Linear-cost unbiased posterior estimates for crossed effects and matrix factorization models via couplings

Paolo Ceriani \& Giacomo Zanella

Bocconi University

May 31, 2024

Main Contributions

Context: Bayesian estimation of posterior quantities via MCMC

Main Contributions

Context: Bayesian estimation of posterior quantities via MCMC

- Provide a methodology for unbiased estimation of posterior quantities with linear computational cost in many models of interest (namely crossed random effect and matrix factorization models), leveraging couplings.

Bocconi

Main Contributions

Context: Bayesian estimation of posterior quantities via MCMC

- Provide a methodology for unbiased estimation of posterior quantities with linear computational cost in many models of interest (namely crossed random effect and matrix factorization models), leveraging couplings.
- Find a bound on the expected number of iterations needed for the chains to meet, when coupled under previous strategy, and hence, on their computational cost.

Bocconi

Main Contributions

Context: Bayesian estimation of posterior quantities via MCMC

- Provide a methodology for unbiased estimation of posterior quantities with linear computational cost in many models of interest (namely crossed random effect and matrix factorization models), leveraging couplings.
- Find a bound on the expected number of iterations needed for the chains to meet, when coupled under previous strategy, and hence, on their computational cost.
- Extensive simulations on crossed random effects and probabilistic matrix factorization models, proving goodness of theory and methodology.

Bocconi

Unbiased estimates via couplings - Idea

Unbiased estimates via couplings - Idea

Bocconi

Couplings for estimation

We are interested in approximating expectations of the form

$$
\mathbb{E}_{\pi}[h]=\int_{\mathcal{X}} h(\boldsymbol{\theta}) \pi(d \boldsymbol{\theta})
$$

where $\pi \in \mathcal{P}(\mathcal{X})$ is the target probability distribution and $h: \mathcal{X} \rightarrow \mathbb{R}^{d}$.

Bocconi

Couplings for estimation

We are interested in approximating expectations of the form

$$
\mathbb{E}_{\pi}[h]=\int_{\mathcal{X}} h(\boldsymbol{\theta}) \pi(d \boldsymbol{\theta})
$$

where $\pi \in \mathcal{P}(\mathcal{X})$ is the target probability distribution and $h: \mathcal{X} \rightarrow \mathbb{R}^{d}$.
Jacob, O'Leary, and Atchadé 2020 proposed to use couplings to obtain unbiased estimates from (biased) MCMCs.
Let $\left\{\mathbf{X}^{t}\right\}_{t=1}^{T},\left\{\mathbf{Y}^{t}\right\}_{t=1}^{T}$ be coupled (i.e. correlated) chains evolving with π-invariant kernel P. Initialize $\left(\boldsymbol{X}^{0}, \boldsymbol{Y}^{0}\right) \sim\left(\pi_{0} P\right) \otimes \pi_{0}$ for some π_{0}. It follows $\mathbf{X}^{t-1}={ }^{d} \mathbf{Y}^{t}$.

Bocconi

Couplings for estimation

We are interested in approximating expectations of the form

$$
\mathbb{E}_{\pi}[h]=\int_{\mathcal{X}} h(\boldsymbol{\theta}) \pi(d \boldsymbol{\theta})
$$

where $\pi \in \mathcal{P}(\mathcal{X})$ is the target probability distribution and $h: \mathcal{X} \rightarrow \mathbb{R}^{d}$.
Jacob, O'Leary, and Atchadé 2020 proposed to use couplings to obtain unbiased estimates from (biased) MCMCs.
Let $\left\{\mathbf{X}^{t}\right\}_{t=1}^{T},\left\{\mathbf{Y}^{t}\right\}_{t=1}^{T}$ be coupled (i.e. correlated) chains evolving with π-invariant kernel P. Initialize $\left(\boldsymbol{X}^{0}, \boldsymbol{r}^{0}\right) \sim\left(\pi_{0} P\right) \otimes \pi_{0}$ for some π_{0}. It follows $\mathbf{X}^{t-1}={ }^{d} \mathbf{Y}^{t}$.

Under some regularity assumptions, if $T=\inf _{t}\left\{\mathbf{X}^{t}=\mathbf{Y}^{t}\right\}$, then an unbiased estimate of $\mathbb{E}_{\pi}[h(\mathbf{X})]$ is

$$
H_{k}(\boldsymbol{X}, \boldsymbol{Y})=h\left(\boldsymbol{x}^{k}\right)+\sum_{t=k+1}^{T-1}\left(h\left(\boldsymbol{X}^{t}\right)-h\left(\boldsymbol{Y}^{t}\right)\right)
$$

Bocconi

Heuristic

$$
\begin{aligned}
\mathbb{E}_{\pi}[h(\mathbf{x})] & =\mathbb{E}\left[\lim _{t \rightarrow+\infty} h\left(\mathbf{X}^{t}\right)\right]=\mathbb{E}\left[h\left(\mathbf{x}^{k}\right)+\sum_{t=k+1}^{\infty} h\left(\mathbf{X}^{t}\right)-h\left(\mathbf{x}^{t-1}\right)\right] \\
& =\mathbb{E}\left[h\left(\mathbf{X}^{k}\right)\right]+\sum_{t=k+1}^{\infty} \mathbb{E}\left[h\left(\mathbf{x}^{t}\right)-h\left(\mathbf{X}^{t-1}\right)\right]=\mathbb{E}\left[h\left(\mathbf{X}^{k}\right)\right]+\sum_{t=k+1}^{\infty} \mathbb{E}\left[h\left(\mathbf{X}^{t}\right)\right]-\mathbb{E}\left[h\left(\mathbf{Y}^{t}\right)\right] \\
& =\mathbb{E}\left[h\left(\mathbf{X}^{k}\right)+\sum_{t=k+1}^{\infty}\left(h\left(\mathbf{x}^{t}\right)-h\left(\mathbf{Y}^{t}\right)\right)\right] \\
& =\mathbb{E}\left[h\left(\mathbf{X}^{k}\right)+\sum_{t=k+1}^{T-1}\left(h\left(\mathbf{X}^{t}\right)-h\left(\mathbf{Y}^{t}\right)\right)\right] .
\end{aligned}
$$

Where we used $\mathbf{Y}^{t}={ }^{d} \mathbf{X}^{t-1}$, and that $T=\inf _{t}\left\{t \geq 0: \mathbf{Y}^{t}=\mathbf{X}^{t}\right\}<+\infty$.
Unbiased $\forall k \geq 0$, but the cost and variance depends on it.

Bocconi

Actually

It is possible to improve the above estimator computing $H_{k}(\mathbf{X}, \mathbf{Y})$ for several values of k from the same realization and take the average. For $k \geq m$ consider:

$$
\begin{aligned}
H_{k: m}(\mathbf{X}, \mathbf{Y}) & =\frac{1}{m-k+1} \sum_{l=k}^{m} H_{l}(\mathbf{X}, \mathbf{Y}) \\
& =\frac{1}{m-k+1} \sum_{l=k}^{m} h\left(\mathbf{X}^{l}\right)+\sum_{l=k+1}^{T-1} \min \left(1, \frac{l-k}{m-k+1}\right)\left(h\left(\boldsymbol{X}^{t}\right)-h\left(\boldsymbol{Y}^{t}\right)\right)
\end{aligned}
$$

Bocconi

Couplings and Notation

Definition 1

Given $p, q \in \mathcal{P}(\mathcal{X})$, a coupling of p, q is a joint distributions on $\mathcal{X} \times \mathcal{X}$ whose first and second marginals are, respectively, p and q. We denote the space of such couplings as $\Gamma(p, q)$. We also write $(\mathbf{X}, \mathbf{Y}) \in \Gamma(p, q)$ for random vectors $(\boldsymbol{X}, \boldsymbol{Y})$ s.t. $\mathbf{X} \sim p, \mathbf{Y} \sim q$.

Bocconi

Couplings and Notation

Definition 1

Given $p, q \in \mathcal{P}(\mathcal{X})$, a coupling of p, q is a joint distributions on $\mathcal{X} \times \mathcal{X}$ whose first and second marginals are, respectively, p and q. We denote the space of such couplings as $\Gamma(p, q)$. We also write $(\mathbf{X}, \mathbf{Y}) \in \Gamma(p, q)$ for random vectors $(\boldsymbol{X}, \boldsymbol{Y})$ s.t. $\mathbf{X} \sim p, \mathbf{Y} \sim q$.

Definition 2

Consider a transition kernel $P: \mathcal{X} \times \mathcal{F} \rightarrow[0,1]$, we denote $\bar{P}[P]$ a distribution on $\mathcal{X} \times \mathcal{X}$ such that $\bar{P}[P]((\boldsymbol{x}, \boldsymbol{y}), \cdot) \in \Gamma(P(\boldsymbol{x}, \cdot), P(\boldsymbol{y}, \cdot))$ for every $(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{X} \times \mathcal{X}$.

Bocconi

Example

Gaussian Coupling

Optimal strategies for coupling chains

Bocconi

Coupling of Gibbs Chains

Suppose $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{(1)}, \ldots, \boldsymbol{\theta}_{(K)}\right)$. In a Gibbs sampler we iteratively sample from $\pi\left(\boldsymbol{\theta}_{(k)} \mid \boldsymbol{\theta}_{(-k)}\right)$ for $k=1, \ldots, K$ up to convergence. The resulting Gibbs Sampler kernel P can be written as the following composition of K kernels

$$
\begin{align*}
P & =P_{k} \cdots P_{1} \tag{1}\\
P_{k}\left(\boldsymbol{\theta}, d \boldsymbol{\theta}^{\prime}\right) & =\pi\left(d \boldsymbol{\theta}_{(k)}^{\prime} \mid \boldsymbol{\theta}_{(-k)}\right) \delta_{\boldsymbol{\theta}_{(-k)}}\left(d \boldsymbol{\theta}_{(-k)}^{\prime}\right) \quad k=1, \ldots, k, \boldsymbol{\theta} \in \mathcal{X} . \tag{2}
\end{align*}
$$

Bocconi

Coupling of Gibbs Chains

Suppose $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{(1)}, \ldots, \boldsymbol{\theta}_{(K)}\right)$. In a Gibbs sampler we iteratively sample from $\pi\left(\boldsymbol{\theta}_{(k)} \mid \boldsymbol{\theta}_{(-k)}\right)$ for $k=1, \ldots, K$ up to convergence. The resulting Gibbs Sampler kernel P can be written as the following composition of K kernels

$$
\begin{align*}
P & =P_{k} \cdots P_{1} \tag{1}\\
P_{k}\left(\boldsymbol{\theta}, d \boldsymbol{\theta}^{\prime}\right) & =\pi\left(d \boldsymbol{\theta}_{(k)}^{\prime} \mid \boldsymbol{\theta}_{(-k)}\right) \delta_{\boldsymbol{\theta}_{(-k)}}\left(d \boldsymbol{\theta}_{(-k)}^{\prime}\right) \quad k=1, \ldots, K, \quad \boldsymbol{\theta} \in \mathcal{X} . \tag{2}
\end{align*}
$$

A strategy is to sequentially compose a coupling of each full conditional, i.e.

$$
\begin{equation*}
\bar{P}((\boldsymbol{x}, \boldsymbol{y}), \cdot):=\bar{P}\left[P_{K}\right] \cdots \bar{P}\left[P_{1}\right]((\boldsymbol{x}, \boldsymbol{y}), \cdot) \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X} \tag{3}
\end{equation*}
$$

Bocconi

Coupling of Gibbs Chains

Suppose $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{(1)}, \ldots, \boldsymbol{\theta}_{(K)}\right)$. In a Gibbs sampler we iteratively sample from $\pi\left(\boldsymbol{\theta}_{(k)} \mid \boldsymbol{\theta}_{(-k)}\right)$ for $k=1, \ldots, K$ up to convergence. The resulting Gibbs Sampler kernel P can be written as the following composition of K kernels

$$
\begin{align*}
P & =P_{k} \cdots P_{1} \tag{1}\\
P_{k}\left(\boldsymbol{\theta}, d \boldsymbol{\theta}^{\prime}\right) & =\pi\left(d \boldsymbol{\theta}_{(k)}^{\prime} \mid \boldsymbol{\theta}_{(-k)}\right) \delta_{\boldsymbol{\theta}_{(-k)}}\left(d \boldsymbol{\theta}_{(-k)}^{\prime}\right) \quad k=1, \ldots, k, \boldsymbol{\theta} \in \mathcal{X} . \tag{2}
\end{align*}
$$

A strategy is to sequentially compose a coupling of each full conditional, i.e.

$$
\begin{equation*}
\bar{P}((\boldsymbol{x}, \boldsymbol{y}), \cdot):=\bar{P}\left[P_{K}\right] \cdots \bar{P}\left[P_{1}\right]((\boldsymbol{x}, \boldsymbol{y}), \cdot) \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X} \tag{3}
\end{equation*}
$$

$$
\neq \bar{P}\left[P_{K} \cdots P_{1}\right]((\mathbf{x}, \mathbf{y}), \cdot)
$$

Bocconi

Coupling of Gibbs Chains

Suppose $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{(1)}, \ldots, \boldsymbol{\theta}_{(K)}\right)$. In a Gibbs sampler we iteratively sample from $\pi\left(\boldsymbol{\theta}_{(k)} \mid \boldsymbol{\theta}_{(-k)}\right)$ for $k=1, \ldots, K$ up to convergence. The resulting Gibbs Sampler kernel P can be written as the following composition of K kernels

$$
\begin{align*}
P & =P_{k} \cdots P_{1} \tag{1}\\
P_{k}\left(\boldsymbol{\theta}, d \boldsymbol{\theta}^{\prime}\right) & =\pi\left(d \boldsymbol{\theta}_{(k)}^{\prime} \mid \boldsymbol{\theta}_{(-k)}\right) \delta_{\boldsymbol{\theta}_{(-k)}}\left(d \boldsymbol{\theta}_{(-k)}^{\prime}\right) \quad k=1, \ldots, k, \boldsymbol{\theta} \in \mathcal{X} . \tag{2}
\end{align*}
$$

A strategy is to sequentially compose a coupling of each full conditional, i.e.

$$
\begin{equation*}
\bar{P}((\boldsymbol{x}, \boldsymbol{y}), \cdot):=\bar{P}\left[P_{K}\right] \cdots \bar{P}\left[P_{1}\right]((\boldsymbol{x}, \boldsymbol{y}), \cdot) \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathcal{X} \tag{3}
\end{equation*}
$$

$$
\neq \bar{P}\left[P_{K} \cdots P_{1}\right]((\mathbf{x}, \mathbf{y}), \cdot)
$$

Remark

For BGS with c.i. blocks, univariate updates are equivalent to block updates. In general it is not the same for couplings.

Gibbs couplings

Suppose that
$P_{k}\left(\boldsymbol{\theta}, d \boldsymbol{\theta}^{\prime}\right)=\pi\left(d \boldsymbol{\theta}_{(k)}^{\prime} \mid \boldsymbol{\theta}_{(-k)}\right) \delta_{\boldsymbol{\theta}_{(-k)}}\left(d \boldsymbol{\theta}_{(-k)}^{\prime}\right)=\prod \pi\left(d \theta_{(k), i}^{\prime} \mid \boldsymbol{\theta}_{(-k)}\right) \delta_{\boldsymbol{\theta}_{(-k)}}\left(d \boldsymbol{\theta}_{(-k)}^{\prime}\right)$

Let $p_{i}=\pi\left(d X_{(k), i} \mid \boldsymbol{X}_{(-k)}\right), q_{i}=\pi\left(d Y_{(k), i} \mid \boldsymbol{Y}_{(-k)}\right)$, then it holds:

$$
\begin{equation*}
\left.\min _{i} \operatorname{Pr} r_{\max }\left(p_{i}, q_{i}\right)\right) \geq \operatorname{Pr}_{\max }(p, q) \geq \prod \operatorname{Pr} \max \left(p_{i}, q_{i}\right) \tag{4}
\end{equation*}
$$

Bocconi

Two step Coupling of Markov Chains

We propose a two step technique as in Biswas et al. 2022: if the chains are "far away" in the space implement a contractive coupling, if "close enough", implement a maximal coupling.

$$
\bar{P}[P]((\boldsymbol{x}, \boldsymbol{y}), \cdot)= \begin{cases}\bar{P}^{c}[P]((\boldsymbol{x}, \boldsymbol{y}), \cdot) & \text { if } d(\boldsymbol{x}, \boldsymbol{y})>\varepsilon \tag{5}\\ \bar{P}^{m}[P]((\boldsymbol{x}, \boldsymbol{y}), \cdot) & \text { if } d(\boldsymbol{x}, \boldsymbol{y}) \leq \varepsilon\end{cases}
$$

where \bar{P}^{m} is a maximal coupling of the kernels within brackets, and \bar{P}^{c} is a (hopefully optimal) contracting one.

Bocconi

Two step couplings

Algorithm 1: Two-step coupling algorithm

Input: initial distribution π_{0}, kernels $P, \bar{P}^{c}, \bar{P}^{m}$
Sample $\boldsymbol{X}^{-1} \sim \pi_{0}, \boldsymbol{Y}^{0} \sim \pi_{0}$ and $\boldsymbol{X}^{0} \sim P\left(\boldsymbol{X}^{-1}, \cdot\right)$;
while $\boldsymbol{X}^{t} \neq \boldsymbol{Y}^{t}$ do
if $d\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right)>\varepsilon$ then
$L\left(\boldsymbol{X}^{t+1}, \boldsymbol{Y}^{t+1}\right) \sim \bar{P}^{c}[P]\left(\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right), \cdot\right)$
else
$\left\lfloor\left(\boldsymbol{X}^{t+1}, \boldsymbol{Y}^{t+1}\right) \sim \bar{P}^{m}[P]\left(\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right), \cdot\right)\right.$
$t \leftarrow t+1$
Output: trajectory $\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right)_{t \in\{0, \ldots, T\}}$

Bocconi

- again -

Bocconi

Bound on meeting time, π-reversible

Consider the forward-backward-scan kernel $P^{(F B)}$ defined as

$$
P^{(F B)}=P_{1} \cdots P_{K-1} P_{K} P_{K-1} \cdots P_{1}
$$

Bocconi

Bound on meeting time, π-reversible

Consider the forward-backward-scan kernel $P^{(F B)}$ defined as

$$
P^{(F B)}=P_{1} \cdots P_{K-1} P_{K} P_{K-1} \cdots P_{1}
$$

Theorem 3 (Bound for reversible chains)

Let $\pi=N(\boldsymbol{\mu}, \Sigma)$ and $\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right)_{t \geq 0}$ be Markov chain marginally evolving with $P^{(F B)}$ and coupled via Algorithm 1. Let $T:=\min \left\{t \geq 0 \mid \boldsymbol{X}^{t}=\boldsymbol{\gamma}^{t}\right\}$. Then

$$
\begin{equation*}
\mathbb{E}\left[T \mid \boldsymbol{X}^{0}, \boldsymbol{Y}^{0}\right] \leq 4+T_{\text {rel }}\left[\frac{1}{2} \ln \left(T_{\text {rel }}\right)+C_{0}+C_{\varepsilon}\right] \tag{6}
\end{equation*}
$$

where, $C_{0}:=\ln \left(\left\|L^{-1}\left(\boldsymbol{X}^{0}-\boldsymbol{Y}^{0}\right)\right\|\right)$ with L s.t. $L L^{\top}=\Sigma$, and C_{ε} a constant depending on the fixed parameter ε of Algorithm $1, T_{\text {rel }}:=\frac{1}{1-\rho(B)}$ with B autoregressive matrix of Lemma 1 G. O. Roberts and Sahu 1997.

Bocconi

Sketch of the proof

Bocconi

Sketch of the proof

Let t_{k} be the k-th time at which $d_{t v}\left(\mathcal{L}\left(\boldsymbol{X}^{t+1} \mid \boldsymbol{X}^{t}\right), \mathcal{L}\left(\boldsymbol{Y}^{t+1} \mid \boldsymbol{Y}^{t}\right)\right)<\varepsilon$, i.e.

$$
\begin{equation*}
t_{k}:=\min \left\{t>t_{k-1}: d_{t v}\left(\mathcal{L}\left(\boldsymbol{X}^{t+1} \mid \boldsymbol{X}^{t}\right), \mathcal{L}\left(\boldsymbol{Y}^{t+1} \mid \boldsymbol{\gamma}^{t}\right)\right)<\varepsilon\right\} \quad k \geq 1 \tag{7}
\end{equation*}
$$

with $t_{0}:=-1$ by convention. By the form of Algorithm 1, it follows we try maximal couplings only at iterations t_{k}. Also, let A_{k} be a binary variable indicating whether the maximal coupling attempt at t_{k} is successful, i.e.

$$
A_{k}:=\left\{\begin{array}{ll}
1 & \text { if } \boldsymbol{X}^{t_{k}+1}=\boldsymbol{Y}^{t_{k}+1} \tag{8}\\
0 & \text { otherwise }
\end{array}, \quad k \geq 1\right.
$$

By faithfulness, $A_{k}=1$ implies that $\boldsymbol{X}^{t}=\boldsymbol{Y}^{t}, \forall t \geq t_{k}+1$ and by convention $A_{k^{\prime}}=1$ for all $k^{\prime}>k$. Thus, T can be written as

$$
\begin{equation*}
T=t_{1}+1+\sum_{k=1}^{+\infty}\left(1-A_{k}\right)\left(t_{k+1}-t_{k}\right) \tag{9}
\end{equation*}
$$

Bocconi

MCMC convergence properties

Lemma 4

A Markov chain targeting a K-blocks $N(\boldsymbol{\mu}, \Sigma)$, can be written as (G. O. Roberts and Sahu 1997):

$$
\begin{equation*}
\boldsymbol{\theta}_{t+1} \mid \boldsymbol{\theta}_{t} \sim N\left(B \boldsymbol{\theta}_{t}+\boldsymbol{b}, \Sigma-B \Sigma B^{\prime}\right) \tag{10}
\end{equation*}
$$

where $Q=\Sigma^{-1} b=(I-B) \boldsymbol{\mu}$.
It follows:

$$
T_{r e l} \approx \frac{1}{1-\rho(B)}
$$

Bocconi

Bound for two blocks Gibbs

Consider now a two blocks Gibbs kernel, i.e.

$$
P^{(2 b)}=P_{2} P_{1} \quad P_{i}\left(\boldsymbol{\theta}, d \boldsymbol{\theta}^{\prime}\right)=\pi\left(d \boldsymbol{\theta}_{(j)}^{\prime} \mid \boldsymbol{\theta}_{(i)}\right) \delta_{\boldsymbol{\theta}_{(i)}}\left(d \boldsymbol{\theta}_{(i)}^{\prime}\right) \text { for } i, j=1,2
$$

Theorem 5

Let $\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right)_{t>0}$ be Markov chain marginally evolving with P with $K=2$ blocks, coupled via Ālgorithm 1, let $T:=\min \left\{t \geq 0 \mid \boldsymbol{X}^{t}=\boldsymbol{Y}^{t}\right\}$ as before. It holds that

$$
\begin{equation*}
\mathbb{E}\left[T \mid \boldsymbol{X}^{0}, \boldsymbol{Y}^{0}\right] \leq 5+T_{\text {rel }}\left[C_{0}+C_{\varepsilon}\right] \tag{11}
\end{equation*}
$$

where C_{0}, C_{ε} as in Theorem 3 and $T_{\text {rel }}=\frac{1}{1-\rho(B)}$ for B the autoregressive matrix as in Lemma 1 G. O. Roberts and Sahu 1997.

Bocconi

Unbiased estimates of crossed random effect models

Bocconi

Crossed Random Effect models

Models for recommending systems: y_{n} is a rating given by costumer $i[n]$ to film $j[n]$, and

$$
\mathcal{L}\left(y_{n} \mid \mu, \mathbf{a}, \tau\right)=N\left(\mu+a_{i[n]}+a_{j[n]}, \tau^{-1}\right) \quad i=1, \ldots, I_{1} j=1, \ldots, l_{2}
$$

Bocconi

Crossed Random Effect models

Models for recommending systems: y_{n} is a rating given by costumer $i[n]$ to film $j[n]$, and

$$
\mathcal{L}\left(y_{n} \mid \mu, \mathbf{a}, \tau\right)=N\left(\mu+a_{i[n]}+a_{j[n]}, \tau^{-1}\right) \quad i=1, \ldots, I_{1} j=1, \ldots, l_{2}
$$

Generally, additive models that relates a response variable to K categorical ones, whose effects are unknown and need to be estimated.

- K categorical variables, each with I_{k} different levels for $k=1 \ldots K$,
- The effect of the j-th level of the k-th factor is described by an unknown random variable $a_{j}^{(k)}$.

$$
y_{n} \mid \mu, \mathbf{a}, \boldsymbol{\tau} \sim N\left(\mu+\sum_{k=1}^{k} a_{i_{k}[n]}^{(k)}, \frac{1}{\tau_{0}}\right) \text { for } j=1, \ldots, N
$$

Bocconi

Vanilla algorithms

Simple models whose computational cost can be overwhelmingly high:

Frequentist estimation : either via OLS (inefficient) or GLS

COMPUTATIONAL COST
$O\left(N^{\frac{3}{2}}\right)$ [Ghosh, Hastie, and A. B. Owen 2022]

Vanilla Gibbs sampler: exploit block updates

$$
\begin{aligned}
& \text { for } t=1, \ldots, T \text { do } \\
& \qquad \begin{aligned}
& \mu \sim \mathcal{L}(\mu \mid y, \mathbf{a}, \boldsymbol{\tau}) \\
& \quad \text { for } k=1, \ldots, K \text { do }
\end{aligned} \\
& \quad \begin{aligned}
\mathbf{a}^{(k)} & \sim \mathcal{L}\left(\mathbf{a}^{(k)} \mid y, \mu, \mathbf{a}^{-(k)}, \boldsymbol{\tau}\right) \\
& =\otimes \mathcal{L}\left(a_{i}^{(k)} \mid y, \mu, \mathbf{a}^{-(k)}, \boldsymbol{\tau}\right)
\end{aligned}
\end{aligned}
$$

COMPUTATIONAL COST

$O(N) \cdot O(\sqrt{N})\left[I_{1}=I_{2}\right.$, Gao and
A. Owen 2016]

Frequentist \& Bayesian estimation

State of the art algorithms:

Backfitting (GLS): iterative algorithm maximizing $p(\mu, \mathbf{a} \mid y)$ via coordinate wise ascent. On Gaussians:

$$
\begin{aligned}
p(x) \propto & \exp \left\{-x^{\top} Q x / 2+x^{\top} b\right\} \\
m^{(k)} \leftarrow & -\left(Q^{(k, k)}\right)^{-1} \sum_{l \neq k} Q^{(k, l)} m^{(I)} \\
& +\left(Q^{(k, k)}\right)^{-1} b^{(k)}
\end{aligned}
$$

COMPUTATIONAL COST

$O(1) \cdot O(N)$ [Ghosh, Hastie, and
A. B. Owen 2022]

Collapsed Gibbs sampler: integrate μ out;
for $t=1, \ldots, T$ do

$$
\text { for } k=1, \ldots, K \text { do }
$$

$$
\mu \sim \mathcal{L}\left(\mu \mid y, \mathbf{a}^{(-k)}, \boldsymbol{\tau}\right)
$$

$$
\mathbf{a}^{(k)} \sim \mathcal{L}\left(\mathbf{a}^{(k)} \mid y, \mu, \mathbf{a}^{-(k)}, \boldsymbol{\tau}\right)
$$

COMPUTATIONAL COST

$O(1) \cdot O(N)$ [Papaspiliopoulos, G O Roberts, and Zanella 2019] ${ }^{1}$
[2] for balanced cells design or balanced levels and $K=2$

Bocconi

Theoretical results

Combining Theorem 5 with the results in Omiros Papaspiliopoulos, Stumpf-Fétizon, and Giacomo Zanella 2021, we obtain the following bound for the expected meeting times.

Theorem 6

Let $\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right)_{t \geq 0}$ be as in Theorem 5 and let $\pi=N(\boldsymbol{\mu}, \Sigma)$ be the posterior distribution of CREM with $K=2$ factors, fixed $\boldsymbol{\tau}$ and design $\left(n_{i j}\right)_{i, j}$ picked uniformly at random from $\mathcal{D}\left(n, d_{1}, d_{2}\right)$. Then

$$
\operatorname{Pr}\left(\mathbb{E}\left[T \mid \boldsymbol{X}^{0}, \boldsymbol{Y}^{0}\right] \leq 5+C\left(1+\frac{2}{\sqrt{\min \left\{d_{1}, d_{2}\right\}-2}}+\epsilon\right)\left[C_{0}+C_{\varepsilon}\right]\right) \rightarrow 1
$$

as $N \rightarrow+\infty$, where C_{ε}, C_{0} as in Theorem 5, where the probability is with respect to the randomness of the design.

Bocconi

Asymptotic regimes

We study the behaviour of coalescence time and the previous bounds of Theorem 1 in two different asymptotic regimes: both with $\mathrm{K}=2$, but different missingness patterns.

1. an observation of given combination of two factor levels i, j is seen with probability $p=0.1$, and we let the level number grows to infinity:

$$
\begin{aligned}
z_{i j} & \sim \operatorname{Bern}(p) \\
I & =O(\sqrt{N})
\end{aligned}
$$

2. the probability of observing an observation decreases as / increases:

$$
\begin{gathered}
z_{i j} \sim \operatorname{Bern}(10 / I) \\
I=O(N)
\end{gathered}
$$

Bocconi

Outfill regime 1

Average meeting times

Figure 1: estimated mean number of iterations and bounds for
$K=2, I=\{50,100,250,500,750,1000\}, \tau_{1}=\tau_{2}=1$. Observing probability $p=0.1$, log scale.

Bocconi

Outfil regime 2

Average meeting times

Figure 2: estimated mean number of iterations and bounds for
$K=2, I=\{50,100,250,500,750,1000\}, \tau_{1}=\tau_{2}=1$. Observing probability $p=10 / I, \log$ scale.

Bocconi

InstEval Dataset

Dataset containing university lecture evaluations by students at ETH Zurich. It contains 73421 observations, each corresponding to a score ranging from 1 to 5, assigned to a lecture together with 6 factors potentially impacting such score, such as identity of the student giving the rating or department that offers the course. We have $N=73421, K=6$ and $\left(I_{1}, \ldots, I_{K}\right)=(2972,1128,4,6,2,14)$. The results are shown in the table below:

	Factor number	mean \#iter
col-	$[1,2]$	8.1
	$[1,6]$	7.53
wanills	$[1,2]$	39.3
	$[1,6]$	127.6

Bocconi

Non-Gaussian case

If non-gaussian response, then no collapsed is possible, and local centering within each block as in Omiros Papaspiliopoulos, Gareth O. Roberts, and Sköld 2007:

$$
\left(\mu, \mathbf{a}^{(k)}\right) \rightarrow\left(\mu, \boldsymbol{\xi}^{(k)}\right), \boldsymbol{\xi}^{(k)}=\mu+\mathbf{a}^{(k)}
$$

We exploit algorithm in Omiros Papaspiliopoulos, Stumpf-Fétizon, and Giacomo Zanella 2021:
Algorithm 2: Gibbs sampler with local centering for non Gaussian likelihoods
for $k=1, \ldots, K$ do
Reparametrize $\left(\mu, \mathbf{a}^{(k)}\right) \rightarrow\left(\mu, \boldsymbol{\xi}^{(k)}\right)$
Draw μ from $\mathcal{L}\left(\mu \mid \boldsymbol{\xi}^{(k)}\right)=N\left(\frac{\tau_{0} \mu_{0}+\tau_{k} \sum_{i=1}^{l_{k}} \xi_{i}^{(k)}}{l_{k} \tau_{k}}, \frac{1}{\tau_{0}+l_{k} \tau_{k}}\right)$
for $i=1, \ldots, l_{k}$ do $\operatorname{draw} \xi_{i}^{(k)}$ from $\mathcal{L}\left(\xi_{i}^{(k)} \mid \mathbf{y}, \tau_{1}, \ldots, \tau_{k}, \mu, a^{-(k)}\right)$
Reparametrize $\left(\mu, \boldsymbol{\xi}^{(k)}\right) \rightarrow\left(\mu, \mathbf{a}^{(k)}\right)$
Sampling from $\mathcal{L}\left(\xi_{i}^{(k)} \mid \mathbf{y}, \tau_{1}, \ldots, \tau_{k}, \mu, a^{-(k)}\right)$ requires MwG.

Bocconi

Laplace response

$$
y_{n} \mid \mu, \mathbf{a} \sim \text { Laplace }\left(\mu+\sum_{k=1}^{K} a_{i_{k[n]}}^{(k)}, b\right) n=1, \ldots, N
$$

Below the estimated mean number of iterations for $K=2, I=\{50,100,250,500\}, \tau_{1}=\tau_{2}=1, b=1$ with Laplace response.

Bocconi

Stan Comparison

Bocconi

Probabilistic Matrix factorization

$$
\begin{align*}
y_{n} & \sim N\left(\rho \mathbf{u}_{i_{1}[n]} \mathbf{v}_{i_{2}[n]}, \tau_{0}^{-1}\right), & n=1, \ldots, N \tag{12}\\
\mathbf{u}_{i}, \mathbf{v}_{j} & \sim N\left(\mathbf{0}, 1_{d}\right), & i=1, \ldots, l_{1} ; j=1, \ldots, l_{2} \\
\tau_{0} \sim \Gamma(c, d), \rho^{-\frac{1}{2}} & \sim \Gamma(a, b), &
\end{align*}
$$

Bocconi

Two Step in detail

Bocconi

W2 optimal coupling

They minimize the expected square distance between draws from p and q. i.e.:

$$
\Gamma_{W_{2}}=\operatorname{argmin}_{\Gamma \in \Gamma(p, q)} \mathbb{E}_{(X, Y) \sim \Gamma}\left[\|X-Y\|^{2}\right]
$$

Bocconi

W2 optimal coupling

They minimize the expected square distance between draws from p and q. i.e.:

$$
\Gamma_{W_{2}}=\operatorname{argmin}_{\Gamma \in \Gamma(p, q)} \mathbb{E}_{(X, Y) \sim \Gamma}\left[\|X-Y\|^{2}\right]
$$

For every univariate distributions we have:

Lemma 1

Common random number coupling is optimal for any cost $c(x, y)$ of the form $c(x, y)=h(x-y)$ for $h(\cdot)$ convex.

Bocconi

Sampling from a W_{2} optimal coupling

Lemma 7

Let $p=N\left(\boldsymbol{\xi}, \Sigma_{1}\right)$ and $q=N\left(\boldsymbol{\nu}, \Sigma_{2}\right)$ be d-dimensional Gaussian, with $\Sigma_{1} \Sigma_{2}=\Sigma_{2} \Sigma_{1}$. Define

$$
\Gamma_{W_{2}}(p, q):=N\left(\binom{\boldsymbol{\xi}}{\boldsymbol{\nu}},\left(\begin{array}{cc}
\Sigma_{1} & F G^{\top} \tag{13}\\
G F^{\top} & \Sigma_{2}
\end{array}\right)\right)
$$

where $F F^{\top}=\Sigma_{1}, G G^{\top}=\Sigma_{2}$. Then $\Gamma_{W_{2}}(p, q)$ is a W_{2}-optimal coupling of p and q. Note that the variance covariance matrix of $\Gamma_{W_{2}}$ above is singular. In order to sample:

$$
\begin{align*}
& \mathbf{Z} \sim N\left(\mathbf{0}_{d}, 1_{d}\right) \\
& \mathbf{X}=\boldsymbol{\mu}+F \mathbf{Z} \tag{14}\\
& \mathbf{Y}=\boldsymbol{\nu}+G \mathbf{Z}
\end{align*}
$$

Bocconi

W_{2} optimality

It is possible to show that the previous optimal coupling still remains optimal if iterated for n steps in a Markov chain:

Lemma 2

Consider $\left(\boldsymbol{X}_{t}\right)_{t \geq 1},\left(\boldsymbol{Y}_{t}\right)_{t \geq 1}$, chains arising from Gibbs sampler targeting Gaussian distribution. Iterating n steps of $\Gamma_{W_{2}}$ on $\mathcal{L}\left(\boldsymbol{X}_{(k)} \mid \boldsymbol{X}_{(-k)}\right), \mathcal{L}\left(\boldsymbol{Y}_{(k)} \mid \boldsymbol{Y}_{(-k)}\right), k=1, . ., K$ is W_{2} optimal, i.e.

$$
\mathbb{E}\left[\left\|\boldsymbol{X}_{t+n}-\boldsymbol{Y}_{t+n}\right\|^{2} \mid \boldsymbol{X}_{t}, \boldsymbol{Y}_{t}\right]=W_{2}^{2}\left(\mathcal{L}\left(\boldsymbol{X}_{t+n} \mid \boldsymbol{X}_{t}\right), \mathcal{L}\left(\boldsymbol{Y}_{t+n} \mid \boldsymbol{Y}_{t}\right)\right),
$$

where $W_{2}(\cdot, \cdot)$ indicates the Wasserstein 2 distance between distributions.

Bocconi

Conclusions

- Explicit bound on number of iteration (hence on computational cost) for Gaussian Gibbs sampler, of the order of $T_{\text {rel }} \log T_{\text {rel }}$.
- Methodology matching state of the art techniques, providing unbiased estimates.
- Insights on designing scalable strategies for general coupling algorithms.

Thank you

Bocconi

Bibliography I

（i．Biswas，Niloy et al．（Mar．2022）．＂Coupling \square based convergence assessment of some Gibbs samplers for highDdimensional Bayesian regression with shrinkage priors＂．In：Journal of the Royal Statistical Society：Series B（Statistical Methodology）84．DOI：10．1111／rssb． 12495.
國 Gao，Katelyn and Art Owen（Jan．2016）．＂Efficient moment calculations for variance components in large unbalanced crossed random effects models＂． In：Electronic Journal of Statistics 11．DOI：10．1214／17－EJS1236．
國 Ghosh，Swarnadip，Trevor J．Hastie，and Art B．Owen（2022）．＂Backfitting for large scale crossed random effects regressions＂．In：The Annals of Statistics．
囯 Jacob，Pierre E．，John O’Leary，and Yves F．Atchadé（2020）．＂Unbiased Markov chain Monte Carlo methods with couplings＂．In：Journal of the Royal Statistical Society：Series B（Statistical Methodology）82．3，pp．543－600．DOI： https：／／doi．org／10．1111／rssb．12336．eprint：https： ／／rss．onlinelibrary．wiley．com／doi／pdf／10．1111／rssb． 12336. URL：https：
／／rss．onlinelibrary．wiley．com／doi／abs／10．1111／rssb． 12336.

Bocconi

Bibliography II

R Papaspiliopoulos, O, G O Roberts, and G Zanella (Nov. 2019). "Scalable inference for crossed random effects models". In: Biometrika 107.1, pp. 25-40. ISSN: 0006-3444. DOI: 10.1093/biomet/asz058. eprint: https://academic.oup.com/biomet/articlepdf/107/1/25/32450844/asz058.pdf. URL:
https://doi.org/10.1093/biomet/asz058.
R Papaspiliopoulos, Omiros, Gareth O. Roberts, and Martin Sköld (Feb. 2007). "A General Framework for the Parametrization of Hierarchical Models". In:
Statistical Science 22.1. DOI: 10.1214/088342307000000014. URL: https://doi.org/10.1214\%2F088342307000000014.
R- Papaspiliopoulos, Omiros, Timothée Stumpf-Fétizon, and Giacomo Zanella (2021). Scalable computation for Bayesian hierarchical models. DOI:
10.48550/ARXIV . 2103.10875. URL:
https://arxiv.org/abs/2103.10875.

Bocconi

Bibliography III

Roberts, G. O. and S. K. Sahu (1997). "Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler". In: Journal of the Royal Statistical Society. Series B (Methodological) 59.2, pp. 291-317. ISSN: 00359246. URL: http://www. jstor. org/stable/2346048.

Bocconi

Bound for invariant chains

Theorem 8

Let $\pi=N(\boldsymbol{\mu}, \Sigma)$ and $\left(\boldsymbol{X}^{t}, \boldsymbol{Y}^{t}\right)_{t \geq 0}$ be Markov chain evolving with kernel P, coupled via Algorithm 1. For any $\delta>0$, it holds that
$\mathbb{E}\left[T \mid \boldsymbol{X}^{0}, \boldsymbol{Y}^{0}\right] \leq 4+3 \max \left(n_{\delta}^{*},(1+\delta) T_{\text {rel }}\left[-\frac{1}{2} \ln \left(1-\lambda_{\min }\left(N N^{\top}\right)\right)+C_{0}+C_{\varepsilon}\right]\right)$,
with $N=L^{-1} B L, L L^{\top}=\Sigma, C_{0}, C_{\varepsilon}, L, \lambda_{\text {min }}$ as in Theorem 3 and

$$
n_{\delta}^{*}:=\inf _{n_{0}}\left\{n_{0} \geq 1: \forall n \geq n_{0} 1-\left\|N^{n}\right\|_{2}^{\frac{1}{n}} \geq \frac{1-\rho(N)}{1+\delta}\right\}
$$

Bocconi

Coupling of distributions

Definition 9

Given $p, q \in \mathcal{P}(\mathcal{X})$, a coupling of p, q is a joint distributions on $\mathcal{X} \times \mathcal{X}$ whose first and second marginals are, respectively, p and q. We denote the space of such couplings as $\Gamma(p, q)$. We also write $(\mathbf{X}, \mathbf{Y}) \in \Gamma(p, q)$ for random vectors $(\boldsymbol{X}, \boldsymbol{Y})$ s.t. $\mathbf{X} \sim p, \mathbf{Y} \sim q$.

Bocconi

Coupling of distributions

Definition 9

Given $p, q \in \mathcal{P}(\mathcal{X})$, a coupling of p, q is a joint distributions on $\mathcal{X} \times \mathcal{X}$ whose first and second marginals are, respectively, p and q. We denote the space of such couplings as $\Gamma(p, q)$. We also write $(\mathbf{X}, \mathbf{Y}) \in \Gamma(p, q)$ for random vectors $(\boldsymbol{X}, \boldsymbol{Y})$ s.t. $\mathbf{X} \sim p, \mathbf{Y} \sim q$.
Consider $X \sim \operatorname{Bern}(p), Y \sim \operatorname{Bern}(q)$, then infinitely many couplings are possible. If the table below shows the joint frequencies, then:

$X \backslash Y$	0	1	
0	a	b	$1-p$
1	c	d	p
	$1-q$	q	

$$
\left\{\begin{array}{l}
a+b=1-p \\
a+c=1-q \\
b+d=q
\end{array}\right.
$$

system of 3 equations with 4 unknowns (the fourth equation comes from the others)

Bocconi

Maximal independent coupling

```
Algorithm 4: Rejection Maximal Coupling
    Sample \(\mathbf{X} \sim p\);
    Sample \(W \sim U(0,1)\);
    if \(W p(\boldsymbol{X}) \leq q(\mathbf{X})\) then
        set \(\mathbf{Y}=\mathbf{X}\)
    else
        Sample \(\mathbf{Y}^{*} \sim q ;\)
        \(W^{*} \sim U(0,1)\);
        while \(W^{*} q\left(\mathbf{Y}^{*}\right)>p\left(\mathbf{Y}^{*}\right)\) do
            Sample \(\mathbf{Y}^{*} \sim q\);
            \(W^{*} \sim U(0,1)\);
        set \(\mathbf{Y}=\mathbf{Y}^{*}\)
```

Computational cost:

$$
\mathbb{E}[\cos t]=\left(1-d_{t v}(p, q)\right) \times 1+d_{t v}(p, q)\left(1+1 / d_{t v}(p, q)\right)=2
$$

but var $\rightarrow+\infty$ as $d_{t v}(p, q) \rightarrow 0$ (since variance of $\left.\operatorname{Geom}(p)=(1-p) / p^{2}\right)$.

Bocconi

Sampling from reflection coupling

Available only for Gaussian rvs with same variance covariance matrices:

```
Algorithm 5: Reflection Maximal Coupling
    set \(\mathbf{z}:=\Sigma^{-1 / 2}\left(\boldsymbol{\mu}_{\mathbf{1}}-\boldsymbol{\mu}_{\mathbf{2}}\right), \mathbf{e}=\mathbf{z} /\|\mathbf{z}\|\);
    sample \(\dot{\mathbf{X}} \sim N_{d}\left(\mathbf{0}, \mathbf{1}_{d}\right), W \sim U(0,1)\);
    if \(s(\dot{\mathbf{X}}) W \leq s(\dot{\mathbf{X}}+\mathbf{z})\) then
        \(L\) set \(\dot{\mathbf{Y}}:=\dot{\mathbf{X}}+\mathbf{z}\)
    else
        \(\left\lfloor\dot{\mathbf{Y}}:=\dot{\mathbf{X}}-\mathbf{2}\left(\mathbf{e}^{\prime} \dot{\mathbf{X}}\right) \mathbf{e}\right.\)
    \(\mathbf{X}=\Sigma^{1 / 2} \dot{\mathbf{X}}+\mu_{1} ;\)
    \(\mathbf{Y}=\Sigma^{1 / 2} \dot{\mathbf{Y}}+\mu_{2} ;\)
```


In the univariate case it can be written as: sample $X \sim N\left(\mu_{1}, \sigma^{2}\right)$, sample W, if accept, set $Y=X$, else set $Y=\mu_{2}-\left(X-\mu_{1}\right)$.
Computational cost: deterministically 2 .

Bocconi

