Getting more with less: matrix and tensor algorithms from subsampling modes

Keaton Hamm

University of Texas at Arlington

Warwick Algorithms Seminar

Sponsor

Premise

$$
\begin{aligned}
& D=\sum_{1}^{k}+ \\
& \text { data }=\text { low-rank }+ \text { noise }
\end{aligned}
$$

Paradigm

Algorithms that only view small subsets of the full data matrix or tensor

What is a CUR decomposition?

Theorem (folklore): If $\operatorname{rank}(U)=\operatorname{rank}(L)$, then $L=C U^{\dagger} R$

$$
\left[\left|\left\|\| \mid[]^{[: \# 1]^{\dagger}}[\overline{=}]\right.\right.\right.
$$

Proof

Case when U is invertible:

Proof

Case when U is invertible:
Columns of C form a basis for $\operatorname{Col}(A)$

Proof

Case when U is invertible:
Columns of C form a basis for $\operatorname{Col}(A)$

$$
A=C X
$$

Proof

Case when U is invertible: Columns of C form a basis for $\operatorname{Col}(A)$

$$
A=C X
$$

P_{r} - row selection matrix: $P_{r} A=R$

Proof

Case when U is invertible:
Columns of C form a basis for $\operatorname{Col}(A)$

$$
A=C X
$$

P_{r} - row selection matrix: $P_{r} A=R$

$$
\begin{aligned}
A=C X & \Leftrightarrow P_{r} A=P_{r} C X \\
& \Leftrightarrow R=U X
\end{aligned}
$$

Proof

Case when U is invertible:
Columns of C form a basis for $\operatorname{Col}(A)$

$$
A=C X
$$

P_{r} - row selection matrix: $P_{r} A=R$

$$
\begin{aligned}
A=C X & \Leftrightarrow P_{r} A=P_{r} C X \\
& \Leftrightarrow R=U X
\end{aligned}
$$

$X=U^{-1} R$ is a solution to $R=U X$

Proof

Case when U is invertible:
Columns of C form a basis for $\operatorname{Col}(A)$

$$
A=C X
$$

P_{r} - row selection matrix: $P_{r} A=R$

$$
\begin{aligned}
A=C X & \Leftrightarrow P_{r} A=P_{r} C X \\
& \Leftrightarrow R=U X
\end{aligned}
$$

$X=U^{-1} R$ is a solution to $R=U X$
Therefore $A=C U^{-1} R$.

Key Idea

- Use submatrices for reconstruction/approximation
- Choose "good" columns/rows that represent the matrix well

Key Idea

- Use submatrices for reconstruction/approximation
- Choose "good" columns/rows that represent the matrix well

Why?

- Interpretable representations
- Kernel matrix approximation
- Fast approximation to the SVD!
- Robust low-rank matrix approximation
- Preserves some structures (e.g., sparsity)

Key Idea

- Use submatrices for reconstruction/approximation
- Choose "good" columns/rows that represent the matrix well

Why?

- Interpretable representations
- Kernel matrix approximation
- Fast approximation to the SVD!
- Robust low-rank matrix approximation
- Preserves some structures (e.g., sparsity)

Applications

- Subspace Clustering
- Computer Vision Applications (Motion Segmentation, Facial Recognition)
- Sketching of massive data
- Image processing

Key Themes

- (Mildly) Oversampling (pk columns) is your friend: gives good approximations to truncated SVD (of order k)
- Good for (approximately) low-rank matrices - bad for full-rank matrices
- Randomized or hybrid random + deterministic column sampling is your friend
- Interpretability

Related Work

$A=C X$ - interpolative decompositions [Voronin-Martinsson, ACOM '17]
$A=C U R, C=A(:, J), R=A(I,:), U=? ? ?-\operatorname{CUR}$
decompositions [Drineas-Mahoney-Muthukrishnan, SIMAX '08]

Synonyms/intimately related names

- Cross Approximation [Tyrtyshnikov, Computing '00]
- (Pseudo)skeleton decomposition [Goreinov-Tyrtyshnikov-Zamarashkin, LAA '97]
- Nyström method (when A is SPSD) [Williams-Seeger, NeurlPS '00]
Generalizations
- Generalized CUR decompositions [Gidisu-Hochstenbach, '22]
- Meta factorization [Karpowicz, '22]

Choosing U in CUR

Natural choice I: $U=A(I, J)^{\dagger} \quad\left(A \approx C U^{\dagger} R\right)$
Natural choice II: $U=C^{\dagger} A R^{\dagger} \quad\left(A \approx C C^{\dagger} A R^{\dagger} R\right)$

$$
\underset{Z}{\operatorname{argmin}}\|A-C Z R\|_{F}=C^{\dagger} A R^{\dagger}
$$

Characterization

Theorem (H-Huang, ACHA '20)
Let $A \in \mathbb{R}^{m \times n}$ and $I \subseteq[m], J \subseteq[n]$. Let $C=A(:, J), U=A(I, J)$, and $R=A(I,:)$. Then the following are equivalent:

1. $\operatorname{rank}(U)=\operatorname{rank}(A)$,
2. $A=C U^{\dagger} R$,
3. $A=C C^{\dagger} A R^{\dagger} R$,
4. $A^{\dagger}=R^{\dagger} U C^{\dagger}$,
5. $\operatorname{rank}(C)=\operatorname{rank}(R)=\operatorname{rank}(A)$,

Moreover, if any of the equivalent conditions above hold, then $U^{\dagger}=C^{\dagger} A R^{\dagger}$.

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement from some distribution over the column indices

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement from some distribution over the column indices

- Uniform: $p_{i}:=\frac{1}{n}$

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement from some distribution over the column indices

- Uniform: $p_{i}:=\frac{1}{n}$
- Column Length: $p_{i}=\frac{\|A(:, i)\|_{2}^{2}}{\|A\|_{F}^{2}}$

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement from some distribution over the column indices

- Uniform: $p_{i}:=\frac{1}{n}$
- Column Length: $p_{i}=\frac{\|A(:, i)\|_{2}^{2}}{\|A\|_{F}^{2}}$
- Leverage Scores: $p_{i}^{(k)}:=\frac{1}{k}\left\|V_{k}(i,:)\right\|_{2}^{2}$

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement from some distribution over the column indices

- Uniform: $p_{i}:=\frac{1}{n}$
- Column Length: $p_{i}=\frac{\|A(:, i)\|_{2}^{2}}{\|A\|_{F}^{2}}$
- Leverage Scores: $p_{i}^{(k)}:=\frac{1}{k}\left\|V_{k}(i,:)\right\|_{2}^{2}$

Random Sampling Methods II: Bernoulli trials on each column

- Typically Column Length - requires rescaling columns in the reconstruction phase

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement from some distribution over the column indices

- Uniform: $p_{i}:=\frac{1}{n}$
- Column Length: $p_{i}=\frac{\|A(:, i)\|_{2}^{2}}{\|A\|_{F}^{2}}$
- Leverage Scores: $p_{i}^{(k)}:=\frac{1}{k}\left\|V_{k}(i,:)\right\|_{2}^{2}$

Random Sampling Methods II: Bernoulli trials on each column

- Typically Column Length - requires rescaling columns in the reconstruction phase

Deterministic Sampling Methods:

- Discrete Empirical Interpolation Method (DEIM) [Gu-Eisenstat, SICOMP '96, Sorensen-Embree, SICOMP '16]
- Greedy Column Selection [Avron-Boutsidis, SIMAX '13]

Tradeoffs:

- Computational Complexity: Leverage \gg Col Length \gg Uniform

Tradeoffs:

- Computational Complexity: Leverage \gg Col Length \gg Uniform
- Guarantees: Leverage Scores > Col Length > Uniform

Tradeoffs:

- Computational Complexity: Leverage \gg Col Length \gg Uniform
- Guarantees: Leverage Scores > Col Length > Uniform
- Oversampling Factor (p): Leverage $<$ Col Length \approx Uniform

The Subspace Clustering Problem

Goals:

- \# of Subspaces?
$\Rightarrow \operatorname{dim}\left(S_{i}\right)$?
- Basis for S_{i} ?
- Cluster data $\left\{w_{i}\right\}_{i=1}^{n}$.

$$
\begin{aligned}
& x \times \\
& \times \mathbb{X}
\end{aligned}
$$

Other Applications

Tron-Vidal, CVPR '07
Basri-Jacobs, TPAMI '03 Hadani-Singer, Annals '11

Meta-Theorem

Suppose A has columns drawn from a union of subspaces $\bigcup_{i=1}^{L} S_{i} \subset \mathbb{R}^{n}$. Under idealized assumptions on the subspaces, columns of A can be clustered via the representation $A=C X$. That is, one can find an assignment function Π such that $\Pi\left(a_{i}\right)=k i f f a_{i} \in S_{k}$.

- Elhamifar-Vidal, CVPR '09, TPAMI ' 13
- Liu-Lin-Yu, ICML '10
- Aldroubi-Sekmen-Koku-Çakmak, ACHA '18
- Aldroubi-H-Koku-Sekmen, Frontiers '19

Key takeaway: These algorithms are fast and robust to noise

Problem (Robust PCA)

$$
\begin{aligned}
D & =L+S \text { = low-rank }+ \text { sparse } \\
D & =\sum_{1}^{k}+
\end{aligned}
$$

Problem (Robust PCA)

$$
\begin{aligned}
D & =L+S \text { = low-rank }+ \text { sparse } \\
D & =\sum_{1}^{k}+
\end{aligned}
$$

Problem (Robust PCA)

Nonconvex Formulation

$$
\min \|D-L-S\|_{F} \quad \text { s.t. } \quad \operatorname{rank}(L) \leq r, \quad\|S\|_{0} \leq \alpha n^{2}
$$

Convex Relaxation ${ }^{1}$

$$
\min \|L\|_{*}+\lambda\|S\|_{1} \quad \text { s.t. } \quad L+S=D
$$

Properties

Incoherence of L

$$
\mu_{1}(L):=\max _{i} \sqrt{\frac{n}{r}}\left\|U_{r}(i,:)\right\|_{2} \quad \mu_{2}(L):=\max _{i} \sqrt{\frac{n}{r}}\left\|V_{r}(i,:)\right\|_{2}
$$

Sparsity of S

$$
\max _{i}\|S(i,:)\|_{0} \leq \alpha n \quad \text { and } \quad \max _{j}\|S(:, j)\|_{0} \leq \alpha n
$$

Robust CUR (RCUR) ${ }^{2}$

Parameter: RPCA - your favorite Robust PCA algorithm Initialize: Sample $O(\mu r \log n)$ row and column indices (I, J, respectively) uniformly at random, $\widetilde{C}=D(:, J), \widetilde{R}=D(I,:)$
$\widehat{L}(:, J), \widehat{S}(:, J)=\operatorname{RPCA}(\widetilde{C}, r)$
$\widehat{L}(I,:), \widehat{S}(I,:)=\operatorname{RPCA}(\widetilde{R}, r)$
Return : $\widehat{L}(:, J)(\widehat{L}(I, J))^{\dagger} \widehat{L}(I,:)$
Complexity: $O\left(r^{3} n \log ^{2} n\right) \quad$ (if using AltProj or AccAltProj as RPCA)

[^0]
Robust CUR (RCUR) ${ }^{3}$

Need to understand:

- How incoherence and sparsity transfer to submatrices
- The quantity $\beta:=\sqrt{\frac{\mid J J}{n}}\left\|V_{r}(J,:)^{\dagger}\right\|_{2}$

Tools:

- Basic Linear Algebra
- Tropp's estimates on norms of pseudoinverses of submatrices of orthogonal matrices ${ }^{4}$

[^1]
Robust CUR (RCUR) ${ }^{3}$

Need to understand:

- How incoherence and sparsity transfer to submatrices
- The quantity $\beta:=\sqrt{\frac{\mid J J}{n}}\left\|V_{r}(J,:)^{\dagger}\right\|_{2}$

Tools:

- Basic Linear Algebra
- Tropp's estimates on norms of pseudoinverses of submatrices of orthogonal matrices ${ }^{4}$
Theorem [Tropp]: If L has incoherence $\mu_{2}(L)$ and $|J| \geq c \mu_{2} r$ is sampled uniformly without replacement, then

$$
\mathbb{P}\left(\beta \leq \frac{1}{\sqrt{1-\delta}}\right) \geq 1-r\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{c}, \quad \text { for all } \quad \delta \in[0,1)
$$

${ }^{3} \mathrm{Cai}-\mathrm{H}-\mathrm{Huang}-$ Needell, SIIMS '21
${ }^{4}$ Tropp, Advances in Adaptive Data Analysis, '11

Robust CUR (RCUR) ${ }^{5}$

Theorem [Cai et al.]: If L has incoherence $\mu_{1}(L), \mu_{2}(L)$ and $|J| \geq c \mu_{2} r \log (r n)$ is sampled uniformly without replacement, $C=L(:, J)$, then with probability $\geq 1-\frac{1}{n}$,

$$
\mu_{1}(C) \leq \mu_{1}(L), \quad \mu_{2}(C) \leq 100 \kappa(L)^{2} \mu_{2}(L)
$$

Theorem [Cai et al.]: Under some relations on $\alpha, \kappa(L), \mu_{1}(L), \mu_{2}(L)$, if $|I|,|J| \gtrsim \mu_{i}(L) r \log n$ are sampled uniformly without replacement and AltProj is used as RPCA. Then RCUR outputs \widehat{L} such that w.h.p.,

$$
\frac{\|L-\widehat{L}\|_{2}}{\|L\|_{2}} \leq \varepsilon \kappa(L)^{-1}
$$

Iterated Robust CUR (IRCUR) ${ }^{6}$

Initialize: Sample $O(\mu r \log n)$ row and column indices (I, J, respectively) uniformly at random, $C_{0}=R_{0}=U_{0}=0$
for $k=1: N$

$$
\begin{aligned}
& C_{k}=\left(D-S_{k-1}\right)(:, J) \\
& R_{k}=\left(D-S_{k-1}\right)(I,:) \\
& U_{k}=\operatorname{Truncated} \operatorname{SVD}\left(D-S_{k-1}\right)(I, J) \\
& L_{k}=C_{k} U_{k}^{\dagger} R_{k} \\
& S_{k}(I,:)=\text { HardThreshold }\left(D-L_{k}\right)(I,:) \\
& S_{k}(:, J)=\operatorname{HardThreshold}\left(D-L_{k}\right)(:, J)
\end{aligned}
$$

Return: $C_{N}, U_{N}, R_{N}, S_{N}$
Complexity: $O\left(r^{2} n \log ^{2} n\right)$

[^2]
Iterated Robust CUR (IRCUR)7

Implementation Notes
L_{k} is never formed, only C_{k}, U_{k}, and R_{k} are formed and stored

- Optional element to resample columns/rows at each iteration (work on different parts of L and S)
${ }^{7}$ Cai-H-Huang-Li-Wang, IEEE SPL, '21

Numerics

	AltProj	AccAltProj	RCUR	IRCUR	RieCUR
Complexity	$r^{2} n^{2}$	$r n^{2}$	$r^{3} n \log ^{2} n$	$r^{2} n \log ^{2} n$	$r^{2} n \log ^{2} n$

Experiments

Experiments

Experiments

	frame size	frame number	runtime (sec)			
	IRCUR-F	IRCUR-R	AccAltProj	GD		
\mathbf{S}	256×320	1000	2.03	2.16	23.04	93.18
\mathbf{R}	120×160	3055	0.82	0.88	15.96	58.37

Tensors

Chidori CUR Decomposition ${ }^{8}$

Fiber CUR Decomposition

$$
\begin{aligned}
& \mathcal{L}=\mathcal{R} \times{ }_{1} \mathcal{C}_{(1)}^{(1)} \mathcal{R}_{(1)} \times_{2} \cdots \times_{n} \mathcal{C}_{(n)}^{(n)} \mathcal{R}_{(n)} \\
& \mathcal{L}=\mathcal{R} \times{ }_{1} \mathcal{C}_{(1)}^{(1)} U^{(1)} \times_{2} \cdots \times_{n} \mathcal{C}_{(n)}^{(n)} U^{(n)}
\end{aligned}
$$

${ }^{8}$ Thanks to Dustin Mixon for this name!

Image/Hyperspectral Image Compression

Future and Related Work

- Proof of convergence for IRCUR and RieCUR
- Theorem for AccAltProj: Under certain relations on parameters $\alpha, \mu, r, n, \sigma_{1}(L), \sigma_{1}(D)$, initialization via AltProj is sufficiently good to guarantee linear convergence of L_{k} and S_{k} to L and S
- Further extension to tensors of IRCUR and RieCUR ${ }^{9}$
- Extensions to matrix/tensor completion (Cai et al., Henneberger et al.)

[^3]
Thanks!

- H, Generalized pseudoskeleton decompositions, LAA '23
- H-Meskini-Cai, Riemannian CUR Decompositions for Robust Principle Component Analysis, ICML Workshop on Topology, Algebra, and Geometry in Machine Learning, '22
- Cai-H-Huang-Needell, Robust CUR Decompositions: Theory and Imaging Applications, SIIMS '21
- Cai-H-Huang-Needell, Mode-wise Tensor Decompositions: Multi-dimensional Generalizations of CUR Decompositions, JMLR '21
- Cai-H-Huang-Li-Wang, Rapid Robust Principal Component Analysis: CUR Accelerated Inexact Low Rank Estimation, IEEE SPL '20
- H-Huang, Stability of sampling for CUR Decompositions, Foundations of Data Science '20
- H-Huang, Perturbations of CUR Decompositions, SIMAX '20
- H-Huang, Perspectives on CUR Decompositions, ACHA '20

[^0]: ${ }^{2}$ Cai-H-Huang-Needell, SIIMS '21

[^1]: ${ }^{3}$ Cai-H-Huang-Needell, SIIMS '21
 ${ }^{4}$ Tropp, Advances in Adaptive Data Analysis, '11

[^2]: ${ }^{6}$ Cai-H-Huang-Li-Wang, IEEE SPL, '21

[^3]: ${ }^{9}$ Initial experimental work: Cai et al. ICCV '21

