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Premise

koo
D=;:+

data = low-rank 4+ noise



Paradigm

Algorithms that only view small subsets of the full data matrix or
tensor



What is a CUR decomposition?

C

Theorem (folklore): If rank(U) = rank(L), then L = CU'R
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Case when U is invertible:
Columns of C form a basis for Col(A)

A=CX

P, - row selection matrix: PPA=R

A=CX e P,A=P,CX
& R=UX

X = U 'Ris a solutionto R = UX
Therefore A= CU'R.
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Key ldea

Use submatrices for reconstruction/approximation
Choose “good" columns/rows that represent the matrix well

Why?

Interpretable representations

Kernel matrix approximation

Fast approximation to the SVD!

Robust low-rank matrix approximation
Preserves some structures (e.g., sparsity)

Applications

Subspace Clustering

Computer Vision Applications (Motion Segmentation,
Facial Recognition)

Sketching of massive data
Image processing



Key Themes

(Mildly) Oversampling (pk columns) is your friend: gives
good approximations to truncated SVD (of order k)

Good for (approximately) low-rank matrices — bad for
full-rank matrices

Randomized or hybrid random + deterministic column
sampling is your friend

Interpretability



Related Work

A = CX —interpolative decompositions [Voronin—Martinsson,
ACOM ’"17]

A=CUR,C=A(;,J), R=A(l,:), U=??? -CUR
decompositions [Drineas—Mahoney—Muthukrishnan, SIMAX
'08]

Synonyms/intimately related names
Cross Approximation [Tyrtyshnikov, Computing '00]
(Pseudo)skeleton decomposition
[Goreinov—Tyrtyshnikov—Zamarashkin, LAA ’97]
Nystrém method (when A is SPSD) [Williams—Seeger,
NeurlIPS *00]

Generalizations
Generalized CUR decompositions [Gidisu—Hochstenbach,
'22]
Meta factorization [Karpowicz, '22]



Choosing U in CUR

Natural choice I: U = A(I,J) (A=~ CU'R)
Natural choice Il: U = CtAR" (A~ CC'AR'R)

argmin||A — CZR|r = C'AR'
V4



Characterization

Theorem (H-Huang, ACHA °20)
LetAc R™""and | C [m],J C [n]. Let C = A(:,J), U= A(l,J),
and R = A(l,:). Then the following are equivalent:

1. rank(U) = rank(A),

2. A= CU'R,
3. A= CC'AR'R,
4. At = RTUCT,

5. rank(C) = rank(R) = rank(A),

Moreover, if any of the equivalent conditions above hold, then
Ut = CtART.
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How do we choose columns/rows?

Random Sampling Methods |: Sample w/ or w/out replacement
from some distribution over the column indices

. 1
Uniform: p; := -

IIAG, D113

Column Length: p; =
AR

1 .
Leverage Scores: p\) .= 7 Vi, )l

Random Sampling Methods II: Bernoulli trials on each column
Typically Column Length — requires rescaling columns in
the reconstruction phase

Deterministic Sampling Methods:
Discrete Empirical Interpolation Method (DEIM)
[Gu—Eisenstat, SICOMP 96, Sorensen—Embree, SICOMP
'16]
Greedy Column Selection [Avron—Boutsidis, SIMAX ’13]
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Tradeoffs:

Computational Complexity: Leverage > Col Length >
Uniform

Guarantees: Leverage Scores > Col Length > Uniform

Oversampling Factor (p): Leverage < Col Length ~
Uniform



The Subspace Clustering Problem

Goals:
» # of Subspaces?
> dim(S,-)'?
» Basis for S;?
» Cluster data {w;}7_,.

7N
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Other Applications

Tron—Vidal, CVPR '07
Basri—Jacobs, TPAMI '03
Hadani-Singer, Annals 11



Meta-Theorem

Suppose A has columns drawn from a union of subspaces
U,-L:1 S; € R". Under idealized assumptions on the subspaces,
columns of A can be clustered via the representation A = CX.
That is, one can find an assignment function I such that

MN(a;) = k iff a;j € Sk.

Elhamifar-Vidal, CVPR '09, TPAMI '13
Liu-Lin—Yu, ICML *10
Aldroubi—-Sekmen—Koku—Cakmak, ACHA '18
Aldroubi—H—Koku—Sekmen, Frontiers '19

Key takeaway: These algorithms are fast and robust to noise



Problem (Robust PCA)
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k =
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Problem (Robust PCA)

k
b=y
1

Nonconvex Formulation

min|D—L— S|l st rank(L)<r, [|S|o<an?

Convex Relaxation

min|[L|l« + A|S|s st L+S=D

'Candés et al. Journal of ACM ’11



Properties

Incoherence of L

@)= mp | IO pa(t) = may [T 1V

Sparsity of S

max || S(i,:)||[p < an and max|S(:, /)|, < an
i ]



Robust CUR (RCUR)?

Parameter: RPCA — your favorite Robust PCA algorithm
Initialize: Sample O(urlog n) row gnd column igdices (1, J,
respectively) uniformly at random, C = D(:,J), R = D(I,:)
L(:,J), S(:,J) = RPCA(C. r)

L(1,:),S(l,:) = RPCA(R,r)

Return : L(:, J)(L(/, )))TL(/,:)

Complexity: O(r®nlog®n)  (if using AltProj or AccAltProj as
RPCA)

2Cai-H-Huang—Needell, SIIMS 21



Robust CUR (RCUR)3

Need to understand:
How incoherence and sparsity transfer to submatrices

The quantity 3 := /|| V.(J, )|z

Tools:
Basic Linear Algebra

Tropp’s estimates on norms of pseudoinverses of
submatrices of orthogonal matrices*

3Cai-H-Huang—Needell, SIIMS ’21
“Tropp, Advances in Adaptive Data Analysis, '11



Robust CUR (RCUR)3

Need to understand:
How incoherence and sparsity transfer to submatrices

The quantity 3 := /|| V.(J, )|z

Tools:
Basic Linear Algebra

Tropp’s estimates on norms of pseudoinverses of
submatrices of orthogonal matrices*

Theorem [Tropp]: If L has incoherence ux(L) and |J| > cuor is
sampled uniformly without replacement, then

P(ﬁgﬁ) 21—r<(1_e;;15>c, forall §€]0,1).

3Cai-H-Huang—Needell, SIIMS ’21
“Tropp, Advances in Adaptive Data Analysis, '11




Robust CUR (RCUR)®

Theorem [Cai et al.]: If L has incoherence p4(L), uo(L) and
|J| > cuarlog(rn) is sampled uniformly without replacement,
C = L(:,J), then with probability > 1 —

n’

mi(C) < m(L),  12(C) < 100k(L)ua(L).

Theorem [Cai et al.]: Under some relations on

a, k(L), py (L), (L), if |1, |J| 2 wni(L)rlog n are sampled
uniformly without replacement and AltProj is used as RPCA.
Then RCUR outputs L such that w.h.p.,

IL — L[|, 1
% < er(L)T.
1012 (b

5Cai-H-Huang—Needell, SIIMS 21



Initialize: Sample O(urlog n) row and column indices (/, J,
respectively) uniformly at random, Co = Ry = Uy =0
fork=1:N

Ck = (D — Sk_1)(:,J)

Rk = (D — Sk-1)(1,2)

Ux = TruncatedsvD(D — Sx_1)(1,J)

Ly = Cx U] R«

Sk(l,:) = HardThreshold(D — Lg)(/,:)
Sk(:,J) = HardThreshold(D — L)(:,J)

Return: CN, UN, RN, SN
Complexity: O(r?nlog? n)

5Cai—-H-Huang-Li-Wang, |IEEE SPL, 21



Implementation Notes
Ly is never formed, only Cy, Uk, and Ry are formed and
stored
Optional element to resample columns/rows at each
iteration (work on different parts of L and S)

’Cai-H-Huang-Li-Wang, |IEEE SPL, '21



Numerics

| [AitProj [ AccAltProj] RCUR | IRCUR | RieCUR |
|Complexity | r2n® | rm®  [rPnlog® n|r’nlog® n| r’nlog® n




Experiments
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Time (secs)

Experiments
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~—— IRCUR
—— AccAltProj
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Final Relative Error
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Sparsity



Experiments

= v

frame | frame runtime (sec)

size  |number|IRCUR-F|IRCUR-R|AccAltProj| GD
256 x 320 1000 2.03 2.16 23.04  |93.18
120 x 160| 3055 0.82 0.88 15.96  [5h8.37




Tensors

Chidori CUR Decomposition® Fiber CUR Decomposition

— ) ()
L=TR x4 C(1)R(1) Xop - ch(g) (n)

(n) (y(n)

[,:RX1 C( )U(1) X« ch(n)

1
(1)

8Thanks to Dustin Mixon for this name!



Image/Hyperspectral Image Compression
Original Fiber CUR Chidori CUR HOSVD




Ribeira Braga Ruivaes
Size 1017 x 1340 x 33 | 1021 x 1338 x 33 | 1017 x 1338 x 33

Rank (60,60, 7) (60,60, 5) (65,65,4)
Fiber CUR 0.29 0.26 0.31
Runtime | Chidori CUR 0.66 0.59 0.55
(seconds) HOSVD 1.49 1.41 1.42
st_ HOSVD 0.83 0.77 0.76
HOOI 2.29 2.67 3.30
Fiber CUR 24.14 17.93 15.53
SNR. Chidori CUR 24.39 18.56 15.84
(dB) HOSVD 22.99 17.70 15.48
st_ HOSVD 22.18 17.90 15.49
HOOI 24.33 18.00 15.61




Future and Related Work

Proof of convergence for IRCUR and RieCUR
» Theorem for AccAltProj: Under certain relations on
parameters a, i, r, n,o1(L), o1(D), initialization via AltProj is
sufficiently good to guarantee linear convergence of L, and
SktoLand S
Further extension to tensors of IRCUR and RieCUR?

Extensions to matrix/tensor completion (Cai et al.,
Henneberger et al.)

%Initial experimental work: Cai et al. ICCV '21



Thanks!

H, Generalized pseudoskeleton decompositions, LAA '23

H—Meskini—Cai, Riemannian CUR Decompositions for Robust Principle
Component Analysis, ICML Workshop on Topology, Algebra, and Geometry in
Machine Learning, '22

Cai-H-Huang—Needell, Robust CUR Decompositions: Theory and Imaging
Applications, SIIMS 21

Cai—-H-Huang—Needell, Mode-wise Tensor Decompositions: Multi-dimensional
Generalizations of CUR Decompositions, JMLR "21

Cai—H-Huang-Li—-Wang, Rapid Robust Principal Component Analysis: CUR
Accelerated Inexact Low Rank Estimation, IEEE SPL '20

H-Huang, Stability of sampling for CUR Decompositions, Foundations of Data
Science '20

H-Huang, Perturbations of CUR Decompositions, SIMAX "20
H-Huang, Perspectives on CUR Decompositions, ACHA '20
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