: 

Representations and weak convergence methods.

Springer, 2019.
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Large deviations and Monte Carlo methods

Rising interest in the use of LDPs for MCMC methods. 

Empirical measure LDP’s the right thing to study.

Bierkens, N., Schlottke - Large deviations for the empirical measure of the zig-zag process.

Ann. Appl. Probab., 31(6):2811–2843, 2021.

Dupuis et al.- On the infinite swapping limit for parallel tempering. 

SIAM Multiscale Model. Simul., 10(3):986-1022, 2012.

Rey-Bellet, Spiliopoulos - Irreversible Langevin samplers and variance

reduction: A large deviations approach. 

Nonlinearity, 28(7):2081, 2015.

Dupuis, Wu - Analysis and optimization of certain parallel tempering Monte Carlo methods in 
the low temperature limit.

Multiscale Model. Simul., 20(1):220-249, 2022.

Bierkens - Non-reversible Metropolis-Hastings. 

Stat. Comput., 26(6):1213-1228, 2016.
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tempering and infinite swapping algorithms.

Appl. Math. Optim., 78(1):103-144, 2018.
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Large deviations and Monte Carlo methods

Interested in using LD approach for:

Metropolis-Hastings the foundational building block.

Metropolis-adjusted Langevin algorithm (MALA),

ABC-MCMC.

(Surprisingly!) Many (theoretical) questions remain open.

Random walk Metropolis (RWM),

Rising interest in the use of LDPs for MCMC methods. 

Empirical measure LDP’s the right thing to study.



Metropolis-Hastings: 

- State space  S ⊆ ℝd

- Proposal distribution , J( ⋅ |x) x ∈ S

- For a state  and proposal , define the acceptance probabilityx y

ω(x, y) = min {1,
π(y)J(x |y)
π(x)J(y |x) } .

- Metropolis-Hastings algorithm: Given  Xi = xi,

i) Generate a proposal .Yi+1 ∼ J( ⋅ |xi)

ii) Set

Xi+1 =
Yi+1, w. probability ω(xi, Yi+1)

xi, w. probability 1 − ω(xi, Yi+1) .
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A.3) There exists a suitable Lyapunov-type function associated with 
 (for non-compactness)         

π λ S

J( ⋅ |x) ≪ π x ∈ S
J(y |x) > 0 (x, y) ∈ S2

K

Main issue: Rejection part  in .r(x)δx(dy) K

One possible set of assumptions:



Large deviations for Metropolis-Hastings chains:

A(μ) = {γ ∈ 𝒫(S2) : [γ]1 = [γ]2 = μ} .

R(μ | | ν) =
∫

S
log ( dμ

dν ) dμ, μ ≪ ν,

+∞, otherwise .

Theorem (Milinanni, N. ’24a): Under assumptions (A.1), (A.2), (A.3), 
the empirical measures  associated with the MH chain  
satisfy an LDP with rate function


{Ln}n≥1 {Xi}i≥0

I(μ) = inf
γ∈A(μ)

R(γ | | μ ⊗ K), μ ∈ 𝒫(S) .



Large deviations for Metropolis-Hastings chains:

A(μ) = {γ ∈ 𝒫(S2) : [γ]1 = [γ]2 = μ} .

R(μ | | ν) =
∫

S
log ( dμ

dν ) dμ, μ ≪ ν,

+∞, otherwise .

Theorem (Milinanni, N. ’24a): Under assumptions (A.1), (A.2), (A.3), 
the empirical measures  associated with the MH chain  
satisfy an LDP with rate function


{Ln}n≥1 {Xi}i≥0

I(μ) = inf
γ∈A(μ)

R(γ | | μ ⊗ K), μ ∈ 𝒫(S) .

Idea: Use rate function to gauge efficiency / compare alg’s. 
“Larger = better”



Toy example: IMH



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Q: For a given target, can we find the “best” sampling dist.?



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Q: For a given target, can we find the “best” sampling dist.?

Take , . Rate function π ∼ N(0,1) f ∼ N(m, s2) I( ⋅ ) = If( ⋅ ) = I( ⋅ ; m, s)



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Q: For a given target, can we find the “best” sampling dist.?

Take , . Rate function π ∼ N(0,1) f ∼ N(m, s2) I( ⋅ ) = If( ⋅ ) = I( ⋅ ; m, s)

“Ideal”: find optimal  for all (relevant) :(m * ,s*) μ ∈ 𝒫(S)

I(μ; m*, s*) ≥ I(μ; m, s), ∀μ, m, s .



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Q: For a given target, can we find the “best” sampling dist.?

Lower bound for the rate function:

If(μ) ≥ − log (1 −
1
2 ∬ min { f(x)

π(x)
,

f(y)
π(y) } ( μ(x)π(y) − μ(y)π(x))

2
dxdy)

Take , . Rate function π ∼ N(0,1) f ∼ N(m, s2) I( ⋅ ) = If( ⋅ ) = I( ⋅ ; m, s)

“Ideal”: find optimal  for all (relevant) :(m * ,s*) μ ∈ 𝒫(S)

I(μ; m*, s*) ≥ I(μ; m, s), ∀μ, m, s .

Reality: Numerical comparison of lower bound for a given .μ



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Q: For a given target, can we find the “best” sampling dist.?

Lower bound for the rate function:

If(μ) ≥ − log (1 −
1
2 ∬ min { f(x)

π(x)
,

f(y)
π(y) } ( μ(x)π(y) − μ(y)π(x))

2
dxdy)

Take , . Rate function π ∼ N(0,1) f ∼ N(m, s2) I( ⋅ ) = If( ⋅ ) = I( ⋅ ; m, s)



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Q: For a given target, can we find the “best” sampling dist.?

Lower bound for the rate function:

If(μ) ≥ − log (1 −
1
2 ∬ min { f(x)

π(x)
,

f(y)
π(y) } ( μ(x)π(y) − μ(y)π(x))

2
dxdy)
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μ ∼ N(1,2) μ ∼ Gamma(3,5) μ ∼ Uni(0,1)

Take , . Rate function π ∼ N(0,1) f ∼ N(m, s2) I( ⋅ ) = If( ⋅ ) = I( ⋅ ; m, s)



Toy example (WIP): Independent MH sampler

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

Lower bound for the rate function:

If(μ) ≥ − log (1 −
1
2 ∬ min { f(x)

π(x)
,

f(y)
π(y) } ( μ(x)π(y) − μ(y)π(x))

2
dxdy)

μ ∼ N(1,2) μ ∼ Gamma(3,5) μ ∼ Uni(0,1)
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Take , . Rate function π ∼ N(0,1) f ∼ N(m, s2) I( ⋅ ) = If( ⋅ ) = I( ⋅ ; m, s)

Q: For a given target, can we find the “best” sampling dist.?



Large deviations for Metropolis-Hastings chains:

A(μ) = {γ ∈ 𝒫(S2) : [γ]1 = [γ]2 = μ} .

R(μ | | ν) =
∫

S
log ( dμ

dν ) dμ, μ ≪ ν,

+∞, otherwise .

Theorem (Milinanni, N. ’24a): Under assumptions (A.1), (A.2), (A.3), 
the empirical measures  associated with the MH chain  
satisfy an LDP with rate function


{Ln}n≥0 {Xi}i≥0

I(μ) = inf
γ∈A(μ)

R(γ | | μ ⊗ K), μ ∈ 𝒫(S) .

Idea: Use rate function to gauge efficiency / compare alg’s. 
“Larger = better”



Large deviations for Metropolis-Hastings chains:

Theorem (Milinanni, N. ’24a): Under assumptions (A.1), (A.2), (A.3), 
the empirical measures  associated with the MH chain  
satisfy an LDP with rate function


{Ln}n≥0 {Xi}i≥0

I(μ) = inf
γ∈A(μ)

R(γ | | μ ⊗ K), μ ∈ 𝒫(S) .

Proof strategy: Establish variational upper & lower bounds:

Relies on stochastic control and weak convergence methods.

lim sup
n→∞

(lim inf
n→∞

) −
1
n

log E [e−nF(Ln)] ≤ ( ≥ ) inf
μ∈𝒫(S)

(F(μ) + I(μ))



Large deviations for Metropolis-Hastings chains:

I. Variational representation: For  bounded, cont.,F

−
1
n

log E [e−nF(Ln)] = inf
{μ̄n

i }
E [F(L̄n) +

1
n

n

∑
i=1

R(μ̄n
i | | K(X̄n

i , ⋅ )] .

 : cond. distribution of  given . μ̄n
i X̄n

i σ(X̄n
1, …, X̄n

n−1)

 : controlled empirical measure. L̄n( ⋅ ) =
1
n

n−1

∑
i=0

δX̄n
i
( ⋅ )



Large deviations for Metropolis-Hastings chains:

II. Variational upper bound:

I. Variational representation: For  bounded, cont.,F

−
1
n

log E [e−nF(Ln)] = inf
{μ̄n

i }
E [F(L̄n) +

1
n

n

∑
i=1

R(μ̄n
i | | K(X̄n

i , ⋅ )] .

 : cond. distribution of  given . μ̄n
i X̄n

i σ(X̄n
1, …, X̄n

n−1)

 : controlled empirical measure. L̄n( ⋅ ) =
1
n

n−1

∑
i=0

δX̄n
i
( ⋅ )

“Easy” direction. Show Feller property for . Rest from Budhiraja 
& Dupuis.

K

lim inf
n→∞

−
1
n

log E [e−nF(Ln)] ≥ inf
μ∈𝒫(S)

(F(μ) + I(μ))



Large deviations for Metropolis-Hastings chains:

III. Variational lower bound:

lim sup
n→∞

−
1
n

log E [e−nF(Ln)] ≤ inf
μ∈𝒫(S)

(F(μ) + I(μ))



Large deviations for Metropolis-Hastings chains:

III. Variational lower bound:

lim sup
n→∞

−
1
n

log E [e−nF(Ln)] ≤ inf
μ∈𝒫(S)

(F(μ) + I(μ))

Difficult part: construction of near-optimal controls .{μ̄n
i }

n
i=1

Key property in Budhiraja & Dupuis:  guarantees .I(ν) < ∞ ν ≪ π
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Large deviations for Metropolis-Hastings chains:

III. Variational lower bound:

lim sup
n→∞

−
1
n

log E [e−nF(Ln)] ≤ inf
μ∈𝒫(S)

(F(μ) + I(μ))

Difficult part: construction of near-optimal controls .{μ̄n
i }

n
i=1

Key property in Budhiraja & Dupuis:  guarantees .I(ν) < ∞ ν ≪ π

Not true for MH; due to rejection part  in .r(x)δx(dy) K

Idea: Take  s.t. . Show existence of  s.t.:ν ∈ 𝒫(S) I(ν) < ∞ ν*
       (i) arbitrarily close to ,

       (ii) ,

       (iii) .

ν
I(ν*) ≤ I(ν) + ϵ
ν* ≪ π

Condition (A.3) needed to show tightness of controls.



?



V. On condition (A.3): Existence of a suitable 
Lyapunov function


(is it ever satisfied?)



Existence of Lyapunov function I:

Condition (A.3): There exists a function  such thatU : S → [0,∞)

a) .inf
x∈S {U(x) − log∫S

eU(y)K(x, dy)} > − ∞

b) For each , the following set is relatively compact in :M < ∞ S

.{x ∈ S : U(x) − log∫S
eU(y)K(x, dy) ≤ M}

c) For every compact , there exists  such thatA ⊂ S CA < ∞

.sup
x∈A

U(x) ≤ CA



Existence of Lyapunov function I:

Condition (A.3): There exists a function  such thatU : S → [0,∞)

a) .inf
x∈S {U(x) − log∫S

eU(y)K(x, dy)} > − ∞

b) For each , the following set is relatively compact in :M < ∞ S

.{x ∈ S : U(x) − log∫S
eU(y)K(x, dy) ≤ M}

c) For every compact , there exists  such thatA ⊂ S CA < ∞

.sup
x∈A

U(x) ≤ CA

Note: For compact  condition is trivially satisfied.S

Henceforth: .S = ℝd



Existence of Lyapunov function II:

Condition (A.3): Part (b) critical part,

b) For each , the following set is relatively compact in :M < ∞ S

.{x ∈ S : U(x) − log∫S
eU(y)K(x, dy) ≤ M}



Existence of Lyapunov function II:

Condition (A.3): Part (b) critical part,

b) For each , the following set is relatively compact in :M < ∞ S

.{x ∈ S : U(x) − log∫S
eU(y)K(x, dy) ≤ M}

Proposition (Milinanni, N., 24b): (A.3b) is equivalent to

lim
|x|→∞ ∫S

a(x, y)dy = 1,

and
.lim

|x|→∞ ∫S
eU(y)−U(x)a(x, y)dy = 0

(where:  )a(x, dy) = min {1,
π(y)J(x |y)
π(x)J(y |x) } J(dy |x)



Existence of Lyapunov function III: Independent MH



Existence of Lyapunov function III: Independent MH

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

  , .⇒ a(x, y) = min {1,
π(y)f(x)
π(x)f(y) } f(y) ∀x ∈ S

Consider target and proposal on the form

π(x) ∝ e−η|x|α
, f(y) ∝ e−γ|x|β

.



Existence of Lyapunov function III: Independent MH

Proposal distribution  , .J( ⋅ |x) = f( ⋅ ) ∀x ∈ S

  , .⇒ a(x, y) = min {1,
π(y)f(x)
π(x)f(y) } f(y) ∀x ∈ S

Consider target and proposal on the form

π(x) ∝ e−η|x|α
, f(y) ∝ e−γ|x|β

.

Proposition (Milinanni, N., 24b): (A.3) is satisfied iff either of the 
following hold:

i) α = β, η > γ,

ii) α ≥ β .

Gist: Target has lighter tails than proposal. Same as for UE/GE.



Existence of Lyapunov function IV: MALA



Existence of Lyapunov function IV: MALA

Proposal distribution:

Consider target on the form

π(x) ∝ e−η|x|α
.

J(y |x) ∝ exp {−
1
2ε

y − x −
ε
2

∇log π(x)
2

}, ε > 0.



Existence of Lyapunov function IV: MALA

Proposal distribution:

Consider target on the form

π(x) ∝ e−η|x|α
.

Proposition (Milinanni, N., 24b): (A.3) is satisfied iff either of the 
following hold:

i) α = 2, εη < 2,

ii) 1 < α < 2.

J(y |x) ∝ exp {−
1
2ε

y − x −
ε
2

∇log π(x)
2

}, ε > 0.



Existence of Lyapunov function V: RWM



Existence of Lyapunov function V: RWM

Proposal distribution .J(y |x) = ̂J(y − x) = ̂J(x − y)

  , .⇒ a(x, y) = min {1,
π(y)
π(x) } ̂J(y − x) ∀x ∈ S



Existence of Lyapunov function V: RWM

Proposal distribution .J(y |x) = ̂J(y − x) = ̂J(x − y)

Proposition (Milinanni, N., 24b): For the RWM algorithm, there does 
not exist a function  satisfying condition (A.3), regardless of the 
choice of .

U
π

  , .⇒ a(x, y) = min {1,
π(y)
π(x) } ̂J(y − x) ∀x ∈ S



LDP for MH chains: LDPs for IMH and MALA chains

Theorem (Milinanni, N., 24b):

Consider a target on the form

π(x) ∝ e−η|x|α
.



LDP for MH chains: LDPs for IMH and MALA chains

Theorem (Milinanni, N., 24b):

Consider a target on the form

π(x) ∝ e−η|x|α
.

i) For IMH, with proposal on the form  if either  
and , or , the empirical measures of the underlying MH 
chain satisfy an LDP.

f(y) ∝ e−γ|x|β
, α = β

η > γ α > β



LDP for MH chains: LDPs for IMH and MALA chains

Theorem (Milinanni, N., 24b):

Consider a target on the form

π(x) ∝ e−η|x|α
.

i) For IMH, with proposal on the form  if either  
and , or , the empirical measures of the underlying MH 
chain satisfy an LDP.

f(y) ∝ e−γ|x|β
, α = β

η > γ α > β

ii) For MALA, with proposal

J(y |x) ∝ exp {−
1
2ε

y − x +
εηα

2
|x |α−2 x

2

}, ε > 0.

if either  and , or , the empirical measures of 
the underlying MH chain satisfy an LDP.

α = 2 εη < 2 α ∈ (1,2)



LDP for MH chains: LDPs for IMH and MALA chains

Q: When should we expect an LDP to hold for MH chains?

Theorem (Milinanni, N., 24b):

Consider a target on the form

π(x) ∝ e−η|x|α
.

i) For IMH, with proposal on the form  if either  
and , or , the empirical measures of the underlying MH 
chain satisfy an LDP.

f(y) ∝ e−γ|x|β
, α = β

η > γ α > β

ii) For MALA, with proposal

J(y |x) ∝ exp {−
1
2ε

y − x +
εηα

2
|x |α−2 x

2

}, ε > 0.

if either  and , or , the empirical measures of 
the underlying MH chain satisfy an LDP.

α = 2 εη < 2 α ∈ (1,2)
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Q: When should we expect an LDP to hold for MH chains?



LDP for MH chains: A conjecture

Q: When should we expect an LDP to hold for MH chains?

I. Comparison of (A.3) and drift condition: Standard drift cond. 
for : , , V λ ∈ (0,1) b < ∞

.∫S
V(y)K(x, dy) ≤ λV(x) + bI{x ∈ C}

For  drift condition becomesU = logV

.U(x) − log∫S
eU(y)K(x, dy) ≥ − log (λ + e−U(x)bI{x ∈ C})

 the Lyapunov function  gives rise to  satisfying (A.3a).⇒ V U



LDP for MH chains: A conjecture

Q: When should we expect an LDP to hold for MH chains?

I. Comparison of (A.3) and drift condition: Standard drift cond. 
for : , , V λ ∈ (0,1) b < ∞

.∫S
V(y)K(x, dy) ≤ λV(x) + bI{x ∈ C}

For  drift condition becomesU = logV

.U(x) − log∫S
eU(y)K(x, dy) ≥ − log (λ + e−U(x)bI{x ∈ C})

 the Lyapunov function  gives rise to  satisfying (A.3a).⇒ V U

II. Previous LDP results: Typically for geometrically ergodic chains 
(e.g., Kontoyiannis & Meyn ’03, ’05).



LDP for MH chains: A conjecture

III. Results for IMH, MALA, RWM:



LDP for MH chains: A conjecture

Assumption (A.3)
Geometric 
ergodicity

IMH

MALA

RWM

α = β, η > γ,or  α ≥ β .

otherwise

α = 2, εη < 2, or  α ∈ (1,2) .

otherwise

α = 1

tails as in [MT96]

otherwise

III. Results for IMH, MALA, RWM:

( )



LDP for MH chains: A conjecture

Assumption (A.3)
Geometric 
ergodicity

IMH

MALA

RWM

α = β, η > γ,or  α ≥ β .

otherwise

α = 2, εη < 2, or  α ∈ (1,2) .

otherwise

α = 1

tails as in [MT96]

otherwise

Current (abstract) LDP: (A.3b) the restrictive condition.

Conjecture: (A.3b) too strict, geometric ergodicity enough.

III. Results for IMH, MALA, RWM:

( )
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On-going/future work

Alternative representations for the rate function.

Similar to work by D-V; relation to Dirichlet forms…

In-depth study of RWM and non-reversible setting.

Extend LDP approach to other types/classes of algorithms.

Compare to recent work by Andi et al.

Generalise the finite-state examples by Bierkens ’16.

Examine high-dimensional limit/optimal scaling using LD/rate 
function.

Examine connection LDP  geometric ergodicity.⇔
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Bonus material



Spectral properties: Concern the convergence rate of transition 
probabilities. Easy to come up with examples of processes with 
large spectral gap but fast convergence of time averages.

Ex. (Rosenthal ’03): P = ( ϵ 1 − ϵ
1 − ϵ ϵ ) .

Empirical measure converges rapidly to . Spectral gap 
suggest very slow convergence.

(1/2,1/2)



Reversibility of MH and MH-like algorithms often good:

+ Neat mathematical theory: self-adjoint transition operator, 
spectrum is real, geometric ergodicity gives CLT for  
functions…

L2

+ Local condition; helps with implementation.

- Leads to random-walk behaviour. Pot. slow convergence and

high computational cost per iteration.
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auxiliary variables (e.g. velocity).
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high computational cost per iteration.



Reversibility of MH and MH-like algorithms often good:

+ Neat mathematical theory: self-adjoint transition operator, 
spectrum is real, geometric ergodicity gives CLT for  
functions…

L2

+ Local condition; helps with implementation.

Non-reversible processes avoid RW behaviour by introducing 
auxiliary variables (e.g. velocity).

- Leads to random-walk behaviour. Pot. slow convergence and

high computational cost per iteration.

Continuous-time MCMC methods introduced to have such non-
reversible processes. Based on piecewise deterministic Markov 
processes (PDMPs).



Empirical measure large deviations for Markov processes dates 
back to work by Donsker and Varadhan (’75-’76)

Covers many (well-behaved) Markov processes, rate function on 
variational form:

I(μ) = − inf
u∈𝒟+(L) ∫ log

Ku
u

dμ, μ ∈ 𝒫(S) .

Large deviations for Metropolis-Hastings chains:
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