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Motivation

Complex systems can be represented at different levels of abstraction!
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Example: Biology

Micro/low-level model: Focuses on cellular processes within organs;
provides insights into the intricate mechanisms that govern cellular
behavior within specific organs.
Macro/high-level model: Describes the overall functionality and
interactions of organs within the body; provides a holistic view of how
organs collaborate to sustain life at the body level.

Credit: Barbulescu and Ioan 2015
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Example: Climate

Micro/low-level model: describes local phenomena with high
resolution.
Macro/high-level model: describes meteorological events at a regional
scale.

Credit: Stroud et al. 2020
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Example: Physics

Micro/low-level model: Statistical mechanics study the behaviour of
molecules.
Macro/high-level model: Thermodynamics (P, V, T).

Credit: Sean Kelley/NIST
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Motivation

Learning relations between models and underlying representations at different
levels is a key challenge across sciences and especially AI as it can enable:

Aggregation of information
Transfer learning
Emulation via surrogate models
Multi-scale estimation and reasoning
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Motivation

In causal modeling, such models at different levels of abstraction
should be consistent =⇒ agree in their predictions of the effects of
interventions!

e.g. if we were to observe the evolution of the climate micro-model
under a reduction of CO2 and then coarsen our result to a regional
scale, we would like to obtain the same result as directly observing the
evolution of the macro-model under the same intervention of
reduction of CO2.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 9 / 65



Motivation

In causal modeling, such models at different levels of abstraction
should be consistent =⇒ agree in their predictions of the effects of
interventions!

e.g. if we were to observe the evolution of the climate micro-model
under a reduction of CO2 and then coarsen our result to a regional
scale, we would like to obtain the same result as directly observing the
evolution of the macro-model under the same intervention of
reduction of CO2.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 9 / 65



Motivation

Goal: Learn a map between two causal models of varying degrees of granu-
larity that describe the same system such that the aforementioned property
of consistency holds!

Causal evidence synthesis
Causally consistent representations at different resolutions.
Interventions alignment across models.
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Structural Causal Models
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Causality

"X is a cause of Y, if Y listens to X and decides its value in response to what
it hears.", Judea Pearl

We assume causality to be directed and mechanistic.
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Structural Causal Models

A structural causal model (SCM) is defined as a tuple:

M = ⟨X,U,F,P(U)⟩

where:
X is a set of endogenous variables (variables of interest);
U is a set of exogenous variables (noise);
F is a set of structural functions, one for each endogenous node;

fi : dom[PA(Xi )]× dom[Ui ] → dom[Xi ]

where PA(Xi ) ⊆ X \ Xi is the set of parent nodes of Xi in the
underlying DAG GM .
P(U) is a set of probability distributions, one for each exogenous node.
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Structural Causal Models

We assume:
acyclicity =⇒ DAG GM ;
faithfulness =⇒ independencies in the data are captured in GM ;
causal sufficiency =⇒ no unobserved confounders.
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Structural Causal Models

The probability distribution P(U) over the exogenous variables can be push-
forwarded over the endogenous variables and define a probability distribution
over them P(X) = P#(U).

Bayesian Factorization
Given a probability distribution P and a DAG G , P factorizes according to
G by the product decomposition rule:

P(X1,X2, ...,Xn) =
n∏

i=1

P(Xi |PAi )
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Structural Causal Models: Interventions

We define an intervention operator do(S=s) on M as the one that replaces
the structural function fi of every Xi ∈ S with the respective constant si .
An intervention on M defines a new post-intervention model Mdo(s).
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Conditioning ̸= Intervening

P(Y |Z )

Seeing Z allows inference on
distribution of X and then Y .

P(Y |do(Z ))

Doing Z does not affect the
distribution of X and as a
result of Y .
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Structural Causal Models: Interventions

Sets of interventions are equipped with a natural partially-ordered set (poset)
structure with respect to containment. An intervention ι = do(A = a) pre-
cedes η = do(B = b) and we write ι ⪯ η iff:

A ⊆ B and a = proj(b,A) ⇐⇒ A ⊆ B and for Bj = Ai =⇒ bj = ai
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Structural Causal Models: Interventions

Given an SCM M = ⟨X,U,F,P(U)⟩ and a set of variables V ⊆ X:
We call v ∈ V a partial setting and x ∈ X a total setting.
The restriction of x to V is the projection proj(x,V) ∈ dom[V].
The restriction Rst(M ι) of an intervention ι = do(V = v) on a model
M is the subset of total settings on X matching the partial setting v.

Rst(M ι) = {x ∈ dom[X ] | v = proj(x,V)}

We say that a total setting x is compatible with an intervention
ι = do(v) and we write Cmp(x, ι) if x ∈ Rst(M ι).

Given a simple SCM which consists of three binary variables X ,Y ,Z
and an intervention ι = do(X = 0,Y = 1) then the total settings that
are compatible with ι are (0, 1, 0) and (0, 1, 1).

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 19 / 65



Structural Causal Models: Interventions

Given an SCM M = ⟨X,U,F,P(U)⟩ and a set of variables V ⊆ X:
We call v ∈ V a partial setting and x ∈ X a total setting.
The restriction of x to V is the projection proj(x,V) ∈ dom[V].
The restriction Rst(M ι) of an intervention ι = do(V = v) on a model
M is the subset of total settings on X matching the partial setting v.

Rst(M ι) = {x ∈ dom[X ] | v = proj(x,V)}

We say that a total setting x is compatible with an intervention
ι = do(v) and we write Cmp(x, ι) if x ∈ Rst(M ι).

Given a simple SCM which consists of three binary variables X ,Y ,Z
and an intervention ι = do(X = 0,Y = 1) then the total settings that
are compatible with ι are (0, 1, 0) and (0, 1, 1).

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 19 / 65



Structural Causal Models: Interventions

Given an SCM M = ⟨X,U,F,P(U)⟩ and a set of variables V ⊆ X:
We call v ∈ V a partial setting and x ∈ X a total setting.
The restriction of x to V is the projection proj(x,V) ∈ dom[V].
The restriction Rst(M ι) of an intervention ι = do(V = v) on a model
M is the subset of total settings on X matching the partial setting v.

Rst(M ι) = {x ∈ dom[X ] | v = proj(x,V)}

We say that a total setting x is compatible with an intervention
ι = do(v) and we write Cmp(x, ι) if x ∈ Rst(M ι).

Given a simple SCM which consists of three binary variables X ,Y ,Z
and an intervention ι = do(X = 0,Y = 1) then the total settings that
are compatible with ι are (0, 1, 0) and (0, 1, 1).

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 19 / 65



Structural Causal Models: Interventions

Given an SCM M = ⟨X,U,F,P(U)⟩ and a set of variables V ⊆ X:
We call v ∈ V a partial setting and x ∈ X a total setting.
The restriction of x to V is the projection proj(x,V) ∈ dom[V].
The restriction Rst(M ι) of an intervention ι = do(V = v) on a model
M is the subset of total settings on X matching the partial setting v.

Rst(M ι) = {x ∈ dom[X ] | v = proj(x,V)}

We say that a total setting x is compatible with an intervention
ι = do(v) and we write Cmp(x, ι) if x ∈ Rst(M ι).

Given a simple SCM which consists of three binary variables X ,Y ,Z
and an intervention ι = do(X = 0,Y = 1) then the total settings that
are compatible with ι are (0, 1, 0) and (0, 1, 1).

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 19 / 65



Structural Causal Models: Interventions

Truncated Factorization

P(X1,X2, ...,Xn|do(S=s)) =
n∏

Xi /∈S

P(Xi |PAi ), ∀i with Xi not in S.

Pre/Post Interventional relation

P(X1,X2, ...,Xn|do(S=s)) =

{
P(X1,X2,...,Xn)

P(Si |PAi )
if Cmp(x , do(s))

0 otherwise
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Causal Abstractions
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Causal Abstractions

Examples of applications:
complex physical systems in which micro-level descriptors are
abstracted into high-level statistics
social systems where individual preferences and behaviours are
coarsened into classes.
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Causal Abstractions: Main works

P. K. Rubenstein, S. Weichwald, S. Bongers, J. M. Mooij, D. Janzing,
M. Grosse-Wentrup, and B. Schölkopf. "Causal consistency of
structural equation models", 2017.
S. Beckers and J. Y. Halpern. "Abstracting causal models", 2019
E. F. Rischel. "The category theory of causal models", 2020
S. Beckers, F. Eberhardt, and J. Y. Halpern. "Approximate causal
abstractions", 2020
F. M. Zennaro, M. Drávucz, G. Apachitei, W. D. Widanage, and T.
Damoulas. "Jointly learning consistent causal abstractions over
multiple interventional distributions", 2022
J. Otsuka and H. Saigo. "On the equivalence of causal models: A
category-theoretic approach", 2022
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Exact Transformations: Mapping SCMs

Let two SCMs M =< X,U,F,P(U) > and M =< X′,U′,F′,P(U′) >
equipped with posets of interventions I,I′ respectively.

A function τ : dom[X] → dom[X′] is called an exact (τ, ω)-transformation
of M to M ′ if there exists a surjective and order preserving map ω : I 7→ I′

such that:

τ#(Pι
M(X)) = PM ′

ω(ι)
(X′), ∀ι ∈ I

A τ -ω transformation is a form of abstraction between causal models!
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Exact Transformations: Consistency of mapping

Given a mapping ω : I 7→ I′ between the interventions of the low-level and
the high-level model (right) then a transformation τ : dom[X] → dom[X’] is
exact if the diagram on the left commutes:

Roughly speaking, if you start from the low-level model you can move up to
the high-level one by following two distinct routes, either:

intervene (ι) and then transform (τ), or
transform (τ) and then intervene (ω(ι))
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Abstraction Error

Let τ be a τ -ω transformation between SCM M and M ′ wrt I and ω. Given
a discrepancy measure D between distributions, and a distribution q over
the intervention set I, we evaluate the approximation introduced by τ as
the abstraction error:

e(τ) = Eι∼q

[
D
(
τ#(PMι), PM ′

ω(ι)

) ]
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Abstraction Error

We compute the distance between τ#(PMι) and PM ′
ω(ι)

using D.

D = 0 =⇒ exact τ -ω abstraction.
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Problem Statement
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Problem Statement

Given:
Two DAGs: GM (base) and GM ′ (abstracted).
The posets of interventions (I,I′) for both models.
The mapping ω : I → I′.
Samples, from the pre-interventional and post-interventional
distributions for both models for all ι ∈ I.
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Problem Statement

Given:
Two DAGs: GM (base) and GM ′ (abstracted).
The posets of interventions (I,I′) for both models.
The mapping ω : I → I′.
Samples, from the pre-interventional and post-interventional
distributions for both models for all ι ∈ I.

We seek to learn an exact transformation τ : dom[X] → dom[X′] such that:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I
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Problem Statement

In other words, we seek to find a single function τ : dom[X] → dom[X′] such
that:

τ#(PM∅(X)) = PM ′
∅
(X′)

τ#(PMι1
(X)) = PM ′

ω(ι1)
(X′)

... =
...

τ#(PMιk
(X)) = PM ′

ω(ιk )
(X′)
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Problem Statement

But we need a tool to learn such a map τ !

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 33 / 65



Optimal Transport
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Optimal Transport

Optimal transport provides a general mathematical way of moving one distri-
bution of mass to another as efficiently as possible. Specifically, by looking
amongst the set of all possible ways to transport the mass from the one
distribution to the other it selects the one which minimizes a cost function,
evaluating the cost of moving the mass.

source: "Optimal Transport for Image Processing", Papadakis, 2017
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Optimal Transport

Consider X = {xi}ni=1 ⊂ Rd and Y = {yj}mj=1 ⊂ Rd with respective
(probability) weights α, β. Thus, we have the discrete probability measures:

α =
n∑

i=1

αiδxi and β =
m∑
j=1

βiδyj

Finally, assuming that the cost of transporting a unit of mass from xi to yj
is c(xi , yj) where c : Rd × Rd 7→ R is the cost function, which induces the
cost matrix Cij = c(xi , yj).
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Optimal Transport
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Optimal Transport

Kantorovic formulation
The (Entropic) Kantorovich problem for discrete measures solves the
following optimization problem:

OTϵ
C (α, β) = min

P∈U(α,β)

{〈
C ,P

〉
− ϵH(P)

}

= min
P∈U(α,β)

∑
i ,j

CijPij − ϵH(P)


where the Frobenius inner product

〈
C ,P

〉
gives the total transportation

cost, H(P) is the discrete entropy of the coupling matrix P and U(α, β) is
the set of joint probability measures with marginals α and β which is a
convex polytope, called the transport polytope or coupling set.
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Optimal Transport

The transport polytope imposes the marginal constraints of the OT optimi-
sation problem

U(α, β) =

P ∈ Rn×m :
m∑
j=1

Pij = α,
n∑

i=1

Pij = β,

m∑
j=1

n∑
i=1

Pij = 1


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Optimal Transport
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So, now we have a tool!
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Problem Statement revised

We want to learn an exact τ -ω-transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X), ∀ι ∈ I
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Problem Statement revised

Clearly, ω : I 7→ I′ induces a set of pairs between the distributions of M
and M ′. We denote this as:

Πω(I) = {πi : i = 1, ..., |I|}

where ∀ι ∈ I : πι = (πι,s , πι,t) =
(
P̂Mι(X), P̂M ′

ω(ι)
(X)
)
.

πi ,s expresses the base model’s distribution of the i-th pair.
πi ,t expresses the abstracted model’s distribution of the i-th pair.
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Abstraction Learning as Multi-marginal OT

We address the problem by viewing each pair πι as marginals in an
Entropic OT problem within the Kantorovich formulation for discrete
measures.

We compute a plan P ι for each pair πι, thereby leading to a
multi-marginal optimization problem, made up of |Πω(I)| independent
OT problems:

P⋆ = OTc(Πω(I)) = argmin
{Pι∈U(πι)}ι∈I

{∑
ι∈I

〈
C ,P ι

〉
− ϵH(P ι)

}

where U(πι) is the transport polytope of each pair πι.
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Abstraction Learning as Multi-marginal OT

Previously P⋆ was a vector of |Πω(I)| optimal independent plans P ι
⋆.

Since we are looking for a single transformation τ , we aggregate those
into a single average plan P̂ = 1

|P⋆|

∑
ι∈I

P ι
⋆, from which the map τ can

be derived as a stochastic mapping τ = fs(P̂) where
fs : dom[X] → A|dom[X′]| and An = {p ∈ Rn, : pi ≥ 0,

∑
i pi = 1}

the simplex in Rn.

The stochastic mapping converts the mass allocation, induced by P̂,
by assigning each base sample to a probability vector, depicting a
distribution over the abstracted samples.
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distribution over the abstracted samples.
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Abstraction Learning as Multi-marginal OT
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Causal Optimal Transport of Abstractions
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COTA

The previous optimization problem is a collection of independent OT
problems
We incorporate causal knowledge by:

A causally informed cost function derived from the interventional
information induced by the ω map.
Causal/do-calculus constraints linking the different transport plans.

Thus, we transform the initial problem into a joint multi-marginal OT
problem integrated with causal knowledge from different sources.
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The ω-cost

In order to compute a distance between samples x ∈ dom[X] of the
base and x′ ∈ dom[X′] of the abstracted model, given interventions
ι = do(a) and ω(ι) = do(a′), we exploit ω to discount the cost of
transporting sample a to a′.

We define cω : dom[X]× dom[X′] → R≥0:

cω(x, x′) = |I| −
∑
ι∈I

1
[
Cmp(x, ι) ∧ Cmp(x′, ω(ι))

]
,

cω discounts the cost of transporting the sample x to x′ proportionally
to the number of pairs (ι, ω(ι)) w.r.t. which x and x′ are compatible.
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The ω-cost
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do-calculus constraints

Let ι = do(a), ω(ι) = do(a′) and η = do(b), ω(η) = do(b′), s.t. ι ⪯ η

The mass conservation constraints U(πι) on P ι induced by OT guarantee:

Base︷ ︸︸ ︷
P̂Mι(Xj) =

(∑
i
P ι
i ,j

)
j

∀j ∈ dom[X]

Abstracted︷ ︸︸ ︷
P̂M ′

ω(ι)
(X ′

i ) =
(∑

j
P ι
i ,j

)
i

∀i ∈ dom[X′]
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do-calculus constraints

Without loss of generality, let πι be the pair of observational distributions,
where ι, ω(ι) are the null interventions. Then, from the truncated factorisa-
tion, it holds that:

PMdo(b)(X) =

{ PM (X)∏
i PM (Bi=bi | PA(Bi ))

if Cmp(x, do(b))

0 otherwise

}
Base

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 52 / 65



do-calculus constraints

In our empirical setup, we express this through the minimization of a statis-
tical divergence d : RD ×RD → R≥0, where D is |dom[X]| for the base and
|dom[X′]| for the abstracted model, as follows:

d

(
P̂Mdo(b)(X),

1∏
i P̂M(Bi = bi | PA(Bi ))

P̂M(X)

)
if Cmp(x, do(b))
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do-calculus constraints

Finally, we substitute in the mass conservation constraints for both the base
and the abstracted models:

δι,η(P
ι,Pη) := d

((∑
i P

η
i ,j

)
j
, 1

(Zη)j

(∑
i P

ι
i ,j

)
j

)
if Cmp(xj , η).

}
Base

δ′ι,η(P
ι,Pη) := d

((∑
j P

η
i ,j

)
i
, 1

(Zω(η))i

(∑
j P

ι
i ,j

)
i

)
if Cmp(x ′i , ω(η)).

}
Abstracted

where Zη,Zω(η) are the normalizing vectors for the base and the abstracted
distributions respectively.

Instead of independently computing the OT plans we can jointly learn plans
that preserve causal relations by incorporating the base and abstracted model
distances D(P ι,Pη) = [δι,η, δ′ι,η]

⊤ defined over the marginals of two plans.
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The COTA objective

For a given set of pairs Πω(I) = {πι1 , · · ·πιN | ιn ∈ I}, we define the
objective function of COTA as the following OT problem:

P⋆
k = COTAc (Πω (I))
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COTA
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Experimental Results

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 57 / 65



Results: The benefit of do-calculus constraints
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Results: Abstraction Error Evaluation

Synthetic: Simple Lung Cancer with
"rich" intervention set
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Results: Abstraction Error Evaluation

Synthetic: LUng CAncer Set
(LUCAS)
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Results: COTA as a data augmentation tool

Real-world data: Electric Battery
Manufacturing
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Summary
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Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Summary

We wanted to learn a map between causal models (M ,M ′) that
describe the same system at different levels of abstraction;
Learn an exact transformation τ : dom[X] → dom[X′] s.t.:

τ#(PMι(X)) = PM ′
ω(ι)

(X′), ∀ι ∈ I

We addressed the problem by viewing each pair πι induced by the ω
map of the τ -ω framework as marginals in an Entropic OT problem for
discrete measures;
We incorporated causal knowledge into this OT problem by defining:

An interventionally-informed cost function cω.
Causal constraints linking the different transport plans.

We showed the superiority of COTA against non causal baselines and
prior state-of-the-art.

Yorgos Felekis Causal Optimal Transport of Abstractions May 17, 2024 63 / 65



Future Work

Extend to continuous settings;
Lift the causal sufficiency assumption;
Further theoretical guarantees for the existence/uniqueness of the
estimated map, especially from the OT perspective.
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Thank you!

Paper
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