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Motivation

I Aim: unbiased estimator - Eπh [f (X )] = Eπ[f (X )].

I Produce samples from a distribution π

Eπ[f (X )] =

∫
Rd

f (x)π(x)dx ,
√
N
( 1

N

N∑
i=1

f (Xi )− Eπ[f (X )]
)
→ N(0, σ2).

I Issues: (i) MCMC bias (ii) discretization bias (iii) scalability ∼ O(d ...)
...
...

Exploit (Kinetic) Langevin methods
to handle all issues!
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Part I: Unbiased Estimation
with ULD

H. Ruzaquat (KAUST), NKC, and A. Jasra (CUHK-SZ) [SISC 23]



Biased MCMC

I MCMC algorithms define π-invariant Markov kernel K .

I Initialize X0 ∼ π0 6= π & iterate

Xt ∼ K(Xt−1, ·), t = 1, . . . ,T .

I Compute

1

T − b + 1

T∑
t=b

f (Xt)− Eπ[f (X )], T →∞,

where b ≥ 0 are discarded as burn-in.

I Estimator is biased since π0 6= π.

Averaging of independent copies does not
provide an unbiased estimator





Proposed Methodology

I Each processor runs two coupled
chains X = (Xt) and Y = (Yt).

I Terminate at some random time,
i.e. meeting time.

I Returns unbiased estimator Hk:m

of Eπ[f (X )].

I “Independent averaging” to
estimate Eπ[f (X )], as copies
−→∞.

I Efficiency depends on expected
cost and variance.



Debiasing Ideas

Glynn, Rhee. Exact estimation for Markov chain equilibrium
expectation. (2014).

Eπ[f (X )] = lim
t→∞

Eπ[f (Xt)] = E[f (Xk)] + E
∞∑

t=k+1

f (Xt)− f (Xt−1)

I Truncate series, since Xt = Yt−1, for t ≥ τ

Eπ[f (X )] = E
[
f (Xk) +

τ−1∑
t=k+1

f (Xt)− f (Yt−1)

]
.

I Unbiased estimator: for any k ≥ 0

Fk(X ,Y ) = f (Xk) +
τ−1∑

t=k+1

f (Xt)− f (Yt−1)}

1st term is biased, 2nd term corrects the bias!



Unbiased Estimator

We consider

E[ξl∗ ] = πl∗(ϕ)

E[ξl ] = πl(ϕ)− πl−1(ϕ) =: [πl − πl−1](ϕ).

Our unbiased estimator is

π̂(ϕ) =
ξl

PL(l)
.

Moreover, if ∑
l∈Nl∗

E[ξ2l ]

PL(l)
< +∞,

the estimator π̂(ϕ) has finite variance. [Vihola, OR, 2018]



Recap: Unbiased MCMC

I Debiasing + couplings =⇒ unbiased MCMC

I However what issues can arise?

1. Require complex couplings of Markov chains

2. This is by no means trivial!

3. multimodal densities → inefficiency, increased variance

4. Difficulty on more general models

5. Relationship between α and d

Motivates the use of simple coupling schemes of Markov chains!



Underdamped Langevin Dynamics

We propose the use of the ULD

dXt =Vtdt,

dVt =−∇U(Xt)dt − γVtdt +
√

2γdWt ,

with invariant measure

π(x , v) ∝ exp

{
−U(x)− ‖v‖

2

2

}
.

I Relatively easy to implement.

I Weak conditions for invariant distribution π.

I Euler-discretization well understood.



Additional Bias

I Issue: Such methods discussed =⇒ additional bias:

x(k+1)hl = xkhl + vkhl hl

v(k+1)hl = vkhl + (b(Xkhl )− γvkhl ) hl + σ
(
W(k+1)hl −Wkhl

)
.

I Remedy: Exact methods (simulate exactly)?

I Actual remedy: Debiasing again!

...
We can exploit MLMC to gain “good couplings”
of unbiased estimators of

πl(ϕl)− πl−1(ϕl−1)

...
We use maximal coupling.



Theory

We require various assumptions (not all stated)

I Geometric ergodicity of ULD.

I Lipschitz continuity of the kernel.

I Rates of convergence, i.e.

|[πl − π](ϕ)| ≤ C‖ϕ‖∆β1
l .

Theorem [HCJ22]; Given above assumptions, there exists a choice of PMF PL,
such that for the metric d̃ in and any ϕ ∈ Bb(X) ∩ Lipd̃(X), π̂(ϕ) is an unbiased
and finite variance estimator of π(ϕ).

=⇒ unbiased and finite-variance estimator.

Cost for ‘SL’ is O(ε−3) to target MSE O(ε2)
Cost for “U-ULD ” is O(ε−2)



Numerical experiments

We test our ULD estimator on 3 examples:

(i) Logistic regression, (ii) Double well potential, (iii) Gindzburg-Landau

I Compare with the MALA

I Compare MSE (ε2) vs Cost (MLMC framework)
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Part II: Unbiased Kinetic
Langevin Monte Carlo

NKC, B. Leimkhuler, D. Paulin and P. Whalley (UoE) [ArXiv 23]



Issues/Improvements

I We have 4 chains (2 chains within the telescoping sum)

I Can exploit higher order numerical schemes

I Gain more theoretical insights

I Extension to stochastic gradients



Discretization Schemes

Kinetic Langevin dynamics have many discretizations:

I Euler-Maruyama (EM)

I BAOAB, OBABO, OABAO [Matthew, Leimkhuler 13]

I Stochastic Euler scheme [ Buckholz 80]

I BBK Scheme [ Brunget et al. 84]

I UBU/BUB [ Zapatero 21] ∼ O(h2).

(
dx
dv

)
=

(
0

−∇U(x)dt

)
︸ ︷︷ ︸

B

+

(
vdt

−γvdt +
√

2γdWt

)
︸ ︷︷ ︸

U

,

We present a new unbiased method called: UBUBU



Role of Metropolization

Kinetic Langevin dynamics have many discretizations:

I Discretization of SDEs do not exactly converge to the correct π
(require MH step)

I Examples: MALA, HMC, RHMC

I Curse of dimensionality: dim-dep step-size restrictions (for α)

Algorithm Gradient Evaluations Conditions Reference

MALA O(d1/2) h = O(d−1/2) Lee 21

HMC O(d1/4) h = O(d−1/4), warm start Chen 23

RHMC O(d1/4) h = O(d−1/4), warm start, Gaussian target Apers 22

UBUBU O(d1/4) h0 = O(d−1/4) this work



Stochastic Gradients

I We have looked at the stochastic gradient variant:

G(x , ω) = ∇U0(x) +

N0∑
i=1

∇Ui (x̂) +
N

b

∑
i∈ω

(∇Ui (x)−∇Ui (x̂)).

where x∗ is the minimizer, and ω = (ω1, . . . , ωb), are uniform i.i.d.

I Another possibility is the use an approximate gradient:

G(x) = ∇U(x̂) +∇2U(x∗)(x − x̂).



We consider a different telescoping sum,

µ(f ) = µ̃h0(f ) +
∞∑
l=0

(µ̃hl+1(f )− µ̃hl (f )),

where

Dl,l+1 :=
1

K

K∑
i=1

[f (z ′
(l,l+1)
i )− f (z

(l,l+1)
i )],

Sl,l+1 =
1

E(Nl,l+1)

Nl,l+1∑
r=1

D
(r)
l,l+1.

From the definitions, it follows that ESl,l+1 is an unbiased estimator.

Burn-in Samples
KB0 Level 0

Stepsize h

KB0+B

KB0+2B

Level 1
Stepsize h

Level 2
Stepsize h

0

1

2



UBU W-contraction

Theorem: Suppose that U is m-strongly convex and M-∇Lipschitz. Let

a =
1

M
, b =

1

γ
, c2(h) =

mh

4γ
, c(h) =

mh

8γ
.

Let Ph denote the transition kernel for a step of UBU with stepsize h. For all
γ ≥
√

8M, h < 1
2γ

, 1 ≤ p ≤ ∞, µ, ν ∈ Pp(R2d), n ∈ N,

Wp,a,b (νPn
h , µP

n
h ) ≤ (1− c2(h))n/2Wp,a,b (ν, µ) ≤ (1− c(h))nWp,a,b (ν, µ) .

Ph has a unique invariant measure πh satisfying
that πh ∈ Pp(R2d) for all 1 ≤ p ≤ ∞.



Analysis (Some...)

I CLT, finite variance/unbiased estimator

Theorem: Suppose various assumptions hold, &

γ ≥
√

8M, h0 ≤
1

γ
· m

264M
, B ≥ 16 log(4)γ

mh0
, B0 ≥

16γ

mh0
log

(
cµ0 + 1√
Mγh2

0

)
.

Then UBUBU is a finite variance and unbiased estimator. Moreover, it satisfies a
CLT as N →∞, with asymptotic variance bound

σ2
S ≤

C(m,M,M1, γ, cN , φN)

Kh0

(
1 +

1

h0K
+ dh4

0

)
.



Analysis (Some...)

I Dimension-indepdent result for production distributions

Theorem: Given similar assumptions, and f is of the form

f (x , v) = g(〈w (1), x〉, . . . 〈w (r), x〉),

where g : Rr → R is 1-Lipschitz, and w (1), . . . ,w (r) ∈ Rd . Moreover, it satisfies a
CLT as N →∞, with asymptotic variance bound

σ2
S ≤

C(m,M,M1, γ, r , cN , φN)

Kh0

∑
1≤i≤r

‖w (i)‖2.

I Also show (i) big data limit (ii) extensions to SG/approx grad



Gaussian Target Example

Gaussian distribution : π(x) =
d∏

i=1

π0(x)
e−v2i /2

√
2π

.
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Poisson Football Model
This example is from [Koopman and Lit, 15], a Poisson random effect model.



Summary and Outlook

I Proposed new Unbiased estimator for sampling.

I Focus was on the use of ULD (Kinetic).

I Provided theorem and tested applications with comparisons.

I Unbiased estimation for constrained domains?

I Extension to non-convex setting which is natural.

I Other Bayesian applications, based on point above.

More details in:
Unbiased estimation with underdamped Langevin dynamics,
H. Ruzaquat, N. K. C and A. Jasra.
arXiv e-prints, 2022. [arXiv:2206.07202] (Accepted by SISC)

Unbiased kinetic Langevin Monte Carlo,
N. K.C, B. Leimkuhler, D. Paulin and P. Whalley.
arXiv e-prints, 2023.


