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Main Contributions

Context: Bayesian estimation of posterior quantities via MCMC

+ Provide a methodology for unbiased estimation of posterior quantities with
linear computational cost in many models of interest (namely crossed random
effect and matrix factorization models), leveraging couplings.

+ Find a bound on the expected number of iterations needed for the chains to
meet, when coupled under previous strategy, and hence, on their
computational cost.

+ Extensive simulations on crossed random effects and probabilistic matrix
factorization models, proving goodness of theory and methodology.
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We are interested in approximating expectations of the form
B, = | h(6)n(a0).
X

where ™ € P(X) is the target probability distribution and h : X — R

Jacob, O’Leary, and Atchadé 2020 proposed to use couplings to obtain unbiased
estimates from (biased) MCMCs.

Let {X"}_,,{Y'}/_; be coupled (i.e. correlated) chains evolving with 7r-invariant
kernel P. Initialize (X°, ¥°) ~ (moP) ® g for some 7g. It follows X'~ =7 ¥,

Under some regularity assumptions, if T = inf,{X' = Y}, then an unbiased
estimate of E[h(X)] is

T—1

He(X ) =h (X) + D (h(x') = h(Y")).

t=k+1



Heuristic

t=k+1
=E[h(X)] + > Eh(X) —h(x"")] =EhX)] + D Eh(X)] - E[(Y)]
t=k+1 t=k+1
=E [h(X)+ Y (h(X) - h(Y’))}
t=k+1

=E

h(X*) + z_: (h(X) — h(vf))} .

t=k+1

Where we used Y =7 Xt~ !, and that T = inf,{t > 0 : ¥ = X'} < +oc.
Unbiased Vk > 0, but the cost and variance depends on it.



Actually

It is possible to improve the above estimator computing Hy (X, Y) for several
values of k from the same realization and take the average. For k > m consider:

m

Hiem (X, Y) = _ > HIX,Y)

m—k + 1 —

m—k+1 "m—k+1

! ih(x’)+ 3 min (1 ’_k> (h(Xt) — h(¥"))

1=k I=k+1




Couplings and Notation

Definition 1

Given p, g € P(X), a coupling of p, g is a joint distributions on X X X whose
first and second marginals are, respectively, p and g. We denote the space of
such couplings as I'(p, q). We also write (X,Y) € I'(p, q) for random vectors
(X, Y)st. X~p, Y ~q.




Couplings and Notation

Definition 1

Given p, g € P(X), a coupling of p, g is a joint distributions on X X X whose
first and second marginals are, respectively, p and g. We denote the space of
such couplings as I'(p, q). We also write (X,Y) € I'(p, q) for random vectors
(X, Y)st. X~p, Y ~q.

Definition 2
Consider a transition kernel P : X x F — [0, 1], we denote P[P] a distribution on
X x X suchthat P[P]((x,y),-) € I'(P(x,-),P(y,)) forevery (x,y) € X x X.



Example

Gaussian Coupling
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Optimal strategies for coupling
chains




Coupling of Gibbs Chains
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Coupling of Gibbs Chains

Suppose 8 = (0 1), ..., O ). In a Gibbs sampler we iteratively sample from

us (O(k) \0(,,()) fork =1, ..., K up to convergence. The resulting Gibbs Sampler
kernel P can be written as the following composition of K kernels

P=Px---Pq, (1)
Pi(0,d8") = m(dB;)|0(_i))do,_, (dO(_y) k=1,....K, B X. (2
A strategy is to sequentially compose a coupling of each full conditional, i.e.

P(O,y), ) == P[Pc] - - - P[P1] ((x,¥), ") Vx,y € X, 3)

Remark

For BGS with c.i. blocks, univariate updates are equivalent to block up-
dates. In general it is not the same for couplings.

Bocceoni




Gibbs couplings

Suppose that
P(6,d0) = 7(d6}y|0(_s))da, ., (dO]_4)) Hw A0y 10(—1))da,_,, (d6] )

Let p; = m(dXk),i[X(—k))> @i = T(dY(k),i[Y (—x)), then it holds:

minmeax(Pf>Q/)) Z meax(Pﬂ) Z H'Drmax(piaq/)
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Two step Coupling of Markov Chains

We propose a two step technique as in Biswas et al. 2022: if the chains are “far
away"” in the space implement a contractive coupling, if “close enough”,
implement a maximal coupling.

5 _ PPGy) ) ifdly) >
P[P]((X,.V),-)— :Em[P]((X,y),) ifd(X,y)§£7 (5)

where P™ is a maximal coupling of the kernels within brackets, and P¢ is a
(hopefully optimal) contracting one.



Two step couplings

Algorithm 1: Two-step coupling algorithm

Input: initial distribution g, kernels P, P¢, P™
Sample X~ ~ 7o, YO ~ mgand X° ~ P(X71,);
while X' £ Y' do
if d(X',Y") > cthen
L ey~ (v, )
else
(L pe ) BB (), )
t—t+1
Output: trajectory (X, Y')ecqo,....7}
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Bound on meeting time, w-reversible

Consider the forward-backward-scan kernel P8 defined as

p(FB) — Py« Py_1PxPx_1---P;.

Theorem 3 (Bound for reversible chains)

Let™ = N(p, ) and (X', Y")¢>0 be Markov chain marginally evolving with P(8) and
coupled via Algorithm 1. Let T := min{t > 0 | X" = Y'}. Then

1
E[T|X%,¥°] < 4+ T, 5 In(T,e) 4+ Co + C- | 6)

where, Co :=In([|L=(X® — ¥%)||) with L s.t. LLT =%, and C. a constant
depending on the fixed parameter € of Algorithm 1, T, 1= 1%[1(3) with B

autoregressive matrix of Lemma 1 G. O. Roberts and Sahu 1997.
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Sketch of the proof

Let & be the k-th time at which dy, (L(X"F X)), L(Y'THy!)) < ¢, ie.
te ;= min{t > t,_1 : dp (COXTHXD), LY YY) < e} k>1, (7)

with ty := —1 by convention. By the form of Algorithm 1, it follows we try
maximal couplings only at iterations ¢. Also, let A, be a binary variable indicating
whether the maximal coupling attempt at t, is successful, i.e.

1 it =yl

< k> 1. (8)
0 otherwise

Ak =

By faithfulness, A, = 1 implies that X' = Y*, Vt > t, + 1 and by convention
A = 1forallk’ > k. Thus, T can be written as

+oo
T=t+1+ Y (1—A)(t1 — t). 9)

k=1



MCMC convergence properties

Lemma 4
A Markov chain targeting a K-blocks N(p, X2), can be written as (G. O. Roberts and

Sahu 1997):
6:1116: ~ N (86, +b,% — BY8'), (10)

where Q = X~ 'b = (I — B)p.

It follows:




Bound for two blocks Gibbs

Consider now a two blocks Gibbs kernel, i.e.

P(2b) = P2P1 P,-(O, dO’) =T (dezj)‘e(’)> 60(,.) (dez;)) for ivj = 17 2

Theorem 5

Let (X', Y"),~ be Markov chain marginally evolving with P with K = 2 blocks,
coupled via Algorithm 1, let T := min{¢ > 0 | X' = Y'} as before. It holds that

E[T|X°, ¥°] <54 T,y [Co + C.], (11)

where Cqy, C. as in Theorem 3 and T, = 1%,)(3) for B the autoregressive matrix as in
Lemma 1 G. O. Roberts and Sahu 1997.



Unbiased estimates of crossed
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Crossed Random Effect models

Models for recommending systems: y, is a rating given by costumer i[n] to film
j[n], and

£0/n|M»a7T) =N (/’L +ai[n] + aj[n]77—_1) = 17"'7I1j = 17 "'al2-




Crossed Random Effect models

Models for recommending systems: y, is a rating given by costumer i[n] to film
j[n], and

£0/n|M»a7T) =N (/’L +ai[n] + aj[n]77—_1) = 17"'7I1j = 17 "'al2

Generally, additive models that relates a response variable to K categorical
ones, whose effects are unknown and need to be estimated.

+ K categorical variables, each with I, different levels for k = 1...K,

+ The effect of the j-th level of the k-th factor is described by an unknown

random variable a( )

1
Yoltt,a, T ~ N <M+ZGW], o) forj=1,.

k=1



Vanilla algorithms

Simple models whose computational cost can be overwhelmingly high:

Frequentist estimation : either via OLS
(inefficient) or GLS

COMPUTATIONAL COST

O(N?) [Ghosh, Hastie, and A. B.
Owen 2022]

Bocceoni

Vanilla Gibbs sampler: exploit block
updates

for t=1,..,T do
p~ Lply,a,T)
fork=1,....Kdo
a® ~ £@®ly,p,a=W,7)
- ®£(a/(k) ‘}/7 s ai(k)7 T)

COMPUTATIONAL COST

O(N) - O(y/N) [ly = I»,Gao and
A. Owen 2016]




Frequentist & Bayesian estimation

State of the art algorithms:

Backfitting (GLS): iterative algorithm
maximizing p(u, aly) via coordinate
wise ascent. On Gaussians:

p(x) ocexp{—x"Qx/2 + x"b}

m®  — (QU)=1 3 gk ()
I#£k

+ (Qkk))=1pt)

COMPUTATIONAL COST

0(1) - O(N) [Ghosh, Hastie, and
A. B. Owen 2022]

Collapsed Gibbs sampler: integrate 1
out;

for t=1,..,T do
for k=1,...,.K do

o~ ‘C(:ub/va(ik)a T)
a(k) ~ E(a(k) |y7 M, a_(k)7 7-)

COMPUTATIONAL COST

0(1) - O(N) [Papaspiliopoulos, G
O Roberts, and Zanella 20197’

[2] for balanced cells design or balanced levels and
K=2



Theoretical results

Combining Theorem 5 with the results in Omiros Papaspiliopoulos,
Stumpf-Fétizon, and Giacomo Zanella 2021, we obtain the following bound for
the expected meeting times.

Theorem 6

Let (X', Y")¢>0 be as in Theorem 5 and let m = N(p, X3) be the posterior distribution
of CREM with K = 2 factors, fixed T and design (n;); ; picked uniformly at random
from D(n,dy,dz). Then

Pr (meo, Y)<5+4cC (1 +

—min{z A + e> [Co + cg]) — 1,

as N — +o00, where C., Cy as in Theorem 5, where the probability is with respect to
the randomness of the design.



Asymptotic regimes

We study the behaviour of coalescence time and the previous bounds of
Theorem 1 in two different asymptotic regimes: both with K=2, but different

missingness patterns.

1. an observation of given combination of two factor levels i, j is seen with
probability p = 0.1, and we let the level number grows to infinity:

Z; ~ Bern(p)
I =0(V/N)
2. the probability of observing an observation decreases as / increases:
Z; ~ Bern(10/1)

I = 0(N)
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Outfil regime 2
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InstEval Dataset

Dataset containing university lecture evaluations by students at ETH Zurich. It
contains 73421 observations, each corresponding to a score ranging from 1 to 5,
assigned to a lecture together with 6 factors potentially impacting such score,
such as identity of the student giving the rating or department that offers the
course. We have N = 73421, K = 6 and (/1, ..., Ix) = (2972,1128, 4,6, 2, 14).
The results are shown in the table below:

Factor number | mean #iter
col- [1,2] 8.1
[1,6] 7.53
milla [1,2] 39.3
[1,6] 127.6




Non-Gaussian case

If non-gaussian response, then no collapsed is possible, and local centering within
each block as in Omiros Papaspiliopoulos, Gareth O. Roberts, and Skéld 2007:

(1,a®) = (1,69, €® = p+a®.

We exploit algorithm in Omiros Papaspiliopoulos, Stumpf-Fétizon, and
Giacomo Zanella 2021:
Algorithm 2: Gibbs sampler with local centering for non Gaussian likelihoods

fork=1,..,K do
Reparametrize (j1,a®) — (p, £%)
<TOIL0+Tk Zf;l E,.(k) 1 )

Draw  from £(u|€®) = N

I Tk ? o+ Tk
for j=1,. /k do
L draw§, from L (¢ \y, Thy eves Thy fy @~ )

| Reparametrize (1, € ) — (u,a®)

Samiling from E({,(k) IV, 71y ooy Ths 1, 0~ 8)) requires MwG.




Laplace response

- (k) _
Ynlpt, @ ~ Laplace (,u—i—Za,k ],b> n=1,.

Below the estimated mean number of iterations for
kK =2,/ = {50,100, 250,500}, 1 = 75 = 1,b = 1 with Laplace response.
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Stan Comparison

Average complexity for Laplace Crem
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Probabilistic Matrix factorization

(puu[nvu ), n=1,.,N (12
U,,VJNN( ) /:1,...,/1;j:1,...,/2

70~ T(c,d),p~ 2 ~ T(a,b),
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Two Step in detail




W2 optimal coupling

They minimize the expected square distance between draws from p and gq. i.e.:

Ly, = argminrer(p,g) B yy~r [HX - Y||2]




W2 optimal coupling

They minimize the expected square distance between draws from p and gq. i.e.:

Ly, = argminrer(p,g) B yy~r [HX - Y||2]

For every univariate distributions we have:

Lemma 1
Common random number coupling is optimal for any cost c(x,y) of the form
c(x,y) = h(x —y) for h(-) convex.




Sampling from a W, optimal coupling

Lemma 7
Letp = N(&,%1) and g = N(v, 32) be d-dimensional Gaussian, with
2122 = 2221. Define

- ¢ ¥ FGT
L, (p,9) N(( V)( e >> (13)

where FFT = %1,GG" = X. Then Ty, (p, q) is a Wa-optimal coupling of p and g.

Note that the variance covariance matrix of I'y, above is singular. In order to

sample:
Z~ N(Od7 1d)
X = FzZ
KB (14)
Y=v+ GZ.



W, optimality

It is possible to show that the previous optimal coupling still remains optimal if
iterated for n steps in a Markov chain:

Lemma 2

Consider (X¢)¢>1, (Y¢)e>1, chains arising from Gibbs sampler targeting Gaussian
distribution. Iterating n steps of 'y, on L(X )X (—i)), LY )Y (=), k = 1, .., K is
Wo optimal, i.e.

ElIXesn — Yernl*Xe, ¥e] = W3 (L(Xein|Xe), L(Yern|Ye))

where Ws (-, -) indicates the Wasserstein 2 distance between distributions.



Conclusions

+ Explicit bound on number of iteration (hence on computational cost) for
Gaussian Gibbs sampler, of the order of T, 10g T

+ Methodology matching state of the art techniques, providing unbiased
estimates.

+ Insights on designing scalable strategies for general coupling algorithms.

Thank you
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Bound for invariant chains

Theorem 8
Letm = N(p, X) and (X', Y*)>o be Markov chain evolving with kernel P, coupled via

Algorithm 1. For any 6 > 0, it holds that
0 0 * 1 T
E[T|x°,¥°] < 4+3max | n}, (1 +6)T,e _§ln(1 = Amin(NN")) +Co+Ce| ],
(15)
with N = L™'BL,LLT = %, Cy, Cc, L, Apin as in Theorem 3 and

2%2 l—p(N)}_
1+46

ny ::irruljf{ng >1:Yn>nyg 1—|N



Coupling of distributions

Definition 9

Given p, g € P(X), a coupling of p, g is a joint distributions on X x X whose
first and second marginals are, respectively, p and g. We denote the space of
such couplings as I'(p, q). We also write (X,Y) € T'(p, q) for random vectors
(X, Y)st. X ~p,Y ~q.




Coupling of distributions

Definition 9

Given p, g € P(X), a coupling of p, g is a joint distributions on X x X whose
first and second marginals are, respectively, p and g. We denote the space of
such couplings as I'(p, q). We also write (X,Y) € T'(p, q) for random vectors
(X, Y)st. X ~p,Y ~q.

Consider X ~ Bern(p), Y ~ Bern(q), then infinitely many couplings are possible.
If the table below shows the joint frequencies, then:

X\Y | 0 |1 atb=1—p
g a | b|1p {at+c=1—¢q
I | e Je| P b+d=gq

19 | q

system of 3 equations with 4 unknowns
(the fourth equation comes from the
others)



Maximal independent coupling

Algorithm 4: Rejection Maximal Coupling

Sample X ~ p;
Sample W ~ U (0, 1);
if Wp(X) < ¢(X) then
LsetY=X
else
Sample Y* ~ ¢;
W* ~U(0,1);
while W*q(Y*) > p(Y*) do
Sample Y* ~ ¢;
w* ~ U(0,1);
set Y =Y*

Computational cost:

Elcost] = (1 — du(p,q)) X 1 +dw(p,q)(1 +1/dy(p,q)) =2

butvar — +o00 as dy(p, q) — 0 (since variance of Geom(p) = (1 — p)/p?).



Sampling from reflection coupling

Available only for Gaussian rvs with same variance covariance matrices:

Algorithm 5: Reflection Maximal Coupling

set z:= 52 (py — pa), e = z/||z| ;
sample X ~ Ny(0,14), W ~ U(0, 1);
if (X)W < s(X + z) then

L set Y =X +z

else 015

| Y:=X-2(eX)e 010
X = 3V2X + py;
Y = 21/2Y+;¢2; oo

- 3 2 a o 1 2 3 4

In the univariate case it can be written as: sample X ~ N(1,02), sample W, if
accept, setY = X, elsesetY = gy — (X — ul).
Computational cost: deterministically 2.
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