
Getting more with less: matrix and tensor
algorithms from subsampling modes

Keaton Hamm

University of Texas at Arlington

Warwick Algorithms Seminar

HanQin Cai
UCF
Math

Longxiu Huang
Michigan State

Math

Jiaqi Li
Sun-Yat Sen

Data and Comp. Sci

Deanna Needell
UCLA
Math

Tao Wang
Sun-Yat Sen

Data and Comp. Sci

Sponsor

Premise

data = low-rank + noise

Paradigm

Algorithms that only view small subsets of the full data matrix or
tensor

What is a CUR decomposition?

Theorem (folklore): If rank(U) = rank(L), then L = CU†R

Proof

Case when U is invertible:

Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX
Therefore A = CU−1R.

Proof

Case when U is invertible:
Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX
Therefore A = CU−1R.

Proof

Case when U is invertible:
Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX
Therefore A = CU−1R.

Proof

Case when U is invertible:
Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX
Therefore A = CU−1R.

Proof

Case when U is invertible:
Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX
Therefore A = CU−1R.

Proof

Case when U is invertible:
Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX

Therefore A = CU−1R.

Proof

Case when U is invertible:
Columns of C form a basis for Col(A)

A = CX

Pr - row selection matrix: Pr A = R

A = CX ⇔ Pr A = Pr CX
⇔ R = UX

X = U−1R is a solution to R = UX
Therefore A = CU−1R.

Key Idea

▶ Use submatrices for reconstruction/approximation
▶ Choose “good" columns/rows that represent the matrix well

Why?

▶ Interpretable representations
▶ Kernel matrix approximation
▶ Fast approximation to the SVD!
▶ Robust low-rank matrix approximation
▶ Preserves some structures (e.g., sparsity)

Applications

▶ Subspace Clustering
▶ Computer Vision Applications (Motion Segmentation,

Facial Recognition)
▶ Sketching of massive data
▶ Image processing

Key Idea

▶ Use submatrices for reconstruction/approximation
▶ Choose “good" columns/rows that represent the matrix well

Why?

▶ Interpretable representations
▶ Kernel matrix approximation
▶ Fast approximation to the SVD!
▶ Robust low-rank matrix approximation
▶ Preserves some structures (e.g., sparsity)

Applications

▶ Subspace Clustering
▶ Computer Vision Applications (Motion Segmentation,

Facial Recognition)
▶ Sketching of massive data
▶ Image processing

Key Idea

▶ Use submatrices for reconstruction/approximation
▶ Choose “good" columns/rows that represent the matrix well

Why?

▶ Interpretable representations
▶ Kernel matrix approximation
▶ Fast approximation to the SVD!
▶ Robust low-rank matrix approximation
▶ Preserves some structures (e.g., sparsity)

Applications

▶ Subspace Clustering
▶ Computer Vision Applications (Motion Segmentation,

Facial Recognition)
▶ Sketching of massive data
▶ Image processing

Key Themes

▶ (Mildly) Oversampling (pk columns) is your friend: gives
good approximations to truncated SVD (of order k)

▶ Good for (approximately) low-rank matrices – bad for
full-rank matrices

▶ Randomized or hybrid random + deterministic column
sampling is your friend

▶ Interpretability

Related Work

A = CX – interpolative decompositions [Voronin–Martinsson,
ACOM ’17]

A = CUR, C = A(:, J), R = A(I, :), U =??? – CUR
decompositions [Drineas–Mahoney–Muthukrishnan, SIMAX
’08]

Synonyms/intimately related names
▶ Cross Approximation [Tyrtyshnikov, Computing ’00]
▶ (Pseudo)skeleton decomposition

[Goreinov–Tyrtyshnikov–Zamarashkin, LAA ’97]
▶ Nyström method (when A is SPSD) [Williams–Seeger,

NeurIPS ’00]
Generalizations
▶ Generalized CUR decompositions [Gidisu–Hochstenbach,

’22]
▶ Meta factorization [Karpowicz, ’22]

Choosing U in CUR

Natural choice I: U = A(I, J)† (A ≈ CU†R)

Natural choice II: U = C†AR† (A ≈ CC†AR†R)

argmin
Z

∥A − CZR∥F = C†AR†

Characterization

Theorem (H–Huang, ACHA ’20)
Let A ∈ Rm×n and I ⊆ [m], J ⊆ [n]. Let C = A(:, J), U = A(I, J),
and R = A(I, :). Then the following are equivalent:

1. rank(U) = rank(A),
2. A = CU†R,
3. A = CC†AR†R,
4. A† = R†UC†,
5. rank(C) = rank(R) = rank(A),

Moreover, if any of the equivalent conditions above hold, then
U† = C†AR†.

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement
from some distribution over the column indices

▶ Uniform: pi :=
1
n

▶ Column Length: pi =
∥A(:, i)∥2

2

∥A∥2
F

▶ Leverage Scores: p(k)
i :=

1
k
∥Vk (i , :)∥2

2

Random Sampling Methods II: Bernoulli trials on each column
▶ Typically Column Length – requires rescaling columns in

the reconstruction phase

Deterministic Sampling Methods:

▶ Discrete Empirical Interpolation Method (DEIM)
[Gu–Eisenstat, SICOMP ’96, Sorensen–Embree, SICOMP
’16]

▶ Greedy Column Selection [Avron–Boutsidis, SIMAX ’13]

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement
from some distribution over the column indices

▶ Uniform: pi :=
1
n

▶ Column Length: pi =
∥A(:, i)∥2

2

∥A∥2
F

▶ Leverage Scores: p(k)
i :=

1
k
∥Vk (i , :)∥2

2

Random Sampling Methods II: Bernoulli trials on each column
▶ Typically Column Length – requires rescaling columns in

the reconstruction phase

Deterministic Sampling Methods:

▶ Discrete Empirical Interpolation Method (DEIM)
[Gu–Eisenstat, SICOMP ’96, Sorensen–Embree, SICOMP
’16]

▶ Greedy Column Selection [Avron–Boutsidis, SIMAX ’13]

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement
from some distribution over the column indices

▶ Uniform: pi :=
1
n

▶ Column Length: pi =
∥A(:, i)∥2

2

∥A∥2
F

▶ Leverage Scores: p(k)
i :=

1
k
∥Vk (i , :)∥2

2

Random Sampling Methods II: Bernoulli trials on each column
▶ Typically Column Length – requires rescaling columns in

the reconstruction phase

Deterministic Sampling Methods:

▶ Discrete Empirical Interpolation Method (DEIM)
[Gu–Eisenstat, SICOMP ’96, Sorensen–Embree, SICOMP
’16]

▶ Greedy Column Selection [Avron–Boutsidis, SIMAX ’13]

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement
from some distribution over the column indices

▶ Uniform: pi :=
1
n

▶ Column Length: pi =
∥A(:, i)∥2

2

∥A∥2
F

▶ Leverage Scores: p(k)
i :=

1
k
∥Vk (i , :)∥2

2

Random Sampling Methods II: Bernoulli trials on each column
▶ Typically Column Length – requires rescaling columns in

the reconstruction phase

Deterministic Sampling Methods:

▶ Discrete Empirical Interpolation Method (DEIM)
[Gu–Eisenstat, SICOMP ’96, Sorensen–Embree, SICOMP
’16]

▶ Greedy Column Selection [Avron–Boutsidis, SIMAX ’13]

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement
from some distribution over the column indices

▶ Uniform: pi :=
1
n

▶ Column Length: pi =
∥A(:, i)∥2

2

∥A∥2
F

▶ Leverage Scores: p(k)
i :=

1
k
∥Vk (i , :)∥2

2

Random Sampling Methods II: Bernoulli trials on each column
▶ Typically Column Length – requires rescaling columns in

the reconstruction phase

Deterministic Sampling Methods:

▶ Discrete Empirical Interpolation Method (DEIM)
[Gu–Eisenstat, SICOMP ’96, Sorensen–Embree, SICOMP
’16]

▶ Greedy Column Selection [Avron–Boutsidis, SIMAX ’13]

How do we choose columns/rows?

Random Sampling Methods I: Sample w/ or w/out replacement
from some distribution over the column indices

▶ Uniform: pi :=
1
n

▶ Column Length: pi =
∥A(:, i)∥2

2

∥A∥2
F

▶ Leverage Scores: p(k)
i :=

1
k
∥Vk (i , :)∥2

2

Random Sampling Methods II: Bernoulli trials on each column
▶ Typically Column Length – requires rescaling columns in

the reconstruction phase

Deterministic Sampling Methods:
▶ Discrete Empirical Interpolation Method (DEIM)

[Gu–Eisenstat, SICOMP ’96, Sorensen–Embree, SICOMP
’16]

▶ Greedy Column Selection [Avron–Boutsidis, SIMAX ’13]

Tradeoffs:
▶ Computational Complexity: Leverage ≫ Col Length ≫

Uniform

▶ Guarantees: Leverage Scores > Col Length > Uniform
▶ Oversampling Factor (p): Leverage < Col Length ≈

Uniform

Tradeoffs:
▶ Computational Complexity: Leverage ≫ Col Length ≫

Uniform
▶ Guarantees: Leverage Scores > Col Length > Uniform

▶ Oversampling Factor (p): Leverage < Col Length ≈
Uniform

Tradeoffs:
▶ Computational Complexity: Leverage ≫ Col Length ≫

Uniform
▶ Guarantees: Leverage Scores > Col Length > Uniform
▶ Oversampling Factor (p): Leverage < Col Length ≈

Uniform

The Subspace Clustering Problem

Goals:
▶ # of Subspaces?
▶ dim(Si)?
▶ Basis for Si?
▶ Cluster data {wi}n

i=1.

Other Applications

Tron–Vidal, CVPR ’07
Basri–Jacobs, TPAMI ’03
Hadani–Singer, Annals ’11

Meta-Theorem
Suppose A has columns drawn from a union of subspaces⋃L

i=1 Si ⊂ Rn. Under idealized assumptions on the subspaces,
columns of A can be clustered via the representation A = CX.
That is, one can find an assignment function Π such that
Π(ai) = k iff ai ∈ Sk .

▶ Elhamifar–Vidal, CVPR ’09, TPAMI ’13
▶ Liu–Lin–Yu, ICML ’10
▶ Aldroubi–Sekmen–Koku–Çakmak, ACHA ’18
▶ Aldroubi–H–Koku–Sekmen, Frontiers ’19

Key takeaway: These algorithms are fast and robust to noise

Problem (Robust PCA)

D = L + S = low-rank+ sparse

Problem (Robust PCA)

D = L + S = low-rank+ sparse

Problem (Robust PCA)

Nonconvex Formulation

min ∥D − L − S∥F s.t. rank(L) ≤ r , ∥S∥0 ≤ αn2

Convex Relaxation1

min ∥L∥∗ + λ∥S∥1 s.t. L + S = D

1Candès et al. Journal of ACM ’11

Properties

Incoherence of L

µ1(L) := max
i

√
n
r
∥Ur (i , :)∥2 µ2(L) := max

i

√
n
r
∥Vr (i , :)∥2

Sparsity of S

max
i

∥S(i , :)∥0 ≤ αn and max
j

∥S(:, j)∥0 ≤ αn

Robust CUR (RCUR)2

Parameter: RPCA – your favorite Robust PCA algorithm

Initialize: Sample O(µr log n) row and column indices (I, J,
respectively) uniformly at random, C̃ = D(:, J), R̃ = D(I, :)

L̂(:, J), Ŝ(:, J) = RPCA(C̃, r)
L̂(I, :), Ŝ(I, :) = RPCA(R̃, r)

Return : L̂(:, J)(L̂(I, J))†L̂(I, :)

Complexity: O(r3n log2 n) (if using AltProj or AccAltProj as
RPCA)

2Cai–H–Huang–Needell, SIIMS ’21

Robust CUR (RCUR)3

Need to understand:
▶ How incoherence and sparsity transfer to submatrices

▶ The quantity β :=
√

|J|
n ∥Vr (J, :)†∥2

Tools:
▶ Basic Linear Algebra
▶ Tropp’s estimates on norms of pseudoinverses of

submatrices of orthogonal matrices4

Theorem [Tropp]: If L has incoherence µ2(L) and |J| ≥ cµ2r is
sampled uniformly without replacement, then

P
(
β ≤ 1√

1 − δ

)
≥ 1 − r

(
e−δ

(1 − δ)1−δ

)c

, for all δ ∈ [0,1).

3Cai–H–Huang–Needell, SIIMS ’21
4Tropp, Advances in Adaptive Data Analysis, ’11

Robust CUR (RCUR)3

Need to understand:
▶ How incoherence and sparsity transfer to submatrices

▶ The quantity β :=
√

|J|
n ∥Vr (J, :)†∥2

Tools:
▶ Basic Linear Algebra
▶ Tropp’s estimates on norms of pseudoinverses of

submatrices of orthogonal matrices4

Theorem [Tropp]: If L has incoherence µ2(L) and |J| ≥ cµ2r is
sampled uniformly without replacement, then

P
(
β ≤ 1√

1 − δ

)
≥ 1 − r

(
e−δ

(1 − δ)1−δ

)c

, for all δ ∈ [0,1).

3Cai–H–Huang–Needell, SIIMS ’21
4Tropp, Advances in Adaptive Data Analysis, ’11

Robust CUR (RCUR)5

Theorem [Cai et al.]: If L has incoherence µ1(L), µ2(L) and
|J| ≥ cµ2r log(rn) is sampled uniformly without replacement,
C = L(:, J), then with probability ≥ 1 − 1

n ,

µ1(C) ≤ µ1(L), µ2(C) ≤ 100κ(L)2µ2(L).

Theorem [Cai et al.]: Under some relations on
α, κ(L), µ1(L), µ2(L), if |I|, |J| ≳ µi(L)r log n are sampled
uniformly without replacement and AltProj is used as RPCA.
Then RCUR outputs L̂ such that w.h.p.,

∥L − L̂∥2

∥L∥2
≤ εκ(L)−1.

5Cai–H–Huang–Needell, SIIMS ’21

Iterated Robust CUR (IRCUR)6

Initialize: Sample O(µr log n) row and column indices (I, J,
respectively) uniformly at random, C0 = R0 = U0 = 0

for k = 1 : N

Ck = (D − Sk−1)(:, J)
Rk = (D − Sk−1)(I, :)
Uk = TruncatedSVD(D − Sk−1)(I, J)
Lk = CkU†

kRk

Sk (I, :) = HardThreshold(D − Lk)(I, :)
Sk (:, J) = HardThreshold(D − Lk)(:, J)

Return: CN ,UN ,RN ,SN

Complexity: O(r2n log2 n)

6Cai–H–Huang–Li–Wang, IEEE SPL, ’21

Iterated Robust CUR (IRCUR)7

Implementation Notes
▶ Lk is never formed, only Ck ,Uk , and Rk are formed and

stored
▶ Optional element to resample columns/rows at each

iteration (work on different parts of L and S)

7Cai–H–Huang–Li–Wang, IEEE SPL, ’21

Numerics

AltProj AccAltProj RCUR IRCUR RieCUR
Complexity r2n2 rn2 r3n log2 n r2n log2 n r2n log2 n

Experiments

Experiments

2000 4000 6000 8000 10000
Dimension

0

200

400

600

800

1000

Ti
m

e
(s

ec
s)

RieCUR
IRCUR
AccAltProj

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Sparsity

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fin
al

 R
el

at
iv

e
Er

ro
r

RieCUR
IRCUR
AccAltProj

Experiments

Tensors

Chidori CUR Decomposition8 Fiber CUR Decomposition

L = R×1 C
(1)
(1)R(1) ×2 · · · ×n C(n)

(n)R(n)

L = R×1 C
(1)
(1)U

(1) ×2 · · · ×n C(n)
(n)U

(n)

8Thanks to Dustin Mixon for this name!

Image/Hyperspectral Image Compression

Future and Related Work

▶ Proof of convergence for IRCUR and RieCUR
▶ Theorem for AccAltProj: Under certain relations on

parameters α, µ, r ,n, σ1(L), σ1(D), initialization via AltProj is
sufficiently good to guarantee linear convergence of Lk and
Sk to L and S

▶ Further extension to tensors of IRCUR and RieCUR9

▶ Extensions to matrix/tensor completion (Cai et al.,
Henneberger et al.)

9Initial experimental work: Cai et al. ICCV ’21

Thanks!

▶ H, Generalized pseudoskeleton decompositions, LAA ’23
▶ H–Meskini–Cai, Riemannian CUR Decompositions for Robust Principle

Component Analysis, ICML Workshop on Topology, Algebra, and Geometry in
Machine Learning, ’22

▶ Cai–H–Huang–Needell, Robust CUR Decompositions: Theory and Imaging
Applications, SIIMS ’21

▶ Cai–H–Huang–Needell, Mode-wise Tensor Decompositions: Multi-dimensional
Generalizations of CUR Decompositions, JMLR ’21

▶ Cai–H–Huang–Li–Wang, Rapid Robust Principal Component Analysis: CUR
Accelerated Inexact Low Rank Estimation, IEEE SPL ’20

▶ H–Huang, Stability of sampling for CUR Decompositions, Foundations of Data
Science ’20

▶ H–Huang, Perturbations of CUR Decompositions, SIMAX ’20
▶ H–Huang, Perspectives on CUR Decompositions, ACHA ’20

