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Main Contributions
Context: Bayesian estimation of posterior quantities via MCMC

• Provide a methodology for unbiased estimation of posterior quantities with

linear computational cost in many models of interest (namely crossed random

effect and matrix factorization models), leveraging couplings.

• Find a bound on the expected number of iterations needed for the chains to

meet, when coupled under previous strategy, and hence, on their

computational cost.

• Extensive simulations on crossed random effects and probabilistic matrix

factorization models, proving goodness of theory and methodology.
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Unbiased estimates via couplings - Idea
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Couplings for estimation
We are interested in approximating expectations of the form

Eπ[h] =

∫
X
h(θ)π(dθ),

where π ∈ P(X ) is the target probability distribution and h : X → Rd.

Jacob, O’Leary, and Atchadé 2020 proposed to use couplings to obtain unbiased

estimates from (biased) MCMCs.

Let {Xt}Tt=1, {Yt}Tt=1 be coupled (i.e. correlated) chains evolving with π-invariant
kernel P. Initialize (X0, Y0) ∼ (π0P)⊗ π0 for some π0. It follows X

t−1 =d Yt .

Under some regularity assumptions, if T = inft{Xt = Yt}, then an unbiased

estimate of Eπ[h(X)] is

Hk(X, Y) = h
(
X
k
)
+

T−1∑
t=k+1

(h(X t)− h(Y t)) .
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Heuristic

Eπ[h(X)] = E
[
lim

t→+∞
h(Xt)

]
= E

[
h(Xk) +

∞∑
t=k+1

h(Xt)− h(Xt−1)

]

= E[h(Xk)] +
∞∑

t=k+1

E[h(Xt)− h(Xt−1)] = E[h(Xk)] +
∞∑

t=k+1

E[h(Xt)]− E[h(Yt)]

= E

[
h(Xk) +

∞∑
t=k+1

(h(Xt)− h(Yt))

]

= E

[
h(Xk) +

T−1∑
t=k+1

(h(Xt)− h(Yt))

]
.

Where we used Yt =d Xt−1, and that T = inft{t ≥ 0 : Yt = Xt} < +∞.

Unbiased ∀k ≥ 0, but the cost and variance depends on it.
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Actually
It is possible to improve the above estimator computing Hk(X, Y) for several
values of k from the same realization and take the average. For k ≥ m consider:

Hk:m(X, Y) =
1

m−k + 1

m∑
l=k

Hl(X, Y)

=
1

m− k + 1

m∑
l=k

h(Xl) +

T−1∑
l=k+1

min

(
1,

l − k

m− k + 1

)
(h(X t)− h(Y t))

12 / 58



Couplings and Notation

Definition 1
Given p, q ∈ P(X ), a coupling of p, q is a joint distributions on X × X whose

first and second marginals are, respectively, p and q. We denote the space of

such couplings as Γ(p, q). We also write (X, Y) ∈ Γ(p, q) for random vectors

(X, Y) s.t. X ∼ p, Y ∼ q.

Definition 2
Consider a transition kernel P : X ×F → [0, 1] , we denote P̄[P] a distribution on
X × X such that P̄[P]((x, y), ·) ∈ Γ (P(x, ·), P(y, ·)) for every (x, y) ∈ X × X .
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Example
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Optimal strategies for coupling
chains
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Coupling of Gibbs Chains
Suppose θ = (θ(1), ...,θ(K)). In a Gibbs sampler we iteratively sample from

π
(
θ(k)|θ(−k)

)
for k = 1, ..., K up to convergence. The resulting Gibbs Sampler

kernel P can be written as the following composition of K kernels

P = PK · · · P1, (1)

Pk(θ, dθ
′) = π(dθ′

(k)|θ(−k))δθ(−k)
(dθ′

(−k)) k = 1, . . . , K, θ ∈ X . (2)

A strategy is to sequentially compose a coupling of each full conditional, i.e.

P̄((x, y), ·) := P̄[PK ] · · · P̄[P1] ((x, y), ·) ∀x, y ∈ X , (3)

6= P̄[PK · · · P1]((x, y), ·)

Remark

For BGS with c.i. blocks, univariate updates are equivalent to block up-

dates. In general it is not the same for couplings.
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Gibbs couplings
Suppose that

Pk(θ, dθ
′) = π(dθ′

(k)|θ(−k))δθ(−k)
(dθ′

(−k)) =
∏
i

π(dθ′(k),i|θ(−k))δθ(−k)
(dθ′

(−k))

Let pi = π(dX(k),i|X(−k)), qi = π(dY(k),i|Y(−k)), then it holds:

min
i

Prmax(pi, qi)) ≥ Prmax(p, q) ≥
∏
i

Prmax(pi, qi). (4)
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Two step Coupling of Markov Chains
We propose a two step technique as in Biswas et al. 2022: if the chains are “far

away” in the space implement a contractive coupling, if “close enough”,

implement a maximal coupling.

P̄[P]((x, y), ·) =

{
P̄c[P]((x, y), ·) if d(x, y) > ε

P̄m[P]((x, y), ·) if d(x, y) ≤ ε,
(5)

where P̄m is a maximal coupling of the kernels within brackets, and P̄c is a

(hopefully optimal) contracting one.
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Two step couplings
Algorithm 1: Two-step coupling algorithm

Input: initial distribution π0, kernels P, P̄
c, P̄m

Sample X−1 ∼ π0, Y
0 ∼ π0 and X0 ∼ P(X−1, ·);

while X t 6= Y t do

if d(X t, Y t) > ε then
(X t+1, Y t+1) ∼ P̄c[P]((X t, Y t), ·)

else

(X t+1, Y t+1) ∼ P̄m[P]((X t, Y t), ·)
t ← t + 1

Output: trajectory (X t, Y t)t∈{0,...,T}
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- again -
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Bound on meeting time, π-reversible
Consider the forward-backward-scan kernel P(FB) defined as

P(FB) = P1 · · · PK−1PKPK−1 · · · P1 .

Theorem 3 (Bound for reversible chains)
Let π = N(µ,Σ) and (X t, Y t)t≥0 be Markov chain marginally evolving with P(FB) and

coupled via Algorithm 1. Let T := min{t ≥ 0 | X t = Y t}. Then

E[T|X0, Y0] ≤ 4 + Trel

[
1

2
ln(Trel) + C0 + Cε

]
, (6)

where, C0 := ln
(
‖L−1(X0 − Y0)‖

)
with L s.t. LL> = Σ, and Cε a constant

depending on the fixed parameter ε of Algorithm 1, Trel :=
1

1−ρ(B) with B

autoregressive matrix of Lemma 1 G. O. Roberts and Sahu 1997.
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Sketch of the proof
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Sketch of the proof
Let tk be the k-th time at which dtv(L(X t+1|X t),L(Y t+1|Y t)) < ε, i.e.

tk := min{t > tk−1 : dtv(L(X t+1|X t),L(Y t+1|Y t)) < ε} k ≥ 1, (7)

with t0 := −1 by convention. By the form of Algorithm 1, it follows we try

maximal couplings only at iterations tk . Also, let Ak be a binary variable indicating

whether the maximal coupling attempt at tk is successful, i.e.

Ak :=

{
1 if X tk+1 = Y tk+1

0 otherwise
, k ≥ 1. (8)

By faithfulness, Ak = 1 implies that X t = Y t, ∀t ≥ tk + 1 and by convention

Ak′ = 1 for all k′ > k. Thus, T can be written as

T = t1 + 1 +
+∞∑
k=1

(1− Ak)(tk+1 − tk). (9)
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MCMC convergence properties

Lemma 4
A Markov chain targeting a K-blocks N(µ,Σ), can be written as (G. O. Roberts and

Sahu 1997):

θt+1|θt ∼ N (Bθt + b,Σ− BΣB′) , (10)

where Q = Σ−1b = (I− B)µ.

It follows:

Trel ≈ 1
1−ρ(B) .
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Bound for two blocks Gibbs
Consider now a two blocks Gibbs kernel, i.e.

P(2b) = P2P1 Pi(θ, dθ
′) = π

(
dθ′

(j)|θ(i)

)
δθ(i)

(dθ′
(i)) for i, j = 1, 2

Theorem 5
Let (X t, Y t)

t≥0 be Markov chain marginally evolving with P with K = 2 blocks,

coupled via Algorithm 1, let T := min{t ≥ 0 | X t = Y t} as before. It holds that

E[T|X0, Y0] ≤ 5 + Trel [C0 + Cε] , (11)

where C0, Cε as in Theorem 3 and Trel =
1

1−ρ(B) for B the autoregressive matrix as in

Lemma 1 G. O. Roberts and Sahu 1997.
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Unbiased estimates of crossed
random effect models
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Crossed Random Effect models
Models for recommending systems: yn is a rating given by costumer i[n] to film

j[n], and

L(yn|µ,a, τ) = N
(
µ+ ai[n] + aj[n], τ

−1
)

i = 1, ..., I1 j = 1, ..., I2.

Generally, additive models that relates a response variable to K categorical

ones, whose effects are unknown and need to be estimated.

• K categorical variables, each with Ik different levels for k = 1...K ,

• The effect of the j-th level of the k-th factor is described by an unknown

random variable a
(k)
j .

yn|µ, a, τ ∼ N

(
µ+

K∑
k=1

a
(k)
ik[n]

,
1

τ0

)
for j = 1, ...,N
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Vanilla algorithms
Simple models whose computational cost can be overwhelmingly high:

Frequentist estimation : either via OLS

(inefficient) or GLS

COMPUTATIONAL COST

O(N
3
2 ) [Ghosh, Hastie, and A. B.

Owen 2022]

Vanilla Gibbs sampler: exploit block

updates

for t=1,...,T do

µ ∼ L(µ|y, a, τ )
for k = 1, ..., K do

a
(k) ∼ L(a(k)|y, µ, a−(k), τ )

= ⊗L(a(k)i |y, µ, a−(k), τ )

COMPUTATIONAL COST

O(N) · O(
√
N) [I1 = I2,Gao and

A. Owen 2016]
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Frequentist & Bayesian estimation
State of the art algorithms:

Backfitting (GLS): iterative algorithm

maximizing p(µ,a|y) via coordinate
wise ascent. On Gaussians:

p(x) ∝ exp{−xTQx/2 + xTb}

m(k) ←− (Q(k,k))−1
∑
l 6=k

Q(k,l)m(l)

+ (Q(k,k))−1b(k)

COMPUTATIONAL COST

O(1) · O(N) [Ghosh, Hastie, and
A. B. Owen 2022]

Collapsed Gibbs sampler: integrate µ
out;

for t=1,...,T do

for k=1,...,K do

µ ∼ L(µ|y, a(−k), τ )
a(k) ∼ L(a(k)|y, µ, a−(k), τ )

COMPUTATIONAL COST

O(1) · O(N) [Papaspiliopoulos, G
O Roberts, and Zanella 2019]1

[2] for balanced cells design or balanced levels and

K=2
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Theoretical results
Combining Theorem 5 with the results in Omiros Papaspiliopoulos,

Stumpf-Fétizon, and Giacomo Zanella 2021 , we obtain the following bound for

the expected meeting times.

Theorem 6
Let (X t, Y t)t≥0 be as in Theorem 5 and let π = N(µ,Σ) be the posterior distribution
of CREM with K = 2 factors, fixed τ and design (nij)i,j picked uniformly at random

fromD(n, d1, d2). Then

Pr

(
E[T|X0, Y0] ≤ 5 + C

(
1 +

2√
min{d1, d2} − 2

+ ε

)
[C0 + Cε]

)
→ 1,

as N→ +∞, where Cε, C0 as in Theorem 5, where the probability is with respect to

the randomness of the design.
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Asymptotic regimes
We study the behaviour of coalescence time and the previous bounds of

Theorem 1 in two different asymptotic regimes: both with K=2, but different

missingness patterns.

1. an observation of given combination of two factor levels i, j is seen with

probability p = 0.1, and we let the level number grows to infinity:

Zij ∼ Bern(p)

I = O(
√
N)

2. the probability of observing an observation decreases as I increases:

Zij ∼ Bern(10/I)

I = O(N)
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Outfill regime 1

Figure 1: estimated mean number of iterations and bounds for

K = 2,I = {50, 100, 250, 500, 750, 1000}, τ1 = τ2 = 1. Observing probability p = 0.1,
log scale.
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Outfil regime 2

Figure 2: estimated mean number of iterations and bounds for

K = 2,I = {50, 100, 250, 500, 750, 1000}, τ1 = τ2 = 1. Observing probability
p = 10/I, log scale.

39 / 58



InstEval Dataset
Dataset containing university lecture evaluations by students at ETH Zurich. It

contains 73421 observations, each corresponding to a score ranging from 1 to 5,

assigned to a lecture together with 6 factors potentially impacting such score,

such as identity of the student giving the rating or department that offers the

course. We have N = 73421, K = 6 and (I1, ..., IK) = (2972, 1128, 4, 6, 2, 14).
The results are shown in the table below:

Factor number mean #iter

col-

lapsed

[1,2] 8.1

[1,6] 7.53

vanilla
[1,2] 39.3

[1,6] 127.6
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Non-Gaussian case
If non-gaussian response, then no collapsed is possible, and local centering within

each block as in Omiros Papaspiliopoulos, Gareth O. Roberts, and Sköld 2007:

(µ, a(k))→ (µ, ξ(k)), ξ(k) = µ+ a
(k).

We exploit algorithm in Omiros Papaspiliopoulos, Stumpf-Fétizon, and

Giacomo Zanella 2021:

Algorithm 2: Gibbs sampler with local centering for non Gaussian likelihoods

for k= 1,...,K do

Reparametrize (µ,a(k))→ (µ, ξ(k))

Draw µ from L(µ|ξ(k)) = N

(
τ0µ0+τk

∑Ik
i=1 ξ

(k)
i

Ikτk
, 1
τ0+Ikτk

)
for i=1, ..., Ik do

draw ξ
(k)
i from L(ξ(k)i |y, τ1, ..., τk, µ, a−(k))

Reparametrize (µ, ξ(k))→ (µ,a(k))

Sampling from L(ξ(k)i |y, τ1, ..., τk, µ, a−(k)) requires MwG.
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Laplace response

yn|µ,a ∼ Laplace

(
µ+

K∑
k=1

a
(k)
ik[n]

, b

)
n = 1, ...,N

Below the estimated mean number of iterations for

K = 2,I = {50, 100, 250, 500}, τ1 = τ2 = 1, b = 1 with Laplace response.
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Stan Comparison

43 / 58



Probabilistic Matrix factorization

yn ∼ N(ρui1[n]vi2[n], τ
−1
0 ), n = 1, ...,N (12)

ui, vj ∼ N(0, 1d), i = 1, ..., I1; j = 1, ..., I2

τ0 ∼ Γ(c, d), ρ−
1
2 ∼ Γ(a, b),
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Two Step in detail
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W2 optimal coupling
They minimize the expected square distance between draws from p and q. i.e.:

ΓW2
= argminΓ∈Γ(p,q) E(X,Y)∼Γ

[
‖X − Y‖2

]

For every univariate distributions we have:

Lemma 1
Common random number coupling is optimal for any cost c(x, y) of the form
c(x, y) = h(x − y) for h(·) convex.
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Sampling from a W2 optimal coupling

Lemma 7
Let p = N(ξ,Σ1) and q = N(ν,Σ2) be d-dimensional Gaussian, with

Σ1Σ2 = Σ2Σ1. Define

ΓW2
(p, q) := N

((
ξ

ν

)
,

(
Σ1 FG>

GF> Σ2

))
, (13)

where FF> = Σ1,GG
> = Σ2. Then ΓW2(p, q) is a W2-optimal coupling of p and q.

Note that the variance covariance matrix of ΓW2 above is singular. In order to

sample:

Z ∼ N(0d, 1d){
X = µ+ FZ

Y = ν + GZ.
(14)
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W2 optimality
It is possible to show that the previous optimal coupling still remains optimal if

iterated for n steps in a Markov chain:

Lemma 2
Consider (X t)t≥1, (Y t)t≥1, chains arising from Gibbs sampler targeting Gaussian

distribution. Iterating n steps of ΓW2
on L(X(k)|X(−k)),L(Y(k)|Y(−k)), k = 1, .., K is

W2 optimal, i.e.

E[‖X t+n − Y t+n‖2|X t, Y t] = W2
2 (L(X t+n|X t),L(Y t+n|Y t)) ,

where W2(·, ·) indicates the Wasserstein 2 distance between distributions.
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Conclusions

• Explicit bound on number of iteration (hence on computational cost) for

Gaussian Gibbs sampler, of the order of Trel log Trel.

• Methodology matching state of the art techniques, providing unbiased

estimates.

• Insights on designing scalable strategies for general coupling algorithms.

Thank you
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Bound for invariant chains

Theorem 8
Let π = N(µ,Σ) and (X t, Y t)t≥0 be Markov chain evolving with kernel P, coupled via

Algorithm 1. For any δ > 0, it holds that

E[T|X0, Y0] ≤ 4+3max

(
n∗δ , (1 + δ)Trel

[
−1

2
ln
(
1− λmin(NN

>)
)
+ C0 + Cε

])
,

(15)

with N = L−1BL, LL> = Σ, C0, Cε, L, λmin as in Theorem 3 and

n∗δ := inf
n0

{
n0 ≥ 1 : ∀n ≥ n0 1− ‖Nn‖

1
n

2 ≥
1− ρ(N)

1 + δ

}
.
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Coupling of distributions

Definition 9
Given p, q ∈ P(X ), a coupling of p, q is a joint distributions on X × X whose

first and second marginals are, respectively, p and q. We denote the space of

such couplings as Γ(p, q). We also write (X, Y) ∈ Γ(p, q) for random vectors

(X, Y) s.t. X ∼ p, Y ∼ q.

Consider X ∼ Bern(p), Y ∼ Bern(q), then infinitely many couplings are possible.

If the table below shows the joint frequencies, then:

X \ Y 0 1

0 a b 1-p

1 c d p

1-q q


a+ b = 1− p

a+ c = 1− q

b+ d = q

system of 3 equations with 4 unknowns

(the fourth equation comes from the

others)
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Maximal independent coupling

Computational cost:

E[cost] = (1− dtv(p, q))× 1 + dtv(p, q)(1 + 1/dtv(p, q)) = 2

but var → +∞ as dtv(p, q)→ 0 (since variance of Geom(p) = (1− p)/p2).
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Sampling from reflection coupling
Available only for Gaussian rvs with same variance covariance matrices:

In the univariate case it can be written as: sample X ∼ N(µ1, σ
2), sample W , if

accept, set Y = X , else set Y = µ2 − (X − µ1).
Computational cost: deterministically 2.
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