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Motivation



Measurement error

• Covariate X is only observed via a noisy proxy W such that:

X = W + N

N ∼ F0
N , E[N] = 0

• Function g : Θ×X → R explains the relationship between X and Y such that:

Y = g(θ0,X ) + E

E ∼ F0
E , E[E ] = 0.

Goal: to estimate θ0 from (W ,Y ) while incorporating prior beliefs about F0
N when:

1 Data from (W ,Y ) is available

2 F0
N and F0

E are unknown but some prior beliefs might be available

3 We assume additive homoscedastic errors in both X and Y

4 We assume non-differential ME, i.e. Y ⊥⊥ W | X
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Two types of Measurement Error

Classical
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Two types of Measurement Error

Classical

W = X + N

X ⊥⊥ N, W ⊥̸⊥ N

Noisy (observed)

Noise-free (unobserved)

ME

Berkson

X = W + N
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Example: Linear Regression

• Special case:

g(θ0,X ) = αX + β, θ0 := (α, β)

• For observations {wi , yi}ni=1 and associated unobserved errors {νi}ni=1
iid∼F0

N and

{ϵi}ni=1
iid∼F0

E we have that for each i = 1, . . . , n:

yi = αxi + β + ϵi , wi = xi + νi

• Naively using OLS would result in endogeneity bias since:

yi = αwi + β + (ϵi − ανi )

Covariate and error term are correlated!
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Background



Existing approaches

• Deming regression (Deming, 1943)

• Simulation Extrapolation method (SIMEX) (Cook and Stefanski, 1994) which

assumes knowledge or estimates measurement error variance)

• Instrumental Variable approaches (Newhouse and McClellan, 1998)

• Nonparametric approaches: Deconvolution Kernel Estimator (Fan and Truong,

1993; Wang and Wang, 2011), Gaussian Processes regression Cervone and Pillai

(2015); Zhou et al. (2023)

• Bayesian semi-parametric approach with penalised splines (Berry et al., 2002;

Sarkar et al., 2014)
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Bayesian Nonparametric Learning (NPL) framework

(Lyddon et al., 2018; Fong et al., 2019)

1 Standard Bayesian inference assumes that the model is well-specified and sets

uncertainty directly on the parameter of interest

2 Place a nonparametric prior directly on the data-generating mechanism P∗:

P ∼ DP(α,F), P|x1:n ∼ DP (α′,F′)

where

α′ = α+ n, F′ := α
α+n

F+ n
n+α

Pn, Pn = 1
n

∑n
i=1 δxi

3 For a loss function l(x , θ) propagate uncertainty from P∗ to the parameter of

interest θ through

θ∗l (P∗) := arg infθ∈Θ EX∼P∗ [l(X , θ)]
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Methodology



Robustness with respect to ME

Conditional model family: PY | X
Θ = {(Pg(θ,x))x∈X : θ ∈ Θ}

• PX := 1
n

∑n
i=1 δxi → PX ,Y

Θ = { 1
n

∑n
i=1 δxi Pg(θ,xi ) : θ ∈ Θ}

• PW := 1
n

∑n
i=1 δwi → PW ,Y

Θ = { 1
n

∑n
i=1 δwi Pg(θ,wi ) : θ ∈ Θ}
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Robust-MEM

• Target parameter:

θ∗l (P⋆
X ,Y ) = argmin

θ∈Θ
E(X ,Y )∼P⋆

X,Y
[l(x , y ; θ)]

• Set uncertainty on the true distribution of X |W = wi , denoted by P∗
X | wi

• Dirichlet Process (DP) prior for each i = 1, . . . , n:

Pi ∼ DP(c,Fwi )

• DP posterior:

Pi | wi ∼ DP(c + 1,F′
wi
), F′

wi
=

1

c + 1
δwi +

c

c + 1
Fwi
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Prior specification

Pi | wi ∼ DP(c + 1,F′
wi
), F′

wi
= 1

c+1
δwi +

c
c+1

Fwi

• c = 0: all the mass of the posterior centering measure concentrated at the

observation δxi → no measurement error on the covariates

• c = 1: weighting in F′ equally split between the prior centering measure F and the

Dirac measure on the observation xi .

• c → ∞: no weighting is imposed on xi
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Prior specification

Pi | wi ∼ DP(c + 1,F′
wi
), F′

wi
= 1

c+1
δwi +

c
c+1

Fwi

• Berkson (W ⊥⊥ N):

- FN represents prior beliefs about the ME distribution

- x ∼ Fwi is such that x = wi + ν where ν ∼ FN

• Classical (X ⊥⊥ N):

- FW | X with density fW | X represents prior beliefs about the ME distribution, FX with

density fX represents prior beliefs about the marginal distribution of true covariate X

- x ∼ Fwi is such that

fwi (x | wi ) =
fW | X (wi | x)fX (x)∫
fW | X (wi | x)fX (x)dx
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Uncertainty propagation

• Target parameter:

θ∗l (P⋆
X ,Y ) = argmin

θ∈Θ
E(x,y)∼P⋆

X,Y
[l(x , y ; θ)]

• DP posterior on the true distribution of X |W = wi , denoted by P∗
X | wi

:

Pi | wi ∼ DP(c + 1,F′
wi
), F′

wi
=

1

c + 1
δwi +

c

c + 1
Fwi

• Posterior Bootstrap; at iteration j:

1 For i = 1, . . . , n : sample P(i,j) ∼ DP(c + 1,F′
wi
).

2 Calculate θ∗l (P(1,j), . . . ,P(n,j)) = argminθ∈Θ E(x,y)∼ 1
n

∑n
i=1 P(i,j) δyi

[l(x , y , θ)].

11



Loss function

• Total Least Squares (Golub and Loan, 1979; Golub and Van Loan, 1980)

- Linear Regression

- Underlying Gaussian errors assumption

• Maximum Mean Discrepancy (Briol et al., 2019; Chérief-Abdellatif and Alquier,
2022; Alquier and Gerber, 2020)

- Nonlinear regression

- Suitable for any error distribution

- Able to handle likelihood-free models

- Robust towards model misspecification on error distribution of Y

12



Loss function

• Total Least Squares (Golub and Loan, 1979; Golub and Van Loan, 1980)

- Linear Regression

- Underlying Gaussian errors assumption

• Maximum Mean Discrepancy (Briol et al., 2019; Chérief-Abdellatif and Alquier,
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Summary of Robust MEM
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Generalisation error



Generalisation error

Theorem (Berkson)

Generalisation error︷ ︸︸ ︷
E
[
MMDk(P∗

X ,Y ,Pθ⋆(P))
]
− inf

θ∈Θ
MMDk(P∗

X ,Y ,Pθ)

≤ 2√
n
+ 2(1 + Λ)

(
1√

n(c + 1)
+

√
1

c + 2
+

+
c

c + 1
MMDk2

X
(FN ,F0

N)︸ ︷︷ ︸
Prior specification

+
1

c + 1
MMDk2

X
(F0

N , δ0)︸ ︷︷ ︸
ME deviation from 0

 .
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Generalisation Error / Role of c

Figure 1: Average MSE of polynomial regression parameters in the presence of Berkson,

Gaussian ME with increasing standard deviation over 50 replications.
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Examples



Example: Linear Regression with Classical Measurement Error

y = θ1 + θ2x + ϵ, ϵ ∼ N(0, σ2
ϵ)

w = x + ν, ν ∼ N(0, σ2
ν).
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Example: Nonlinear Regression with Berkson Measurement Error

y = exp(a+bx)
1+exp(a+bx)

+ ϵ, ϵ ∼ N(0, σ2
ϵ)

x = w + ν, ν ∼ N(0, σ2
ν)
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Discussion

• Most suitable for when we think there might be (Berkson or Classical) ME but

are uncertain about its distribution or size

• Prior specification is important

• Kernel choice and hyperparameters

• Optimisation convergence
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