

# Large deviation principle for Metropolis-Hastings based Markov chains

Federica Milinanni Algorithms & Computationally Intensive Inference seminars Warwick, May 7, 2024



#### Joint work with Pierre Nyquist, Chalmers & Gothenburg University





# Outline

Large deviation principle for Metropolis-Hastings chains

LDP on non-compact state spaces

Alternative representation of the LDP rate function

Algorithm tuning







Algorithm used to generate a Markov chain of samples  $\{\theta_0, \theta_1, \theta_2, ...\}$  to approximate a target probability measure  $\pi$ 



Algorithm used to generate a Markov chain of samples  $\{\theta_0, \theta_1, \theta_2, ...\}$  to approximate a target probability measure  $\pi$ 

Algorithm

1. generate a proposal  $\Theta^* \sim J(\cdot | \theta_k)$  from a proposal distribution  $J(\cdot | \theta_k)$ 



Algorithm used to generate a Markov chain of samples  $\{\theta_0, \theta_1, \theta_2, ...\}$  to approximate a target probability measure  $\pi$ 

### Algorithm

1. generate a proposal  $\Theta^* \sim J(\cdot | \theta_k)$  from a proposal distribution  $J(\cdot | \theta_k)$ 

2. set

$$\theta_{k+1} = \begin{cases} \theta^* & \text{with probability} \quad \alpha(\theta_k, \theta^*) \\ \theta_k & \text{with probability} \quad 1 - \alpha(\theta_k, \theta^*) \end{cases}$$

with Metropolis-Hasting acceptance probability

$$\alpha(\theta_k, \theta^*) := \min\left\{1, \frac{\pi(\theta^*)J(\theta_k | \theta^*)}{\pi(\theta_k)J(\theta^* | \theta_k)}\right\}$$



- $\{\theta_0, \theta_1, \theta_2, \dots\}$  MH samples
- The empirical measure of the MH Markov chain converges to the target  $\pi$  w.p.1.

$$L^{n}(dx) \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\theta_{i}}(dx) \xrightarrow[n \to \infty]{} \pi(dx), \quad \text{w.p.1.}$$



#### Tools for convergence analysis

- Spectral gap
- Asymptotic variance
- Mixing times
- Poincaré inequalities
- Logarithmic Sobolev inequalities



#### Tools for convergence analysis

- Spectral gap
- Asymptotic variance
- Mixing times
- Poincaré inequalities
- Logarithmic Sobolev inequalities

Our contribution: Large deviation principle for the MH algorithm as a complementary convergence analysis method



### Tools for convergence analysis

- Spectral gap
- Asymptotic variance
- Mixing times
- Poincaré inequalities
- Logarithmic Sobolev inequalities

Our contribution: Large deviation principle for the MH algorithm as a complementary convergence analysis method

Advantage: Study the convergence of the **empirical measure** generated by the MH samples





# Large deviation principle



# Assume $X^n \xrightarrow[n \to \infty]{} x \neq y$ in probability.



# Assume $X^n \xrightarrow[n \to \infty]{} x \neq y$ in probability. $X^1 \xrightarrow[X^2]{} X^3 \xrightarrow[X^n]{} y$



Assume 
$$X^n \xrightarrow[n \to \infty]{} x \neq y$$
 in probability.  
 $X^1 \xrightarrow[X^2]{} X^3 \xrightarrow[X^n]{} y$ 

• 
$$\mathbb{P}(X^n \approx y) \approx 0$$
 (Rare event)



Assume 
$$X^n \xrightarrow[n \to \infty]{} x \neq y$$
 in probability.  
 $X^1 \xrightarrow[X^2]{} X^3 \xrightarrow[X^n]{} y$ 

• 
$$\mathbb{P}(X^n \approx y) \approx 0$$
 (Rare event)

• 
$$\mathbb{P}(X^n \approx y) \xrightarrow[n \to \infty]{} 0$$
 exponentially fast



Assume 
$$X^n \xrightarrow[n \to \infty]{} x \neq y$$
 in probability.  
 $X^1 \xrightarrow[X^2]{} X^3 \xrightarrow[X^n]{} y$ 

- $\mathbb{P}(X^n \approx y) \approx 0$  (Rare event)
- $\mathbb{P}(X^n \approx y) \xrightarrow{n \to \infty} 0$  exponentially fast
- Large deviation theory studies the exponential decay rate

```
\mathbb{P}(X^n \approx y) \approx e^{-n \cdot I(y)}, rate function
```

1



Assume 
$$X^n \xrightarrow[n \to \infty]{} x \neq y$$
 in probability.  
 $X^1 \xrightarrow[X^2]{} X^3 \xrightarrow[X^n]{} y$ 

- $\mathbb{P}(X^n \approx y) \approx 0$  (Rare event)
- $\mathbb{P}(X^n \approx y) \longrightarrow 0$  exponentially fast
- Large deviation theory studies the exponential decay rate

 $\mathbb{P}(X^n \approx y) \approx e^{-n \cdot I(y)}$  rate function

#### Higher rate function $\Rightarrow$ faster convergence



 $\{X^n\}$  satisfies a large deviation principle on  $\mathscr{X}$  with speed *n* and rate function *I* if

- $I: \mathscr{X} \to [0, \infty]$  has compact level sets
- $\forall$  measurable  $A \subset \mathscr{X}$ ,

$$-\inf_{x\in A^{\circ}}I(x) \leq \liminf_{n\to\infty}\frac{1}{n}\log\mathbb{P}(X^{n}\in A^{\circ})$$
$$\leq \limsup_{n\to\infty}\frac{1}{n}\log\mathbb{P}(X^{n}\in\bar{A}) \leq -\inf_{x\in\bar{A}}I(x)$$

Idea:

 $\mathbb{P}(X^n \in \underline{A}) \approx e^{-n \inf_{x \in \underline{A}} I(x)}$ 







• Target probability measure  $\pi \in \mathscr{P}(S)$ , (e.g.  $S \subseteq \mathbb{R}^d$ )



- Target probability measure  $\pi \in \mathscr{P}(S)$ ,
- (e.g.  $S \subseteq \mathbb{R}^d$ )

• Algorithm samples  $\{\theta^n\} \subset S$ 



- Target probability measure  $\pi \in \mathscr{P}(S)$ , (e.g.  $S \subseteq \mathbb{R}^d$ )
- Algorithm samples  $\{\theta^n\} \subset S$
- Empirical measure  $\{L^n\} \subset \mathscr{P}(S)$

$$L^{n}(dx) \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\theta_{i}}(dx)$$



- Target probability measure  $\pi \in \mathscr{P}(S)$ , (e.g.  $S \subseteq \mathbb{R}^d$ )
- Algorithm samples  $\{\theta^n\} \subset S$
- Empirical measure  $\{L^n\} \subset \mathscr{P}(S)$

$$L^{n}(dx) \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\theta_{i}}(dx) \xrightarrow[n \to \infty]{} \pi(dx), \quad \text{w.p.1.}$$



- Target probability measure  $\pi \in \mathscr{P}(S)$ , (e.g.  $S \subseteq \mathbb{R}^d$ )
- Algorithm samples  $\{\theta^n\} \subset S$
- Empirical measure  $\{L^n\} \subset \mathscr{P}(S)$

$$L^{n}(dx) \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\theta_{i}}(dx) \xrightarrow[n \to \infty]{} \pi(dx), \quad \text{w.p.1.}$$
$$\mathbb{P}(L^{n} \approx \pi) \approx 1$$



- Target probability measure  $\pi \in \mathscr{P}(S)$ , (e.g.  $S \subseteq \mathbb{R}^d$ )
- Algorithm samples  $\{\theta^n\} \subset S$
- Empirical measure  $\{L^n\} \subset \mathscr{P}(S)$

$$L^{n}(dx) \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\theta_{i}}(dx) \xrightarrow[n \to \infty]{} \pi(dx), \quad \text{w.p.1.}$$
$$\mathbb{P}(L^{n} \approx \pi) \approx 1$$
$$\mathbb{P}(L^{n} \approx \mu) \approx 0, \quad \mu \neq \pi$$



- Target probability measure  $\pi \in \mathscr{P}(S)$ , (e.g.  $S \subseteq \mathbb{R}^d$ )
- Algorithm samples  $\{\theta^n\} \subset S$
- Empirical measure  $\{L^n\} \subset \mathscr{P}(S)$

$$L^{n}(dx) \coloneqq \frac{1}{n} \sum_{i=0}^{n-1} \delta_{\theta_{i}}(dx) \xrightarrow[n \to \infty]{} \pi(dx), \quad \text{w.p.1.}$$
$$\mathbb{P}(L^{n} \approx \pi) \approx 1$$
$$\mathbb{P}(L^{n} \approx \mu) \approx 0, \quad \mu \neq \pi$$

• { $L^n$ } satisfies a large deviation principle on  $\mathscr{P}(S)$  with rate function I if  $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 



 $\mathcal{P}(S)$ 











 $\mathcal{P}(S)$ 







#### rare event





#### $\mathcal{P}(S)$

#### rare event

 $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 







#### rare event

 $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 

Note:  $I(\pi) = 0$ 







#### rare event

 $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 

 $I(\pi) = 0 \implies \mathbb{P}(L^n \approx \pi) \approx 1$ Note:



 $\mathcal{P}(S)$ 








#### LDP for sampling algorithms





## Large Deviation Principle for Observables

If  $\{L^n\}$  satisfies a LDP with rate function I,

 $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 



Large Deviation Principle for Observables

If  $\{L^n\}$  satisfies a LDP with rate function I,

 $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 

Given an observable  $f \in C(S)$ , by the **contraction principle** we can define a rate function  $\tilde{I}_f$  for which

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)\approx m\right)\approx e^{-n\cdot\tilde{I}_f(m)}$$



Large Deviation Principle for Observables

If  $\{L^n\}$  satisfies a LDP with rate function I,

 $\mathbb{P}(L^n \approx \mu) \approx e^{-n \cdot I(\mu)}$ 

Given an observable  $f \in C(S)$ , by the **contraction principle** we can define a rate function  $\tilde{I}_f$  for which

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=0}^{n-1}f(X_i)\approx m\right)\approx e^{-n\cdot\tilde{I}_f(m)}$$

More formally,

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} -\frac{1}{n} \log \mathbb{P}\left(\frac{1}{n} \sum_{i=0}^{n-1} f(X_i) \in (m-\varepsilon, m+\varepsilon)\right) = \tilde{I}_f(m)$$

Federica Milinanni



There has been growing interest in exploring large deviations as a tool to analyze the speed of convergence of sampling algorithms:

#### • Parallel Tempering

[Dupuis P., Liu Y., Plattner N., and Doll J. D., 2012] [Doll J., Dupuis P. and Nyquist P., 2016] [Dupuis P. and Wu G.-J., 2022]

#### Irreversible Langevine Samplers

[Rey-Bellet L., Spiliopoulos K., 2015, 2016]

#### • Zig-Zag Sampler

[Bierkens J., Nyquist P., Schlottke M. C., 2021]



#### A result of LDP for the Metropolis-Hastings algorithm is already available

[Bierkens J., 2016]



#### A result of LDP for the Metropolis-Hastings algorithm is already available

[Bierkens J., 2016]

#### It considers

- a non-reversible version of the algorithm
- a **countable** space *S*



## A result of LDP for the Metropolis-Hastings algorithm is already available

[Bierkens J., 2016]

It considers

- a non-reversible version of the algorithm
- a **countable** space *S*

We stated a large deviation principle for the Metropolis-Hastings algorithm on  $S \subseteq \mathbb{R}^d$ 







# Assumptions

- (A.1) Target probability measure  $\pi \ll$  Lebesgue measure with continuous density
- (A.2) Proposal distribution  $J(\cdot | x) \ll$  Lebesgue measure with continuous and bounded density
- (A.3) There exists a Lyapunov function  $U: S \rightarrow [0, \infty)$  satisfying certain properties...



# Assumptions

(A.1) Target probability measure  $\pi \ll$  Lebesgue measure with continuous density

- (A.2) Proposal distribution  $J(\cdot | x) \ll$  Lebesgue measure with continuous and bounded density
- (A.3) There exists a Lyapunov function  $U: S \rightarrow [0, \infty)$  satisfying certain properties...

Metropolis-Hastings transition kernel

$$K(x, dy) = \min\left\{1, \frac{\pi(y)J(x|y)}{\pi(x)J(y|x)}\right\}J(y|x)dy + r(x)\delta_x(dy)$$

where  $r(x) = 1 - \int_{S} \min \left\{ 1, \frac{\pi(y)J(x|y)}{\pi(x)J(y|x)} \right\} J(y|x) dy.$ 

Federica Milinanni



# Marginal distributions

Given  $\gamma \in \mathscr{P}(S \times S)$ ,  $[\gamma]_1, [\gamma]_2 \in \mathscr{P}(S)$  denote the first and second marginal of  $\gamma$ :

 $[\gamma]_1(A) = \gamma(A, S) \qquad [\gamma]_2(A) = \gamma(S, A)$ 

with  $A \in \mathscr{B}(S)$ 



# Marginal distributions

Given  $\gamma \in \mathscr{P}(S \times S)$ ,  $[\gamma]_1, [\gamma]_2 \in \mathscr{P}(S)$  denote the first and second marginal of  $\gamma$ :

 $[\gamma]_1(A) = \gamma(A, S) \qquad [\gamma]_2(A) = \gamma(S, A)$ 

with  $A \in \mathscr{B}(S)$ 

Relative Entropy (= Kullback-Leibler Divergence)

 $\mu,\nu\in\mathscr{P}(S),$ 

$$R(\mu \parallel \nu) \coloneqq \begin{cases} \int_{S} \log \frac{d\mu}{d\nu} d\mu, & \text{if } \mu \ll \nu \\ +\infty, & \text{otherwise.} \end{cases}$$



#### Theorem (M., Nyquist 2024a)

The sequence of MH empirical measures  $\{L^n\}$  satisfies a large deviation principle with speed *n* and rate function  $I : \mathscr{P}(S) \to [0, +\infty]$ 

$$\mu \mapsto I(\mu) = \inf_{\substack{\gamma \in \mathscr{P}(S \times S) \\ [\gamma]_1 = [\gamma]_2 = \mu}} R(\gamma \parallel \mu \otimes K)$$



#### Theorem (M., Nyquist 2024a)

The sequence of MH empirical measures  $\{L^n\}$  satisfies a large deviation principle with speed *n* and rate function  $I : \mathscr{P}(S) \to [0, +\infty]$ 

$$\mu \mapsto I(\mu) = \inf_{\substack{\gamma \in \mathscr{P}(S \times S) \\ [\gamma]_1 = [\gamma]_2 = \mu}} R(\gamma \parallel \mu \otimes K)$$

$$= \inf_{\substack{\gamma \in \mathcal{P}(S \times S) \\ [\gamma]_1 = [\gamma]_2 = \mu}} R(\gamma(dx, dy) \parallel \mu(dx)K(x, dy))$$



#### Theorem (M., Nyquist 2024a)

The sequence of MH empirical measures  $\{L^n\}$  satisfies a large deviation principle with speed *n* and rate function  $I : \mathscr{P}(S) \to [0, +\infty]$ 

$$\mu \mapsto I(\mu) = \inf_{\substack{\gamma \in \mathscr{P}(S \times S) \\ [\gamma]_1 = [\gamma]_2 = \mu}} R(\gamma \parallel \mu \otimes K)$$

$$= \inf_{\substack{\gamma \in \mathscr{P}(S \times S) \\ [\gamma]_1 = [\gamma]_2 = \mu}} R(\gamma(dx, dy) \parallel \mu(dx)K(x, dy))$$

$$= \inf_{\substack{q(x,dy)\\ \mu \text{ invariant for } q}} R(\mu(dx)q(x,dy) \parallel \mu(dx)K(x,dy)).$$







To guarantee the LDP for MH on a non-compact state space we assume the existence of a Lyapunov function  $U: S \rightarrow [0, \infty)$  with the following properties:



To guarantee the LDP for MH on a non-compact state space we assume the existence of a Lyapunov function  $U: S \rightarrow [0, \infty)$  with the following properties: let

$$F_U(x) = U(x) - \log \int_S e^{U(y)} K(x, dy);$$

(a)  $\inf_{x\in S} F_U(x) > -\infty$ ,

(b)  $F_U(x)$  has relatively compact sublevel sets,

(c) for every compact set  $K \subset S$  there exists  $C_K < \infty$  such that

 $\sup_{x\in K}U(x)\leq C_K.$ 



When S is compact,  $U \equiv 0$  satisfies (a)-(c).

When S is non-compact, verifying the existence of U is not immediate.

We study the existence of U in some instances of

- Independent Metropolis-Hastings (IMH)
- Metropolis-adjusted Langevin algorithm (MALA)
- Random Walk Metropolis (RWM)



#### Independent Metropolis-Hastings

- target density  $\pi(x) \propto e^{-\eta |x|^{\alpha}}$
- independent proposal  $f(y) \propto e^{-\gamma |y|^{\beta}}$

A Lyapunov function  $U: S \rightarrow [0, \infty)$  satisfying properties (a)-(c) exists if and only if

- 1.  $\alpha = \beta$  and  $\eta > \gamma$ ,
- 2. or  $\alpha > \beta$ .



#### Independent Metropolis-Hastings

- target density  $\pi(x) \propto e^{-\eta |x|^{\alpha}}$
- independent proposal  $f(y) \propto e^{-\gamma |y|^{\beta}}$
- A Lyapunov function  $U: S \rightarrow [0, \infty)$  satisfying properties (a)-(c) exists if and only if
  - 1.  $\alpha = \beta$  and  $\eta > \gamma$ ,
  - 2. or  $\alpha > \beta$ .

#### Remark

If 1. or 2. is satisfied  $\Rightarrow$  the MH Markov chain is **uniformly ergodic** If neither 1. or 2. is satisfied  $\Rightarrow$  the MH Markov chain is **not** even **geometrically ergodic** 

[Mengersen K. L., Tweedie R. L., 1996]

#### Federica Milinanni



# Theorem (M., Nyquist 24b)

Consider the target density  $\pi(x) \propto e^{-\eta |x|^{\alpha}}$  and the independent proposal density  $f(y) \propto e^{-\gamma |y|^{\beta}}$  in the **Independent Metropolis-Hastings** algorithm. Suppose that either of the following holds:

i) 
$$\alpha = \beta$$
 and  $\eta > \gamma$ ,  
ii)  $\alpha > \beta$ .

Then, the empirical measures of the associated Metropolis-Hastings chain satisfies an LDP with speed n and rate function I.



Metropolis-adjusted Langevin algorithm

- target density  $\pi(x) \propto e^{-\gamma |x|^{\beta}}$
- MALA proposal density  $J(y|x) \propto \exp\left\{-\frac{1}{2\varepsilon}\left|y-x+\frac{\varepsilon\gamma\beta}{2}|x|^{\beta-2}x\right|^2\right\}$

A Lyapunov function  $U: S \rightarrow [0, \infty)$  satisfying properties (a)-(c) exists if and only if  $\beta = 2$  and  $\epsilon \gamma < 2$ , or  $1 < \beta < 2$ .



Metropolis-adjusted Langevin algorithm

- target density  $\pi(x) \propto e^{-\gamma |x|^{\beta}}$
- MALA proposal density  $J(y|x) \propto \exp\left\{-\frac{1}{2\varepsilon}\left|y-x+\frac{\varepsilon\gamma\beta}{2}|x|^{\beta-2}x\right|^2\right\}$

A Lyapunov function  $U: S \rightarrow [0, \infty)$  satisfying properties (a)-(c) exists if and only if  $\beta = 2$  and  $\epsilon \gamma < 2$ , or  $1 < \beta < 2$ .

# Remark

 $\ln d = 1,$ 

- if  $\beta = 2$  and  $\epsilon \gamma < 2$ , or  $1 < \beta < 2 \Rightarrow$  the MALA chain is **geometrically ergodic**
- if  $0 < \beta < 1, \beta > 2$ ,

or  $\beta = 2$  and  $\epsilon \gamma \ge 2 \Rightarrow$  the MALA chain is **not geometrically ergodic** 

• if  $\beta = 1 \Rightarrow$  the MALA chain is geometrically ergodic on the positive real line [Roberts G. O., Tweedie R. L., 1996] Federica Milinanni KTH



# Theorem (M., Nyquist 24b)

Consider a target density  $\pi(x) \propto e^{-\gamma |x|^{\beta}}$  and let J(y|x) be the corresponding MALA proposal density with discretization step  $\varepsilon$ ,

$$J(y|x) \propto \exp\left\{-\frac{1}{2\varepsilon}\left|y-x+\frac{\varepsilon\gamma\beta}{2}|x|^{\beta-2}x\right|^2\right\}.$$

Suppose that either of the following holds:

- i)  $\beta = 2$  and  $\epsilon \gamma < 2$ ,
- ii)  $1 < \beta < 2$ .

Then, the empirical measures of the associated Metropolis-Hastings chain satisfy an LDP with speed n and rate function I.



#### Random Walk Metropolis

• random walk proposal  $J(y|x) = \hat{J}(y-x) = \hat{J}(x-y)$ 

There exists no function  $U: S \rightarrow [0, \infty)$  that satisfies the properties (a)-(c) on the Lyapunov function.



#### Random Walk Metropolis

• random walk proposal  $J(y|x) = \hat{J}(y-x) = \hat{J}(x-y)$ 

There exists no function  $U: S \rightarrow [0, \infty)$  that satisfies the properties (a)-(c) on the Lyapunov function.

#### Remark

The RWM Markov chain is **not uniformly ergodic** for any target  $\pi$ . However, with additional assumptions on the tail decays, the RWM Markov chain is **gemetrically ergodic**.

[Mengersen K. L., Tweedie R. L., 1996]

| LDF | on no | on-compact state spaces                                    |            |            |
|-----|-------|------------------------------------------------------------|------------|------------|
|     |       |                                                            | Assumption | geometric  |
|     |       |                                                            | (A.3)      | ergodicity |
|     | IMH   | $\alpha = \beta$ and $\eta > \gamma$ , or $\alpha > \beta$ | ✓          | 1          |
|     |       | otherwise                                                  | ×          | ×          |
|     | MALA  | $\beta = 2$ and $\epsilon \gamma < 2$ , or $1 < \beta < 2$ | 1          | 1          |
|     |       | $\beta = 1$                                                | ×          | 1          |
|     |       | otherwise                                                  | ×          | ×          |
|     | RWM   | tail decays as in [MT96]                                   | ×          | 1          |
|     |       | otherwise                                                  | ×          | ×          |

VETENSKAP OCH KONST

|   | on no | on-compact state spaces                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---|-------|------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       |                                                            | Assumption | geometric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       |                                                            | (A.3)      | ergodicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - | IMH   | $\alpha = \beta$ and $\eta > \gamma$ , or $\alpha > \beta$ | ✓          | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |       | otherwise                                                  | ×          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | MALA  | $\beta = 2$ and $\epsilon \gamma < 2$ , or $1 < \beta < 2$ | 1          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |       | eta=1                                                      | ×          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   |       | otherwise                                                  | ×          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|   | RWM   | tail decays as in [MT96]                                   | ×          | <ul> <li>Image: A second s</li></ul> |
|   |       | otherwise                                                  | ×          | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

We hypothesise that Assumption (A.3) is too strict and we pose the following

#### Open problem

Assume that the MH chain  $\{X_i\}$  is **geometrically ergodic**. Does the corresponding empirical measure  $\{L^n\}$  satisfy an LDP?







# Rate function decomposition

• By the Lebesgue decomposition theorem, for any  $\mu \in \mathscr{P}(S)$ ,

 $\mu = (1-p) \cdot \mu_{\lambda} + p \cdot \mu_{s},$ 

where  $p \in [0, 1]$ ,  $\mu_{\lambda}, \mu_{s} \in \mathscr{P}(S)$ , with  $\mu_{\lambda} \ll \lambda$  and  $\mu_{s} \perp \lambda$ .



# Rate function decomposition

• By the Lebesgue decomposition theorem, for any  $\mu \in \mathscr{P}(S)$ ,

 $\mu = (1-p) \cdot \boldsymbol{\mu}_{\lambda} + p \cdot \boldsymbol{\mu}_{s},$ 

where  $p \in [0, 1]$ ,  $\mu_{\lambda}, \mu_{s} \in \mathscr{P}(S)$ , with  $\mu_{\lambda} \ll \lambda$  and  $\mu_{s} \perp \lambda$ .

• The rate function satisfies

 $I(\mu) = (1-p) \cdot I(\mu_{\lambda}) + p \cdot I(\mu_{s})$ 



# Rate function decomposition

• By the Lebesgue decomposition theorem, for any  $\mu \in \mathscr{P}(S)$ ,

 $\mu = (1-p) \cdot \boldsymbol{\mu}_{\lambda} + p \cdot \boldsymbol{\mu}_{s},$ 

where  $p \in [0, 1]$ ,  $\mu_{\lambda}, \mu_{s} \in \mathscr{P}(S)$ , with  $\mu_{\lambda} \ll \lambda$  and  $\mu_{s} \perp \lambda$ .

• The rate function satisfies

$$I(\mu) = (1 - p) \cdot I(\mu_{\lambda}) + p \cdot I(\mu_{s})$$

• The rate function  $I(\mu_s)$  is

$$I(\mu_s) = -\int_S \log r(x) \mu_s(dx)$$



#### [Work in progress]

If  $\mu_{\lambda} \ll \lambda$ , the rate function *I* admits an **alternative representation** in the more classical Donsker Varadhan flavour:

$$I(\mu_{\lambda}) = -\inf_{u \in \mathcal{U}} \int_{S} \log\left(\frac{Ku}{u}\right)(x) \mu_{\lambda}(dx),$$

where  $\mathscr{U} = \{u \in C(S), u > 0\}$ , and

$$Ku(x) = \int_{S} u(y)K(x, dy).$$



# Rate function lower and upper bounds

This alternative representation of the LDP rate function allows us to find the following bounds.

•  $\mu \in \mathcal{P}(S)$ ,

$$I(\mu) \leq -\int_{S} \log r(x) \mu(dx) \leq +\infty$$


Alternative representation of the LDP rate function

# Rate function lower and upper bounds

This alternative representation of the LDP rate function allows us to find the following bounds.

•  $\mu \in \mathcal{P}(S)$ ,

$$I(\mu) \le -\int_{S} \log r(x)\mu(dx) \le +\infty$$

•  $\mu_{\lambda} \in \mathscr{P}(S), \ \mu_{\lambda} \ll \lambda, \ \theta = \frac{d\mu_{\lambda}}{d\lambda}$ 

$$V(\mu_{\lambda}) \ge -\log \iint \sqrt{\theta(x)\theta(y)}K(x,dy)\pi(dx)$$



The

Alternative representation of the LDP rate function

### Variational formula for the lower bound

$$-\log \iint e^{-k} d(\pi \otimes K) = \inf_{\gamma \in \mathscr{P}(S \times S)} R(\gamma \parallel \pi \otimes K) - \iint k d\gamma$$
  
inf is achieved by  $\gamma_0 \in \mathscr{P}(S \times S)$  that satisfies  
$$\frac{d\gamma_0}{d(\pi \otimes K)}(x, y) = \frac{e^{-k(x, y)}}{\iint e^{-k(x, y)}(\pi \otimes K)(dx, dy)}$$



Alternative representation of the LDP rate function

### Variational formula for the lower bound

$$-\log \iint e^{-k} d(\pi \otimes K) = \inf_{\gamma \in \mathscr{P}(S \times S)} R(\gamma \parallel \pi \otimes K) - \iint k d\gamma$$
  
The inf is achieved by  $\gamma_0 \in \mathscr{P}(S \times S)$  that satisfies

$$\frac{d\gamma_0}{d(\pi \otimes K)}(x, y) = \frac{e^{-\kappa(x, y)}}{\iint e^{-k(x, y)}(\pi \otimes K)(dx, dy)}$$

Let  $\theta(x) = \frac{d\mu}{d\pi}$  and  $k(x, y) = -\log \sqrt{\theta(x)\theta(y)}$ , we obtain (after few intermediate steps)

$$-\log \iint \sqrt{\theta(x)\theta(y)}d(\pi\otimes K) \leq \inf_{\substack{\gamma\in \mathcal{P}(S\times S)\\ [\gamma]_1=[\gamma]_2=\mu}} R(\gamma\parallel\pi\otimes K) - \int \log\theta d\mu = I(\mu)$$





# Algorithm tuning



 $J(\cdot | x) = J(\cdot | x; \mathbf{p})$ 



 $J(\cdot | x) = J(\cdot | x; p)$ 

Thus, the MH transition kernel depends on parameters p

K(x, dy) = K(x, dy; p).



 $J(\cdot | x) = J(\cdot | x; p)$ 

Thus, the MH transition kernel depends on parameters p

K(x, dy) = K(x, dy; p).

Therefore, the rate function depends on the parameters p

 $I(\mu) = \inf R(\gamma \parallel \mu(dx) \otimes K(x, dy; p)) = I(\mu; p).$ 



 $J(\cdot | x) = J(\cdot | x; p)$ 

Thus, the MH transition kernel depends on parameters p

K(x, dy) = K(x, dy; p).

Therefore, the rate function depends on the parameters p

 $I(\mu) = \inf R(\gamma \parallel \mu(dx) \otimes K(x, dy; p)) = I(\mu; p).$ 

Higher rate function  $\Rightarrow$  faster convergence



 $J(\cdot | x) = J(\cdot | x; p)$ 

Thus, the MH transition kernel depends on parameters p

K(x, dy) = K(x, dy; p).

Therefore, the rate function depends on the parameters p

 $I(\mu) = \inf R(\gamma \parallel \mu(dx) \otimes K(x, dy; p)) = I(\mu; p).$ 

Higher rate function  $\Rightarrow$  faster convergence

Choose p so that  $I(\mu; p)$  is maximized



- Target  $\pi \sim \mathcal{N}(0,1)$
- Independent proposal  $f \sim \mathcal{N}(m, s^2)$



- Target  $\pi \sim \mathcal{N}(0,1)$
- Independent proposal  $f \sim \mathcal{N}(m, s^2)$
- Rate function lower bound

$$I(\boldsymbol{\mu}) \ge -\log\left(1 - \frac{1}{2} \iint \min\left\{\frac{f(\boldsymbol{x})}{\pi(\boldsymbol{x})}, \frac{f(\boldsymbol{y})}{\pi(\boldsymbol{y})}\right\} \left(\sqrt{\boldsymbol{\mu}(\boldsymbol{x})\pi(\boldsymbol{y})} - \sqrt{\boldsymbol{\mu}(\boldsymbol{y})\pi(\boldsymbol{x})}\right)^2 d\boldsymbol{x} d\boldsymbol{y}\right)$$



- Target  $\pi \sim \mathcal{N}(0,1)$
- Independent proposal  $f \sim \mathcal{N}(m, s^2)$
- Rate function lower bound

$$I(\boldsymbol{\mu}) \geq -\log\left(1 - \frac{1}{2}\iint \min\left\{\frac{f(\boldsymbol{x})}{\pi(\boldsymbol{x})}, \frac{f(\boldsymbol{y})}{\pi(\boldsymbol{y})}\right\}\left(\sqrt{\boldsymbol{\mu}(\boldsymbol{x})\pi(\boldsymbol{y})} - \sqrt{\boldsymbol{\mu}(\boldsymbol{y})\pi(\boldsymbol{x})}\right)^2 d\boldsymbol{x}d\boldsymbol{y}\right)$$

• Maximized when (m, s) = (0, 1)



- Target  $\pi \sim \mathcal{N}(0,1)$
- Independent proposal  $f \sim \mathcal{N}(m, s^2)$
- Rate function lower bound

$$I(\mu) \ge -\log\left(1 - \frac{1}{2}\iint \min\left\{\frac{f(x)}{\pi(x)}, \frac{f(y)}{\pi(y)}\right\}\left(\sqrt{\mu(x)\pi(y)} - \sqrt{\mu(y)\pi(x)}\right)^2 dxdy\right)$$

• Maximized when (m, s) = (0, 1)



Federica Milinanni





# **Future directions**



## **Future directions**

- LDP assumptions:
  - Generalise assumptions to the LDP to account for methods such as ABC-MCMC
  - Open problem: geometric ergodicity ⇒ LDP?
- Rate function:
  - Find a more explicit formula for the rate function I
  - Design an algorithm to approximate the rate function or find the argmax
- Use the LDP:
  - Compare MCMC algorithms
  - Compare LDP with other convergence analysis tools
  - Design algorithms to precalibrate MH-based MCMC methods



### References

- Milinanni, F., & Nyquist, P. (2024). A large deviation principle for the empirical measures of Metropolis–Hastings chains. Stochastic Processes and their Applications, 170, 104293.
- Milinanni, F., & Nyquist, P. (2024). On the large deviation principle for Metropolis-Hastings Markov Chains: the Lyapunov function condition and examples. arXiv preprint arXiv:2403.08691.

