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Motivation

Gibbs sampling

» Aim: unbiased estimator - Er, [f(X)] = E,[f(X)].

» Produce samples from a distribution 7

EL[f(X)] = /Rd F(x)m(x)dx (1 if ~ EL[F(X)]) = N(0,0”).
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Motivation

Gibbs sampling

» Aim: unbiased estimator - Er, [f(X)] = E,[f(X)].

» Produce samples from a distribution 7

E.[f(X)] = /Rd f(x)m(x)dx, (1 El_vjf —E.[f( )]) — N(0,0°).

» Issues: (i) MCMC bias (ii) discretization bias (iii) scalability ~ O(d ")

Exploit (Kinetic) Langevin methods
to handle all issues!



Part |: Unbiased Estimation
with ULD

H. Ruzaquat (KAUST), NKC, and A. Jasra (CUHK-SZ) [SISC 23]



Biased MCMC

» MCMC algorithms define m-invariant Markov kernel K.

» Initialize Xo ~ mo # m & iterate

)(t"\-’l’<(Xl-_1,')7 tzl,,T

» Compute

1 T
S ; f(Xe) = E-[f(X)], T — o0,

where b > 0 are discarded as burn-in.

» Estimator is biased since mo # 7.

Averaging of independent copies does not
provide an unbiased estimator



7 =N(0,1), mo = N(10,3?), K = RWMH with proposal std 0.5
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Proposed Methodology

» Each processor runs two coupled
chains X = (X¢) and Y = (Y4).

> Terminate at some random time,
i.e. meeting time.

Parallel MCMC

P> Returns unbiased estimator Hi.m,
of Ex[f(X)].

» ‘“Independent averaging” to
estimate E,[f(X)], as copies
— 00.

» Efficiency depends on expected o
processors

cost and variance. 1
oo



Debiasing Ideas

Glynn, Rhee. Exact estimation for Markov chain equilibrium
expectation. (2014).

E[f(X)] = lim Ec[f(X)] = E[f(X)] + E 3 £(X:) — F(X 1)

» Truncate series, since X; = Y;_1, fort > 1

BFO0] = B[ f(X) + 3 £(%) - F(¥i)|.

t=k+1
» Unbiased estimator: for any kK >0
T—1
FuX, Y) = F(X) + Y F(Xe) = F(Yemr)}
t=k+1

1st term is biased, 2nd term corrects the bias!



Unbiased Estimator

We consider

E[¢.] = m. (v)
E[&)] = m(p) — m-1(p) =: [m1 — m-1]()-

Our unbiased estimator is

~ v &
() AR
Moreover, if ,
E[¢]
2 Bl <
N,

the estimator 7() has finite variance. [Vihola, OR, 2018]



Recap: Unbiased MCMC

Debiasing + couplings = unbiased MCMC

However what issues can arise?

@k W

Require complex couplings of Markov chains

This is by no means trivial!

multimodal densities — inefficiency, increased variance
Difficulty on more general models

Relationship between a and d

Motivates the use of simple coupling schemes of Markov chains!



Underdamped Langevin Dynamics

We propose the use of the ULD

dXt :tht,
th = - VU(Xt)dt - ’Ytht + V 27th7

with invariant measure

m(x, v) exp{—U(x) - @} .

» Relatively easy to implement.
» Weak conditions for invariant distribution 7.

» Euler-discretization well understood.



Additional Bias

» |ssue: Such methods discussed — additional bias:

X(k+1)hy = Xihy + Vicw i

Viks 1yt = Vit + (B(Xin) — YV ) i + 0 (Wiesyn, —

» Remedy: Exact methods (simulate exactly)?

» Actual remedy: Debiasing again!

We can exploit MLMC to gain “good couplings”
of unbiased estimators of
1o -1/ -1
() -7 (¢ )

We use maximal coupling.

th/) .



Theory

We require various assumptions (not all stated)

» Geometric ergodicity of ULD.

» Lipschitz continuity of the kernel.

» Rates of convergence, i.e.
I = 7](9)] < Cllpll A
Theorem [HCJ22]; Given above assumptions, there exists a choice of PMF P,

such that for the metric d in and any ¢ € By(X) N Lipz(X), w(p) is an unbiased
and finite variance estimator of ().

— unbiased and finite-variance estimator.

Cost for ‘SL" is O(e~?) to target MSE O(¢?)
Cost for “U-ULD " is O(e™?)



Numerical experiments

We test our ULD estimator on 3 examples:

(i) Logistic regression, (ii) Double well potential, (iii) Gindzburg-Landau

» Compare with the MALA
» Compare MSE (¢?) vs Cost (MLMC framework)



Double-Well Model

Double-Well Model
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Part |l: Unbiased Kinetic
Langevin Monte Carlo

NKC, B. Leimkhuler, D. Paulin and P. Whalley (UoE) [ArXiv 23]



Issues/Improvements

» We have 4 chains (2 chains within the telescoping sum)

Can exploit higher order numerical schemes

>
» Gain more theoretical insights
>

Extension to stochastic gradients

Hamiltonian Monte Carlo

/ Zig-Zag Process
Hamiltonian system _—— Bouncy Particle Sampler

Langevm dynamics

_— Nose-Hoover Langevin
Nose-Hoover thermostat

Overdamped dynamics

Adaptlve Langevin

Generalized Langevin

Figure 2: a menagerie of sampling methods



Discretization Schemes

Kinetic Langevin dynamics have many discretizations:
» Euler-Maruyama (EM)
BAOAB, OBABO, OABAO [Matthew, Leimkhuler 13]
Stochastic Euler scheme [ Buckholz 80]
BBK Scheme [ Brunget et al. 84]
UBU/BUB [ Zapatero 21] ~ O(h?).

(Z);) = (—VUO(x)dt> * (—wdt id\tmdwt)

B u

>
>
>
>

We present a new unbiased method called: UBUBU




Role of Metropolization

Kinetic Langevin dynamics have many discretizations:

> Discretization of SDEs do not exactly converge to the correct 7
(require MH step)

» Examples: MALA, HMC, RHMC

» Curse of dimensionality: dim-dep step-size restrictions (for «)

Algorithm Gradient Evaluations Conditions Reference
MALA o(d/?) h=0(d"1/?) Lee 21
HMC o(d'/*) h = O(d~1/*), warm start Chen 23
RHMC O(d1/4) h= O(d71/4), warm start, Gaussian target Apers 22
UBUBU o(d*) hy = O(d—1/%) this work




Stochastic Gradients

» We have looked at the stochastic gradient variant:

G(x,w) = VU(x) +Zvu(x Z(VU(X Ui(%)).

i=1 iEw
where x* is the minimizer, and w = (w1, ..., ws), are uniform i.i.d.

» Another possibility is the use an approximate gradient:

G(x) = VU(R) + V2U(x")(x — ).



We consider a different telescoping sum,

M(f) = /lho(f + Z /"’h/+1
1=0

where

K
1
D41 = X Z[f(zzl(_l,/ﬂ)) _

S = g
' /V/ J41)

r=1

/:Lh/(f))y

£z

From the definitions, it follows that ES; ;11 is an unbiased estimator.

Burn-in
By

By+B
R e

B,+2B
[

Samples
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UBU W-contraction

Theorem: Suppose that U is m-strongly convex and M-V Lipschitz. Let

1 1 mh mh
- M: b= ;7 Cz(h) - E7 C(h)

a —a.

Let P, denote the transition kernel for a step of UBU with stepsize h. For all
v >V8M, h< %’ 1< p< oo, u,uEPp(de), neN,

W,ab (WP, pPy) < (1 — ‘-'Z(h))n/2 W,ab (U, 1) < (1= c(h))" Wh,a6 (v, 1) -

Py, has a unique invariant measure 7 satisfying
that 7, € P,(R??) for all 1 < p < oo.



Analysis (Some...)

» CLT, finite variance/unbiased estimator

Theorem: Suppose various assumptions hold, &

1 m 16 log(4)y 167 Cup +1
>V <. — B>—=21 B log | =>2=—].
VZVEM, M=z osam 5= mm 0 02 VMR

Then UBUBU is a finite variance and unbiased estimator. Moreover, it satisfies a
CLT as N — oo, with asymptotic variance bound

2 C(”h M, Ml:'Y:CN7¢N)
<
5= Kh() 1 h dhO




Analysis (Some...)

» Dimension-indepdent result for production distributions
Theorem: Given similar assumptions, and f is of the form
Fx,v) = g((wh, x), ... (W x)),

where g : R” — R is 1-Lipschitz, and w® . wl) e RY. Moreover, it satisfies a
CLT as N — oo, with asymptotic variance bound

C(m7 M7 Ml:’% r, CN7¢N) Z HW(’)||2

2
<
oE s Kho

1<i<r

> Also show (i) big data limit (ii) extensions to SG/approx grad



Gaussian Target Example

— v2 /2
Gaussian distribution :  7(x) = H o (x
102 Max gradients/ESS vs dimension - Gaussian - k=4 Max gradi ESS vs di ion - ian - k=100
® Max grads/ESS vs dimension - RHMC = Max grad/ESS vs dimension - RHMC
——25.4d" ——125.d"
» *Max grad/ESS vs dimension - UBUBU 3 *Max grads/ESS vs dimension - UBUBU
i 2102
B0 2
o ®
3 >
= 3
. . * = 10‘
. . -
10° ' ) :
10! 102 10° 10* 10° 10! 102 10% 10* 10°

Dimension Dimension



Poisson Football Model

This example is from [Koopman and Lit, 15], a Poisson random effect model.

Grads/ESS - UBUBU - Poisson soccer model,d=89526,n=4-103 G1r5ao%€lESS - Approx UBUBU - Poisson soccer model,d=89526,n=4-103
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Summary and Outlook

» Proposed new Unbiased estimator for sampling.
> Focus was on the use of ULD (Kinetic).

» Provided theorem and tested applications with comparisons.

» Unbiased estimation for constrained domains?

v

Extension to non-convex setting which is natural.

» Other Bayesian applications, based on point above.

More details in:

Unbiased estimation with underdamped Langevin dynamics,
H. Ruzaquat, N. K. C and A. Jasra.

arXiv e-prints, 2022. [arXiv:2206.07202] (Accepted by SISC)

Unbiased kinetic Langevin Monte Carlo,
N. K.C, B. Leimkuhler, D. Paulin and P. Whalley.
arXiv e-prints, 2023.



