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Talk outline

● Brief introduction Markov Chain Monte Carlo
● Gaussian approximation results
● Uncertainty Quantification high-dimensional MCMC
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Markov Chain Monte Carlo

● Goal: Simulate π, a probability distribution of interest, and
often interested in estimating

π(f ) ∶= Eπ[f (X)] = ∫ f (x)π(dx)

with
f ∶ Rn → Rd

● MCMC methods construct a Markov chain X = (Xt)t∈N such that
the long-run behavior of the process is described by π
● Has applications in fields ranging from statistics to physics
● We consider the high-dimensional setting where both n and d can

be large
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Introduction MCMC

● Markov chain X = (Xt)t∈N with stationary distribution π
● Convergence to stationary distribution

sup
B∈B
∣Pπ0(XT ∈ B) − π(B)∣ → 0 as T →∞.

● Ergodic LLN

π̂T (f ) ∶=
1
T

T
∑
k=1

f (Xk)
a.s.ÐÐ→ ∫ f (x)π(dx) =∶ π(f ), as T →∞.

● MCMC is approximate inference

5 / 26



Introduction MCMC

● Markov chain X = (Xt)t∈N with stationary distribution π
● Convergence to stationary distribution

sup
B∈B
∣Pπ0(XT ∈ B) − π(B)∣ → 0 as T →∞.

● Ergodic LLN

π̂T (f ) ∶=
1
T

T
∑
k=1

f (Xk)
a.s.ÐÐ→ ∫ f (x)π(dx) =∶ π(f ), as T →∞.

● MCMC is approximate inference

5 / 26



Introduction MCMC

● Markov chain X = (Xt)t∈N with stationary distribution π
● Convergence to stationary distribution

sup
B∈B
∣Pπ0(XT ∈ B) − π(B)∣ → 0 as T →∞.

● Ergodic LLN

π̂T (f ) ∶=
1
T

T
∑
k=1

f (Xk)
a.s.ÐÐ→ ∫ f (x)π(dx) =∶ π(f ), as T →∞.

● MCMC is approximate inference

5 / 26



MCMC Convergence Diagnostics

Markov chain X = (Xt)t∈N with stationary distribution π

Practical Questions
● Q1: When is it reasonable to assume that our sampling algorithm

is in equilibrium?
● Q2: How long do we need to run our sampling algorithm?

● Q3: How does the answer of Q1 and Q2 depend on the dimension?

Theoretical Answers
● A1: Quantitative bounds of convergence to stationarity
● A2: Uncertainty Quantification and Termination criteria for

simulation output

6 / 26



MCMC Convergence Diagnostics

Markov chain X = (Xt)t∈N with stationary distribution π

Practical Questions
● Q1: When is it reasonable to assume that our sampling algorithm

is in equilibrium?
● Q2: How long do we need to run our sampling algorithm?
● Q3: How does the answer of Q1 and Q2 depend on the dimension?

Theoretical Answers
● A1: Quantitative bounds of convergence to stationarity
● A2: Uncertainty Quantification and Termination criteria for

simulation output

6 / 26



MCMC Convergence Diagnostics

Markov chain X = (Xt)t∈N with stationary distribution π

Practical Questions
● Q1: When is it reasonable to assume that our sampling algorithm

is in equilibrium?
● Q2: How long do we need to run our sampling algorithm?
● Q3: How does the answer of Q1 and Q2 depend on the dimension?

Theoretical Answers
● A1: Quantitative bounds of convergence to stationarity

● A2: Uncertainty Quantification and Termination criteria for
simulation output

6 / 26



MCMC Convergence Diagnostics

Markov chain X = (Xt)t∈N with stationary distribution π

Practical Questions
● Q1: When is it reasonable to assume that our sampling algorithm

is in equilibrium?
● Q2: How long do we need to run our sampling algorithm?
● Q3: How does the answer of Q1 and Q2 depend on the dimension?

Theoretical Answers
● A1: Quantitative bounds of convergence to stationarity
● A2: Uncertainty Quantification and Termination criteria for

simulation output

6 / 26



Markov chain CLT
Let X be polynomially ergodic of sufficiently high order.
Then for all f ∶ E → Rd with π(∥f ∥2+ε) < ∞
● CLT

1√
T

T
∑
k=1
(f (Xk) − µ(f ))

wÐ→Nd(0,Σf ).

● FCLT

⎛
⎝

1√
T

⌊Tt⌋
∑
k=0
(f (Xk) − µ(f ))

⎞
⎠

t

wÐ→ Σ1/2
f W as n →∞,

with

Σf =
∞

∑
k=0

Covπ(f (X0), f (Xk)) +
∞

∑
k=0

Covπ(f (Xk), f (X0))

W is a d-dimensional Brownian motion
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Motivating example: Uncertainty Quantification

We need to estimate asymptotic variance Σf

● Confidence ellipsoid for uncertainty quantification

CT = {θ ∈ Rd ∶ T (π̂T (f ) − θ)⊺Σ̂−1
T (π̂T (f ) − θ) < qα}

● Stopping rules: Terminate simulation when confidence ellipsoid has
desired volume.

T1(ε) = inf{T > 0 ∶ Vol(C(T ))1/d + 1{T>T∗(ε,d ,n)} ≤ ε}.

● Analysis of T1(ε) and Σ̂f requires refinements FCLT
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Gaussian approximation (GA)

On some probability space (Ω,F ,P) we can construct X and Brownian
motion W such that

∥
T
∑
t=0
[f (Xt) − π(f )] −Σ1/2

f W (T )∥ = O(ψT )

almost surely or in probability.

lim sup
T→∞

1
ψT
∥

T
∑
t=0
[f (Xt) − π(f )] −Σ1/2

f W (T )∥ < C

almost surely or in probability.
● Weak GA: convergence in probability
● Strong GA: convergence almost surely
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Sequential Gaussian approximation

On some probability space (Ω,F ,P) we can construct X and Brownian
motion W such that

sup
0<s≤T

XXXXXXXXXXXX

⌊s⌋
∑
t=0
[f (Xt) − π(f )] −Σ1/2

f W (s)
XXXXXXXXXXXX
= OP(ψT )

● Implies convergence rate FCLT

dPL
⎛
⎝

1√
T

⌊Ts⌋
∑
k=0
[f (Xk) − π(f )],W

⎞
⎠
≈ O ( ψT√

T
)
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Output Analysis: Current Results

● Existing MCMC GA rates are not dimension-dependent 123

● Empirical findings: multivariate rates not appropriate for output
analysis in high-dimensional setting

● Analysis of termination criteria does not take dimension into
account 4 5.
● How does the GA convergence rate depend on the dimensions n,d

of the target distribution and feature vector respectively?

1 J. Flegal and G. Jones (2010). “Batch means and spectral variance estimators in Markov chain Monte Carlo”. In: The
Annals of Statistics 38.2, pp. 1034–1070

2 F. Merlevède, E. Rio, et al. (2015). “Strong approximation for additive functionals of geometrically ergodic Markov chains”.
In: Electronic Journal of Probability 20

3 A. Banerjee and D. Vats (2022). “Multivariate strong invariance principles in Markov chain Monte Carlo”. In: arXiv
preprint arXiv:2211.06855

4 P. W. Glynn and W. Whitt (1992). “The asymptotic validity of sequential stopping rules for stochastic simulations”. In:
The Annals of Applied Probability 2.1, pp. 180–198

5 D. Vats, J. M. Flegal, and G. L. Jones (2019). “Multivariate output analysis for Markov chain Monte Carlo”. In: Biometrika
106.2, pp. 321–337
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MCMC: Foster-Lyapunov drift conditions

Geometric drift condition: Let V ∶ Rn → R+, λ ∈ (0,1),0 < b < ∞, and

E[V (Xt+1)∣Xt] ≤ λV (Xt) + b1C(Xt)

● V is the energy function: takes low values in high π–probability
regions and high values in low π–probability regions.

● Drift towards set C : ExτC ≤ V (x) for x ∉ C .
Polynomial drift condition: Let η ∈ (0,1), 0 < b, c < ∞, and

E[V (Xt+1)∣Xt] ≤ V (Xt) − cV (Xt)η + b1C(Xt)
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MCMC: Minorization condition

One-step minorization

P(x ,dy) = P(Xt+1 ∈ dy ∣Xt = x) ≥ αν(dy), x ∈ C

● Splitting transition kernel: P(x ,dy) = αν(dy) + (1 − α)R(x ,dy)
● Every time the process is in C with probability α move independent

of its past
m0-step minorization

Pm0(x ,dy) ≥ αν(dy), x ∈ C

● Every time the process is in C with probability α: Xt+m0 ⊥⊥ Ft
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Convergence Complexity MCMC

● How do the convergence properties of MCMC scale with n,d?

● Family of drift and minorisation conditions that remain stable as
dimension n grows.

lim sup
n→∞

λn < 1 as n →∞.

● Gives dimension-dependent convergence rates to stationarity67

Central Question
How does the dimension affect the uncertainty quantification?

6 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. In: The Annals
of Applied Probability 33.2, pp. 1459–1500

7 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320–2347

14 / 26



Convergence Complexity MCMC

● How do the convergence properties of MCMC scale with n,d?
● Family of drift and minorisation conditions that remain stable as

dimension n grows.

lim sup
n→∞

λn < 1 as n →∞.

● Gives dimension-dependent convergence rates to stationarity67

Central Question
How does the dimension affect the uncertainty quantification?

6 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. In: The Annals
of Applied Probability 33.2, pp. 1459–1500

7 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320–2347

14 / 26



Convergence Complexity MCMC

● How do the convergence properties of MCMC scale with n,d?
● Family of drift and minorisation conditions that remain stable as

dimension n grows.

lim sup
n→∞

λn < 1 as n →∞.

● Gives dimension-dependent convergence rates to stationarity67

Central Question
How does the dimension affect the uncertainty quantification?

6 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. In: The Annals
of Applied Probability 33.2, pp. 1459–1500

7 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320–2347

14 / 26



Moment conditions

Let f ∶ Rn → Rd with
● (A1): supi∈{1,⋯,d} π(∣fi ∣p+ϵ) < ∞ with p > 2
● (A2): supi∈{1,⋯,d} π(et ∣fi ∣) < ∞ with t > 0
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Weak Gaussian Approximation

Theorem
Assume that X satisfies a stable geometric drift condition

PV ≤ λnV + bn1C ,

and a one-step minorization

Then we have

∣
T
∑
t=1

f (Xt) −Tπ(f ) −Σ1/2
f WT ∣ = OP (ψ2

n (
σd
σ0
)

1/2
d log(d)T 1/p)

where

ψn = α−1/p
n ( bn

αn(1 − λ0)
)

1/p2

● (F)CLT requires for large p: d = o(
√

T )
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Strong Gaussian Approximation

Theorem
Assume that X satisfies a stable geometric drift condition

PV ≤ λnV + bn1C ,

and an m0-step minorization. Then we have

∣
T
∑
t=1

f (Xt) −Tπ(f ) −Σ1/2
f WT ∣ = OP (ψ2

n (
σd
σ0
)

1/2
d log(d)T

1
4+

1
4(p−1))

where

ψn = α−1/p
n m0 (

2bn
αn(1 − λ0)

)
1/p2

● (F)CLT requires for large p: d = o(T 1/4)
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Gaussian Approximation Results

Theorem
Assume that X satisfies an m0–step minorization and a polynomial drift
condition PV ≤ V − cV η + b1C ,

Then

∣
T
∑
t=1

f (Xt) −Tπ(f ) −Σ1/2
f WT ∣ = OP (ψ2

n (
σd
σ0
)

1/2
d log(d)T

1
4+

1
4(p0−1)) ,

where
p0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

pq(η)
p+q(η)+ε , if 2p

3p−2 < η ≤ a(p),
p, if η > a(p),
q(η) − ϵ̄, if η > 1/2 and A2 holds,

with q(η) = η/(1 − η).

ψn = α−1/p0mq/p2
0

0 (1 + b
cα
+ υc + b

1 − α
)

1/p2
0
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Gaussian approximation results; Extensions

● One-step minorization attains optimal KMT bound in sample size;
results are applicable to
● Gaussian and hierarchical models8

● Bayesian probit models9

● Approximation results also valid for continuous-time processes

● Dimension dependence can be improved

ψd =
√

dπ(∥f ∥p)1/p

● Sparsity coordinates π
● Bayesian regularisation

8 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. In: The Annals
of Applied Probability 33.2, pp. 1459–1500

9 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib’s algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320–2347
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Estimation of asymptotic variance

● Asymptotic variance

Σf =
∞

∑
k=0

Covπ(f (X0), f (Xk)) +
∞

∑
k=0

Covπ(f (Xk), f (X0))

● Batch means: divide simulation output into kT batches of size ℓT .
Compute means

π̂j
ℓT
(f ) = 1

ℓT

iℓT

∑
(j−1)ℓT

f (Xt), for j = 1,⋯, kT .

Σ̂BM
T = ℓT

kT − 1

kT

∑
j=1
(π̂j

ℓT
(f ) − π̂T (f ))(π̂j

ℓT
(f ) − π̂T (f ))⊺

● How to choose ℓT ?

20 / 26



Analysis of BM estimator

Assume that ℓT ,d →∞ such that ℓT ,d ≍
√

TψT ,d ,n then

● Consistency Σ̂T
p
Ð→ Σf as T →∞

● Larger approximation error ψT ,d requires larger batch size ℓT ,d

● Convergence rate GA corresponds to decay of autocovariance
● Asymptotic Normality of Σ̂T
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Analysis of BM estimator

Assume that ℓT ,d →∞ such that ℓT ,d ≍
√

TψT ,d ,n

one-step minorisation multi-step minorisation

exponential drift
√

dT
1
2+

1
p

√
dT

3
4+

1
4(p−1)

polynomial drift
√

dT
1
2+

1
p0

√
dT

3
4+

1
4(p0−1)

Table: Batch size ℓT multivariate setting
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Gaussian approximation

● Different convergence rates
● Strong Gaussian approximation: ψ̄d = d23/4 and Ψ̄T = T 1/p

● Partial sum Gaussian approximation :

sup
0<s≤T

XXXXXXXXXXX

⌊s⌋
∑
t=0
[f (Xt) − π(f )] −Σ1/2

f W (s)
XXXXXXXXXXX
= OP(ψnψ

∗

d Ψ∗T )

with ψ∗d = d3/4 and Ψ∗T = T 1/4

● Both can be used to give quantitative convergence bounds of
termination criteria 10

10 P. W. Glynn and W. Whitt (1992). “The asymptotic validity of sequential stopping rules for stochastic simulations”. In:
The Annals of Applied Probability 2.1, pp. 180–198
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MCMC Termination Criteria
● Termination time

T1(ε) = inf{T > 0 ∶ Vol(C(T ))1/d + 1{T>T∗(ε,d ,n)} ≤ ε}

● Choose simulation threshold T ∗

one-step minorisation multi-step minorisation

geometric drift (1
ε
)

4p
(p−2) (1+δ̄)

(1
ε
)

8(p−1)
(p−2) (1+δ̄)

polynomial drift (1
ε
)

4p0
(p0−2) (1+δ̄)

(1
ε
)

8(p0−1)
(p0−2) (1+δ̄)

Table: Dependence of T ∗ on precision ε for any δ̄ > 0

● For high-dimensional setting: multiplicative factor (ψnd3/2ψd)2
for large p
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MCMC Termination criteria

Theorem
Consider stopping rule

T1(ε) = inf{T > 0 ∶ Vol(C(T ))1/d + 1{T>T∗(ε,d ,n)} ≤ ε}

with CT = {θ ∈ Rd ∶ T (π̂T (f ) − θ)⊺Σ̂−1
T (π̂T (f ) − θ) < qα}

Then we have as ε ↓ 0
1 Asymptotic validity of the resulting confidence set

Pπ (C(T1(ε)) ∋ π(f )) Ð→ 1 − α.
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