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What’s the problem?

The reproduction number R(t) represents the average number of
secondary infections caused by each infected individual.

Problems:

Epidemic data may be noisy/incomplete

Trees (used to represent the genetic data) are not directly
informative about epidemiological processes like R(t).

Aim:
The aim is to use epidemic data and genetic data in a joint model
to estimate R(t).
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Modelling the epidemic (1/2)

0 1 2 . . . n . . .

βt 2βt (n− 1)βt nβt

(n+ 1)γnγ3γ2γγ

In a birth-death model of disease outbreak, the reproduction
number is

R(t) =
βt
γ
.
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Modelling the epidemic (2/2)

Let Xn denote the number of cases on day n.
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Bn | Xn−1 = xn−1, βn ∼ Poisson(βnxn−1)

Dn | Xn−1 = xn−1, γ ∼ Poisson(γxn−1)
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Modelling the observed epidemic

Let Yn denote the observed prevalence on day n.

Yn | Xn = xn ∼ Binomial(xn, ρ)

where ρ is the reporting probability.
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Modelling the phylogeny

8 6 4 2 0

Days from present, n 9 8 7 6 5 4 3 2 1 0
# lineages, An 2 4 4 8 10 10 10 8 6 1

# coalescences, Cn 1 2 0 4 2 2 1 1 0 0

We want to model the number of coalescences on day n as a
binomial distribution with

(An

2

)
trials and success probability pn.
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Backward-in-time

In a Kingman’s coalescent model1, two lineages coalesce
exponentially with rate 1/Ne(t) where Ne(t) denotes the effective
population size at time t. Overall coalescence rate is

λ(t) =

(
At

2

)
1

Ne(t)
.

1Kingman (1982), “The coalescent”, Stochastic Processes and their
Applications 13(3):235-248
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Forward-in-time

Let f (t) denote the incidence (new cases). The transmission rate
is2

λ(t) = f (t)

(At

2

)(Xt

2

) ≈
(
At

2

)
2f (t)

X 2
t

In a birth-death model, f (t) = βtXt , so the transmission rate is

λ(t) ≈
(
At

2

)
2βt
Xt

.

2Volz et al. (2009), “Phylodynamics of infectious disease epidemics”,
Genetics 13(4):1421-1430
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Backward = Forward

Under some assumptions, coalescence events correspond to
transmission events, i.e. backward-in-time mergers correspond to
forward-in-time infections. Setting the coalescence rate equal to
the transmission rate gives

1

Ne(t)
=

2βt
Xt

.

The probability of two lineages merging on day n is

pn = 1− exp

(
−2βn

Xn

)
.
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Prior for βt

β1 ∼ Exp(1/2γ)

For n = 2, . . . ,N, βn | βn−1 ∼ Normal(βn−1, σ
2), truncated at

0
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State space model

Suppose the epidemic has been ongoing for N days.

X0 X1 X2
. . . XN

T1 T2 TN

β1 β2 . . . βN

Y1 Y2 YN

σ

ρ

γ

12 / 41



Introduction Modelling Particle MCMC Simulation results Tree uncertainty Conclusion

Bayesian inference

Let θ = (σ, p,X0) denote model parameters and β = β1:N ,
X = X1:N , T = T1:N , Y = Y1:N .

p(β, θ | γ,Y ,T )

∝ p(θ)p(β, γ,Y ,T | θ)

= p(θ)

∫
p(β, γ,X ,Y ,T | θ) dX

= p(θ)︸︷︷︸
model

parameters

p(β | θ)︸ ︷︷ ︸
birth
rates

∫
p(X | β, γ, θ)︸ ︷︷ ︸

latent
epidemic

p(Y | X , θ)︸ ︷︷ ︸
observed
epidemic

p(T | β,X )︸ ︷︷ ︸
phylogeny

dX

Problem: Intractable likelihood :(
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Intractable likelihoods

Possible solutions:
1 Data augmentation

Dimension increases with the length of the time series
Time series variables are highly correlated

2 Pseudo-marginal MCMC

Inefficient

3 Particle marginal Metropolis–Hastings
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Particle marginal Metropolis–Hastings algorithm (PMMH)3

Basically Metropolis–Hastings, with a few key differences:

Use an unbiased estimator of the likelihood instead of the true
likelihood

Idea: Get this estimator by sampling K “particles” (i.e. K
trajectories for β and X ) and averaging over them

Use sequential Monte Carlo (SMC) to generate the sampled
trajectories

3Andrieu et al. (2010), “Particle Markov chain Monte Carlo methods”, J R
Stat Soc Series B Stat Methodol, 72(3):269-342
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SMC algorithm

Let N denote the length of the epidemic and K denote the number
of particles. For n = 1, . . . ,N:

1 Sample: Draw (βk
n ,X

k
n ) ∼ qθ(· | βk

1:n−1,X
k
1:n−1) for

k = 1, . . . ,K .

2 Importance: Weight the pairs (βk
n ,X

k
n ) as

wk
n =

pθ(β
k
1:n,X

k
1:n,T1:n,Y1:n)

pθ(β
k
1:n−1,X

k
1:n−1,T1:n−1,Y1:n−1)qθ(βk

n ,X
k
n | βk

1:n−1,X
k
1:n−1)

.

Normalise W k
n = wk

n /
∑K

j=1 w
j
n.

3 Resample: Resample ancestors A1:K
n according to the

normalised weights and keep pairs (β
A1:K
n

n ,X
A1:K
n

n ).
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Resampling causes problems...

Pros of resampling:

Corrects proposals as you’re building them

Don’t need as many particles to get a good estimate of the
(log-)likelihood

Cons of resampling:

Resampling introduces variance

This causes path degeneracy
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Resample less: Adaptive resampling

Instead of resampling at every step, only resample if your weights
degenerate.

ESS(W 1:K ) =
1∑K

k=1(Wk)2
.

If all particles have equal weight, then ESS= K . If one particle has
all the weight, then ESS= 1. Conventionally, the resampling
threshold is set to K/2.
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Resample better: Systematic resampling

We use systematic resampling instead of multinomial resampling.

Murray (2012), “GPU acceleration of the particle filter: the Metropolis
resampler”, arXiv:1202.6163
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What does path degeneracy look like?
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Why does path degeneracy happen?

Svensson et al. (2015), “Nonlinear State Space Smoothing Using the
Conditional Particle Filter”, IFAC-PapersOnLine, 48(28):975-980
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Backward simulation4

1 Run the SMC algorithm forward-in-time, storing all particles
and weights in each generation, even those culled by
resampling.

2 Set jN = k with probability wk
N/

∑
l w

l
N .

3 For n = N − 1, . . . , 1, compute the smoothing weights

wk
n|N =

wk
n p(β

jn+1

n+1, x
jn+1

n+1 | βk
n , x

k
n )∑

l w
l
np(β

jn+1

n+1, x
jn+1

n+1 | βl
n, x

l
n)
.

4 Set jn = k with probability wk
n|N .

4Godshill et al. (2012), “Monte Carlo Smoothing for Nonlinear Time
Series”, Journal of the American Statistical Association, 99(465):156-168

22 / 41



Introduction Modelling Particle MCMC Simulation results Tree uncertainty Conclusion

Phew!
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How many particles do you need?

Too few particles results in ‘sticky’ chains. Too many is inefficient.
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Choosing the optimal number of particles

We use the suggested guidance from Pitt et al. (2012)5.

1 Run a short PMMH with a large number of particles to
determine an approximate value for the posterior mean θ̄.

2 Run the SMC algorithm for several independent runs R for a
fixed value of particles Ks and obtain an estimator of the
likelihood p̂iKs

(y | θ̄), i = 1, . . . ,R, for each.

3 Record the variance of the log-likelihood, σ̂2(θ̄,Ks).

4 Choose the optimal number of particles

Kopt = Ks ×
σ̂2(θ̄,Ks)

0.922
.

5Pitt et al. (2012), “On some properties of Markov chain Monte Carlo
simulation methods based on the particle filter”, Journal of Econometrics,
171(2):134-151
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Simulation: Constant R(t)

Simulated a 50-day epidemic with βt = 0.2 ∀t
Tree generated from a random sample of 5% of past lineages -
31 tips

Similarly, suppose a random sample of 5% of the epidemic
observed

Fixed and known death rate γ = 0.1

10,000 iterations

250 particles
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Data
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R(t) inference plot
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R(t) inference metrics

Data RMSE Coverage Mean CI width Run time (mins)

Epi only 0.16 100% 1.8 11.2
Gen only 0.68 100% 5.1 6.3
Epi & gen 0.15 100% 1.4 11.1
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Prevalence inference plot
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Reporting probability
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Tree uncertainty

Tim’s idea: Generate trees and parameters given the sequence
alignment data, then weight these according to the particle
filter.

Alicia’s idea: Generate trees given the sequence alignment,
run the PMMH algorithm on a sample of trees, then average
the results.
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Tim’s idea (1/3)

Generate trees and parameters given the sequence alignment data,
then weight these according to the particle filter.

p(T , θ | A,Y ) =
p(A | T )p(Y | θ,T )p(T | θ)p(θ)

p(A,Y )

∝ p(A | T )p(T | θ)p(θ)
p(A)︸ ︷︷ ︸

BEAST2

· p̂(Y ,T | θ)
p(T | θ)︸ ︷︷ ︸
weights
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Tim’s idea (2/3)
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Tim’s idea (3/3)

Have to assume more parameters are known (i.e. ρ)

Small number of trees carry the weight

May need to run BEAST2 for more iterations and collect more
samples
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Alicia’s idea (1/4)

Generate trees given the sequence alignment, run the PMMH
algorithm on a sample of trees, then average the results.

p(β, θ | A,Y ) =

∫ ∫
p(β, θ | Y ,A,X ,T )p(X ,T | Y ,A) dX dT

=

∫ ∫
p(β, θ | X ,T )p(X | Y )p(T | A) dX dT

∝
∫

p(β, θ | Y ,T )p(T | A) dT

≈ 1

M

M∑
i=1

p(β, θ | Y ,Ti ), where Ti ∼ p(· | A).
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Alicia’s idea (2/4)
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Alicia’s idea (3/4)
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Alicia’s idea (4/4)

Computationally intensive

Assumes that the phylogeny T is independent of the observed
prevalence Y

Model misspecification - generating birth-death trees and then
evaluating them as coalescent trees
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Conclusion and limitations

Conclusions:

Combining epidemic and genetic data seems to improve
inference of R(t) trajectory

Also improves inference of other epidemiological parameters of
interest, i.e. the reporting probability

Limitations:

Simple epidemic model

Computationally intensive

Can incorporate phylogenetic uncertainty, but crudely
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I have a pre-print!

Alicia Gill, Jere Koskela, Xavier Didelot, Richard G. Everitt (2023),
“Bayesian Inference of Reproduction Number from Epidemiological
and Genetic Data Using Particle MCMC”, arXiv:2311.09838

https://arxiv.org/abs/2311.09838
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