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Talk outline

e Brief introduction Markov Chain Monte Carlo
e Gaussian approximation results

e Uncertainty Quantification high-dimensional MCMC
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Markov Chain Monte Carlo

e Goal: Simulate 7, a probability distribution of interest, and
often interested in estimating

7(F) =B [F(X0] = [ F()m(x)

with
f:R" >R’
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Markov Chain Monte Carlo

e Goal: Simulate 7, a probability distribution of interest, and
often interested in estimating

7(F) =B [F(X0] = [ F()m(x)

with
f:R" >R’

e MCMC methods construct a Markov chain X = (X;)en such that
the long-run behavior of the process is described by

e Has applications in fields ranging from statistics to physics

e We consider the high-dimensional setting where both n and d can
be large
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Introduction MCMC

e Markov chain X = (X;)tn with stationary distribution 7

e Convergence to stationary distribution

sup |Pr, (Xt e B)-m(B)|>0as T - oo.
BeB

1
TUDelft 5/ 26



Introduction MCMC
e Markov chain X = (X;)tn with stationary distribution 7
e Convergence to stationary distribution

sup |Pr, (Xt e B)-m(B)|>0as T - oo.
BeB

e Ergodic LLN

.
fr(f) = %kz_:l F(Xe) = [ f(x)m(dx) = 7(f), as T — oo.
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Introduction MCMC

Markov chain X = (X;)tey with stationary distribution 7

e Convergence to stationary distribution

sup |Pr, (Xt e B)-m(B)|>0as T - oo.
BeB

Ergodic LLN

.
fr(f) = %kz_:l F(Xe) = f f(x)m(dx) = 7(f), as T — oo.

MCMC is approximate inference
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MCMC Convergence Diagnostics

Markov chain X = (X;)tey with stationary distribution 7

Practical Questions

e Q1: When is it reasonable to assume that our sampling algorithm
is in equilibrium?

e Q2: How long do we need to run our sampling algorithm?
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MCMC Convergence Diagnostics

Markov chain X = (X;)tey with stationary distribution 7

Practical Questions
e Q1: When is it reasonable to assume that our sampling algorithm
is in equilibrium?
e Q2: How long do we need to run our sampling algorithm?

e Q3: How does the answer of Q1 and Q2 depend on the dimension?

Theoretical Answers
e Al: Quantitative bounds of convergence to stationarity

e A2: Uncertainty Quantification and Termination criteria for
simulation output
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Markov chain CLT

Let X be polynomially ergodic of sufficiently high order.
Then for all f: E » R? with 7(]| f|***) < 0

o CLT .
;7352;{f(xk)—ﬁdf)) s Ny4(0,%).
o FCLT
L LTt —
(—T 2 (0% —u(f)))t S s o oo,
with

e =3 Cova(F(X0). F(X) + 3 Cova(F(Xe). F(X0))
k=0 k=0

W is a d-dimensional Brownian motion
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Motivating example: Uncertainty Quantification

We need to estimate asymptotic variance 2 ¢

e Confidence ellipsoid for uncertainty quantification

Cr={0eRY: T(H7(F)=0)TLF(A7(F) - 0) < ga}
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Motivating example: Uncertainty Quantification

We need to estimate asymptotic variance 2 ¢

e Confidence ellipsoid for uncertainty quantification
Cr={0eR?: T(Ar(f)-0)" L7 (A1 (f) - 0) < gu}

e Stopping rules: Terminate simulation when confidence ellipsoid has
desired volume.

Ti(e) = inf{T > 0: Vol(C(T) Y + 1i7ore(cany < )
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Motivating example: Uncertainty Quantification

We need to estimate asymptotic variance 2 ¢

e Confidence ellipsoid for uncertainty quantification
Cr={0eR?: T(&7(f)-0)"EF (A7 (f) - 0) < qa}

e Stopping rules: Terminate simulation when confidence ellipsoid has
desired volume.

Ti(e) = inf{T > 0: Vol(C(T) Y + 1i7ore(cany < )

e Analysis of Ti(e) and ¥ requires refinements FCLT
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Gaussian approximation (GA)

On some probability space (2, F,P) we can construct X and Brownian
motion W such that

T

SUFX) - 7(F)] - z}/zvv(T)H - 0(ur)

t=0

almost surely or in probability.

lim sup — <C

T —o0

i F(Xe) - =(F)] - S2W(T)

almost surely or in probability.
e Weak GA: convergence in probability

e Strong GA: convergence almost surely
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Sequential Gaussian approximation

On some probability space (2, F,P) we can construct X and Brownian
motion W such that

Ls]

LX) ~m(F)] - =2 W(s)

= Op(¥T)

sup
0<s<T

e Implies convergence rate FCLT

d 1”5fo AL w |~ oL
pL(ﬁkgo[(k)—w( ). ) (7?)
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Output Analysis: Current Results

e Existing MCMC GA rates are not dimension-dependent 123

e Empirical findings: multivariate rates not appropriate for output
analysis in high-dimensional setting

N}

o

J. Flegal and G. Jones (2010). “Batch means and spectral variance estimators in Markov chain Monte Carlo”. In: 7he
Annals of Statistics 38.2, pp. 1034-1070

F. Merlevede, E. Rio, et al. (2015). “Strong approximation for additive functionals of geometrically ergodic Markov chains”.
In: Electronic Journal of Probability 20

A. Banerjee and D. Vats (2022). “Multivariate strong invariance principles in Markov chain Monte Carlo”. [n: arX/v
preprint arXiv:2211.06855

P. W. Glynn and W. Whitt (1992). “The asymptotic validity of sequential stopping rules for stochastic simulations”. In
The Annals of Applied Probability 2.1, pp. 180-198

D. Vats, J. M. Flegal, and G. L. Jones (2019). “Multivariate output analysis for Markov chain Monte Carlo”. In: Biometrika
106.2, pp. 321-337

Delft 11/



Output Analysis: Current Results

e Existing MCMC GA rates are not dimension-dependent 123
e Empirical findings: multivariate rates not appropriate for output
analysis in high-dimensional setting

o Analysis of termination criteria does not take dimension into
account # 5.

1 J. Flegal and G. Jones (2010). “Batch means and spectral variance estimators in Markov chain Monte Carlo”. In: The
Annals of Statistics 38.2, pp. 1034-1070
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Output Analysis: Current Results

e Existing MCMC GA rates are not dimension-dependent 123

e Empirical findings: multivariate rates not appropriate for output
analysis in high-dimensional setting
o Analysis of termination criteria does not take dimension into

account 45 .

e How does the GA convergence rate depend on the dimensions n, d
of the target distribution and feature vector respectively?

1 J. Flegal and G. Jones (2010). “Batch means and spectral variance estimators in Markov chain Monte Carlo”. In: The
Annals of Statistics 38.2, pp. 1034-1070

2 F. Merlevede, E. Rio, et al. (2015). “Strong approximation for additive functionals of geometrically ergodic Markov chains”.
In: Electronic Journal of Probability 20

3 A. Banerjee and D. Vats (2022). “Multivariate strong invariance principles in Markov chain Monte Carlo”. [n: arXiv
preprint arXiv:2211.06855

4 P.W. Glynn and W. Whitt (1992). “The asymptotic validity of sequential stopping rules for stochastic simulations”. In
The Annals of Applied Probability 2.1, pp. 180-198

5 D. Vats, J. M. Flegal, and G. L. Jones (2019). “Multivariate output analysis for Markov chain Monte Carlo”. In: Biometrika
106.2, pp. 321-337
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MCMC: Foster-Lyapunov drift conditions

Geometric drift condition: Let V: R” - R* A€ (0,1),0< b < o0, and

E[V(Xer1)|Xe] <AV(Xe) + blc(Xe)

e V is the energy function: takes low values in high m—probability
regions and high values in low m—probability regions.
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E[V(Xer1)|Xe] <AV(Xe) + blc(Xe)
e V is the energy function: takes low values in high m—probability

regions and high values in low m—probability regions.
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MCMC: Foster-Lyapunov drift conditions

Geometric drift condition: Let V: R” - R* A€ (0,1),0< b < o0, and

E[V(Xer1)|Xe] <AV(Xe) + blc(Xe)

e V is the energy function: takes low values in high m—probability
regions and high values in low m—probability regions.

e Drift towards set C: E,7¢ < V/(x) for x ¢ C.
Polynomial drift condition: Let n € (0,1), 0< b,c < oo, and

E[V(Xes1)|Xe] < V(Xe) = V(X" + ble(Xe)
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MCMC: Minorization condition

One-step minorization

P(x,dy) =P(Xts1 € dy| Xt = x) > av(dy), xe C
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MCMC: Minorization condition

One-step minorization

P(x,dy) =P(Xts1 € dy| Xt = x) > av(dy), xe C

e Splitting transition kernel: P(x,dy) = av(dy) + (1 - «)R(x, dy)
e Every time the process is in C with probability a move independent
of its past
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MCMC: Minorization condition

One-step minorization

P(x,dy) =P(Xts1 € dy| Xt = x) > av(dy), xe C

e Splitting transition kernel: P(x,dy) = av(dy) + (1 - «)R(x, dy)
e Every time the process is in C with probability a move independent
of its past

mo-step minorization
P™(x,dy) > av(dy), xe C

e Every time the process is in C with probability o X¢im, L Ft
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Convergence Complexity MCMC

e How do the convergence properties of MCMC scale with n, d?

6 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. n: The Annals
of Applied Probability 33.2, pp. 14591500

7 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320-2347
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Convergence Complexity MCMC

e How do the convergence properties of MCMC scale with n, d?

® Family of drift and minorisation conditions that remain stable as
dimension n grows.

limsupA, <1 as n— oo.

n—oo

* Gives dimension-dependent convergence rates to stationarity67
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Convergence Complexity MCMC

e How do the convergence properties of MCMC scale with n, d?

® Family of drift and minorisation conditions that remain stable as
dimension n grows.

limsupA, <1 as n— oo.

n—oo
* Gives dimension-dependent convergence rates to stationarity67

Central Question
How does the dimension affect the uncertainty quantification?

6 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. n: The Annals
of Applied Probability 33.2, pp. 1459-1500

7 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320-2347
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Moment conditions

Let f:R" » R? with
o (AL): supjeqq,....qy m(|fi]P™€) < 0o with p>2
o (A2): supjeqy,....q} m(etlfil) < 0o with t >0
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Weak Gaussian Approximation

Theorem
Assume that X satisfies a stable geometric drift condition

PV < \pV + bylc,

and a one-step minorization
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Weak Gaussian Approximation

Theorem

Assume that X satisfies a stable geometric drift condition

PV < \pV + bylc,

and a one-step minorization Then we have

.
Zl F(Xe) - Tr(f) - Wy
t=

/
- 0p (w,% (&) 3|og(d>r”")

where

2
Yn = aHP —b" "
e an(1 =)

o (F)CLT requires for large p: d = o(~/T)
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Strong Gaussian Approximation

Theorem

Assume that X satisfies a stable geometric drift condition

PV < \pV + bylc,

and an mg-step minorization. Then we have

.
Zl F(Xe) - Tr(f) - Wy
t=

1/2
- 0p (ﬁ (%) dlog(d)ﬁw?—”)
00
where

2bn )]-/F’2

Y = ap mo(an(l—/\o)

e (F)CLT requires for large p: d = o T'/*)
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Gaussian Approximation Results

Theorem
Assume that X satisfies an mg—step minorization and a polynomial drift
condition PV <V - cV"+blc,

Then
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Gaussian Approximation Results

Theorem
Assume that X satisfies an mg—step minorization and a polynomial drift
condition PV <V -cV+blc,
Tl%_en 1/2
1, 1

> F(Xe) - T(F) - 2 Wr | = Op (w%(ﬂ) dlog(d>T4*4<po-1>),

t=1 90
where SLa . if 5225 <n<a(p),

Po =3 p, ifn>a(p),

qg(n)-¢€, ifn>1/2 and A2 holds,
with q(n) =n/(1-n).
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Gaussian Approximation Results

Theorem
Assume that X satisfies an mg—step minorization and a polynomial drift
condition PV <V -cV+blc,
Tl%_en 1/2
1, 1

> F(Xe) - T(F) - 2 Wr | = Op (w%(ﬂ) dlog(d>T4*4<po-1>),

t=1 90
where SLa . if 5225 <n<a(p),

Po =3 p, ifn>a(p),

qg(n)-¢€, ifn>1/2 and A2 holds,
with q(n) =n/(1-n).

2
(I a'l/”omg/po (1 +
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Gaussian approximation results; Extensions

e One-step minorization attains optimal KMT bound in sample size;
results are applicable to
* Gaussian and hierarchical models®
* Bayesian probit models®

8 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. n: The Annals
of Applied Probability 33.2, pp. 1459-1500

9 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320-2347
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Gaussian approximation results; Extensions

e One-step minorization attains optimal KMT bound in sample size;
results are applicable to

* Gaussian and hierarchical models®
* Bayesian probit models®

e Approximation results also valid for continuous-time processes

e Dimension dependence can be improved

Wa = Vdr(|f]P)HP

® Sparsity coordinates 7
® Bayesian regularisation

8 J. Yang and J. S. Rosenthal (2023). “Complexity results for MCMC derived from quantitative bounds”. n: The Annals
of Applied Probability 33.2, pp. 1459-1500

9 Q. Qin and J. P. Hobert (2019). “Convergence complexity analysis of Albert and Chib's algorithm for Bayesian probit
regression”. In: The Annals of Statistics 47.4, pp. 2320-2347

/i1
TUDelft 19 / 26



Estimation of asymptotic variance
e Asymptotic variance

Fr= 3 Coun(F(X0), F(X)) + 3 Covn (F(Xe), F(X0))
k=0 k=0

e Batch means: divide simulation output into k1 batches of size /7.
Compute means

j 1 & .
ﬂJZT(f)Zg_ > f(Xp), for j=1,- k.
T (-ver

kT . .
£8M - TSN (F) = A (D), (F) = A1 (H)

e How to choose /17
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Analysis of BM estimator

Assume that {7 4 — oo such that {7 4 X/ TYT 4, then

e Consistency St LA Yras T - o0
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Analysis of BM estimator

Assume that {7 4 — oo such that {1 4 2 \/Tgbr,d,,, then
e Consistency St LA Yras T - o0
e Larger approximation error 1)1 4 requires larger batch size /1 4
e Convergence rate GA corresponds to decay of autocovariance

e Asymptotic Normality of 3
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Analysis of BM estimator

Assume that {1 4 — oo such that {1 4 XV TYT1 4,

one-step minorisation | multi-step minorisation
1,1 3 1
exponential drift VdT? s Vd T+ %D
1,1 3, 1
polynomial drift VdT2 w VdT* 3D

Table: Batch size £+ multivariate setting

e
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Gaussian approximation

o Different convergence rates
* Strong Gaussian approximation: 9y = d?*/* and Wy = T/
® Partial sum Gaussian approximation :

Ls]
DIUCORLGIE =W (s)

t

= OP(%W ;‘)

sup
0<s<T

with 15 = d®* and W5 = TV
® Both can be used to give quantitative convergence bounds of
termination criteria 1°

10P. W. Glynn and W. Whitt (1992). “The asymptotic validity of sequential stopping rules for stochastic simulations”. In
The Annals of Applied Probability 2.1, pp. 180-198
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MCMC Termination Criteria

® Termination time

Ti(e) =inf{T >0: VoI(C(T)? + 1i7ore(camy <€}

® Choose simulation threshold T*

one-step minorisation

multi-step minorisation

1)z (14D 1\ Ep (143)
geometric drift (_) (_)
€ €
4po = o) s
1 < (140) 1 = (1+6)
polynomial drift (_)("0 2 (_) (o-2)
€ 15

Table: Dependence of T* on precision ¢ for any § > 0

* For high-dimensional setting: multiplicative factor (¢,d>/?1)4)?

for large p

%
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MCMC Termination criteria

Theorem
Consider stopping rule

T1(e) = inf{T >0: VoI(C(T)? + 1isre(camy <€}

WIth {9 e RY s T(R7(F) - 0) 7 (A7 (F) = 0) < ga}
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MCMC Termination criteria

Theorem
Consider stopping rule

T1(e) = inf{T >0: VoI(C(T)? + 1isre(camy <€}

W e = {0 R T(rr(F) ~ )T (T (F) ~ 6) < qu)

Then we have ase | 0

@ Asymptotic validity of the resulting confidence set
P, (C(T1(e))a7n(f)) = 1-«a.
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