Bayesian Inference of Reproduction Number from
Epidemic and Genetic Data

Alicia Gill
joint work with Xavier Didelot, Richard Everitt, Jere Koskela
and Tim Vaughan

Algorithms seminar
10th May 2024

1/41



Introduction
e0

What's the problem?

The reproduction number R(t) represents the average number of
secondary infections caused by each infected individual.

Problems:
e Epidemic data may be noisy/incomplete

@ Trees (used to represent the genetic data) are not directly
informative about epidemiological processes like R(t).

Aim:

The aim is to use epidemic data and genetic data in a joint model
to estimate R(t).
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Modelling the epidemic (1/2)

OO G0 >0

In a birth-death model of disease outbreak, the reproduction
number is

Be.

v

R(t) =
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Modelling the epidemic (2/2)

Let X, denote the number of cases on day n.

Number of cases
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B ‘ Xn—1 = Xp—1, Bn ~ Poisson(ﬂ,,x,,_l)

Dy | Xp—1 = Xn—1,7 ~ Poisson(yx,_1)
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Modelling the observed epidemic

Let Y, denote the observed prevalence on day n.
Yn | Xn = xn ~ Binomial(x,, p)

where p is the reporting probability.
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Modelling the phylogeny

Days from present, n |9 8 7 6 5 4 3 2 1 0
# lineages, A, |2 4 4 8 10 10 10 8 6 1
# coalescences, C, |1 2 0 4 2 2 1 1 0 O

We want to model the number of coalescences on day n as a

binomial distribution with (%) trials and success probability pj.
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Backward-in-time

In a Kingman's coalescent model?, two lineages coalesce
exponentially with rate 1/N(t) where N¢(t) denotes the effective
population size at time t. Overall coalescence rate is

) = @f)Nl(t)

IKingman (1982), “The coalescent”, Stochastic Processes and their
Applications 13(3):235-248
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Forward-in-time

Let f(t) denote the incidence (new cases). The transmission rate
(2
is

(%) . (A) 2f (1)

Xy 2

(7) \2/ X

In a birth-death model, f(t) = 5;:X;, so the transmission rate is

A\ 20
A(t) =~ <2>)€

At) = £(¢)

2Volz et al. (2009), “Phylodynamics of infectious disease epidemics”,

Genetics 13(4):1421-1430
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Backward = Forward

Under some assumptions, coalescence events correspond to
transmission events, i.e. backward-in-time mergers correspond to
forward-in-time infections. Setting the coalescence rate equal to

the transmission rate gives

1 2p
Ne(t) — X;

The probability of two lineages merging on day n is

pn=1—exp —26"
n Xn .
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Prior for (;

o 1~ Exp(1/27)
@ Forn=2,...,N, B, | Bnr_1 ~ Normal(B,_1,0?), truncated at
0
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State space model

Suppose the epidemic has been ongoing for N days.

&
n 7 E
O o

(=)
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Bayesian inference

Let 6 = (o, p, Xo) denote model parameters and 5 = f1.p,
X :XlzN: T = Tl:N- Y = Yl:N-

p(B,01v,Y,T)
o p(0)p(B,7, Y, T|0)

— p(0) / p(B,7, X, Y, T | 6) dX

— p(0) p(me)/p(xw,%e)p(vrx,e)p(rw,X)dx
~ N——

model birth latent, observed phylogeny
parameters  rates epidemic epidemic

Problem: Intractable likelihood :(
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Intractable likelihoods

Possible solutions:
© Data augmentation

e Dimension increases with the length of the time series
e Time series variables are highly correlated

@ Pseudo-marginal MCMC

o Inefficient

© Particle marginal Metropolis—Hastings
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Particle marginal Metropolis—Hastings algorithm (PMMH)3

Basically Metropolis—Hastings, with a few key differences:
@ Use an unbiased estimator of the likelihood instead of the true
likelihood
@ Idea: Get this estimator by sampling K “particles” (i.e. K
trajectories for 5 and X) and averaging over them
@ Use sequential Monte Carlo (SMC) to generate the sampled
trajectories

3Andrieu et al. (2010), “Particle Markov chain Monte Carlo methods”, J R
Stat Soc Series B Stat Methodol, 72(3):269-342
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SMC algorithm

Let N denote the length of the epidemic and K denote the number

of particles. Forn=1,..., N:
© Sample: Draw (B85, X5) ~ qo(- | Y, 1, XE, 1) for
k=1,...,K.

@ Importance: Weight the pairs (85, X¥) as

w, = .
pe(ﬁ]l_(;n—]_?X]ﬁn_l? T].:n*l? Ylnfl)qG(ﬁrlfaxrlp( | /B]l_(n_]_?X]{(n_l)

k p@(ﬁ]l_(;[nx]ﬁn? T12n7 Yl:n)
n

: k — ok oK
Normalise Wy = wyy/ >~ wy.
© Resample: Resample ancestors ALK according to the

) ) ) Al:K Al:K
normalised weights and keep pairs (8," , X" ).
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Resampling causes problems...

Pros of resampling:
@ Corrects proposals as you're building them

@ Don't need as many particles to get a good estimate of the
(log-)likelihood

Cons of resampling:
@ Resampling introduces variance

@ This causes path degeneracy
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Resample less: Adaptive resampling

Instead of resampling at every step, only resample if your weights
degenerate.
ESS(W1K) = K;
Zk:l(Wk)2
If all particles have equal weight, then ESS= K. If one particle has
all the weight, then ESS= 1. Conventionally, the resampling
threshold is set to K/2.
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Resample better: Systematic resampling

(a) Muttinomial (b) Stratified (c) Systematic (d) Metropolis

We use systematic resampling instead of multinomial resampling.

Murray (2012), “GPU acceleration of the particle filter: the Metropolis

resampler”, arXiv:1202.6163
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What does path degeneracy look like?
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Why does path degeneracy happen?

Svensson et al. (2015), “Nonlinear State Space Smoothing Using the
Conditional Particle Filter”, IFAC-PapersOnLine, 48(28):975-980
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Backward simulation®

@ Run the SMC algorithm forward-in-time, storing all particles
and weights in each generation, even those culled by
resampling.

@ Set jy = k with probability wx/ >, wh,.

© Forn=N-—-1,...,1, compute the smoothing weights

k Wp P( nn—tb n’ii|ﬁ )

W"‘N B Z W ( Jn+1 n+1 | B /)
/ np n+1° n+1 n Xn

@ Set j, = k with probability er‘ N

*Godshill et al. (2012), “Monte Carlo Smoothing for Nonlinear Time

Series”, Journal of the American Statistical Association, 99(465):156-168
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How many particles do you need?

Too few particles results in ‘sticky’ chains. Too many is inefficient.
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Choosing the optimal number of particles

We use the suggested guidance from Pitt et al. (2012)°.

@ Run a short PMMH with a large number of particles to
determine an approximate value for the posterior mean 6.

@ Run the SMC algorithm for several independent runs R for a
fixed value of particles K and obtain an estimator of the
likelihood pj (y | 0), i=1,...,R, for each.

© Record the variance of the log-likelihood, 2%(8, K;).

@ Choose the optimal number of particles

52(0, Ks)

Kopt = Ks X =4 902

®Pitt et al. (2012), “On some properties of Markov chain Monte Carlo
simulation methods based on the particle filter", Journal of Econometrics,
171(2):134-151
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Simulation: Constant R(t)

Simulated a 50-day epidemic with 5 = 0.2 Vt

Tree generated from a random sample of 5% of past lineages -
31 tips

Similarly, suppose a random sample of 5% of the epidemic
observed

Fixed and known death rate v = 0.1
10,000 iterations
250 particles
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inference plot
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R(t) inference metrics

Data RMSE Coverage Mean Cl width Run time (mins)

Epionly 016  100% 18 11.2
Gen only 0.68 100% 51 6.3
Epi & gen  0.15 100% 1.4 11.1

29/41



Simulation results

O000e0

i)
RS
o
Q
(®)
c
(D)
—
(G
3=
(D)
O
c
<L
Q]
>
(O]
—
o

T T T T T
000S 0007 000€ 000Z 000k

aousfeAsld

Genetic only

T T T T T
0005 000v 000€ 000Z 000k

sousleAsId

0

only

T T T T T
ooomooowooomooouooof

sousfeAsld

0

40

30

20

10

Day

Day

Day

30/41



Simulation results
00000e

Reporting probability
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Tree uncertainty

@ Tim’'s idea: Generate trees and parameters given the sequence
alignment data, then weight these according to the particle
filter.

@ Alicia's idea: Generate trees given the sequence alignment,
run the PMMH algorithm on a sample of trees, then average
the results.
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Tim's idea (1/3)

Generate trees and parameters given the sequence alignment data,
then weight these according to the particle filter.

p(A [ T)p(Y | 8, T)p(T | 0)p(6)

p(T,0[AY)= p(A,Y)
p(A| T)p(T | 0)p(0) A(Y, T |0)
p(A) p(T | 0)
BEAST2 weights

33/41



ree uncertainty
[e]e] lelele]ele)

Tim's idea (2/3)
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Tim's idea (3/3)

@ Have to assume more parameters are known (i.e. p)
@ Small number of trees carry the weight

@ May need to run BEAST2 for more iterations and collect more
samples
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Alicia's idea (1/4)

Generate trees given the sequence alignment, run the PMMH
algorithm on a sample of trees, then average the results.

p(B,0] A, Y) ://p(5,9| Y,A X, T)p(X, T | Y,A) dXdT
z//M@MXJwM\WMHAMMﬁ

a/ﬁwﬁ|%TwUWMdT

M
1
~ sz(ﬂ)g | Y7 Ti)7 where 7-, ~ p( ’ A)
i=1
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Alicia’s idea (3/4)
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Alicia's idea (4/4)

@ Computationally intensive

@ Assumes that the phylogeny T is independent of the observed
prevalence Y

@ Model misspecification - generating birth-death trees and then
evaluating them as coalescent trees
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Conclusion and limitations

Conclusions:

@ Combining epidemic and genetic data seems to improve
inference of R(t) trajectory

@ Also improves inference of other epidemiological parameters of
interest, i.e. the reporting probability

Limitations:
@ Simple epidemic model
o Computationally intensive

@ Can incorporate phylogenetic uncertainty, but crudely
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| have a pre-print!

Alicia Gill, Jere Koskela, Xavier Didelot, Richard G. Everitt (2023),
“Bayesian Inference of Reproduction Number from Epidemiological
and Genetic Data Using Particle MCMC", arXiv:2311.09838

https://arxiv.org/abs/2311.09838
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