Particle-MALA and Particle-mGRAD

Gradient-based MCMC methods for high-dimensional state-space models¹

Adrien Corenflos* Axel Finke[†]

*The University of Warwick, UK

[†]Loughborough University, UK

14th June 2024

¹https://arxiv.org/pdf/2401.14868

Talk outline

$1. \ State-space \ models/Feynman-Kac \ representation$

- 2. Existing methods
- 3. Particle extensions of MALA and aMALA
- 4. Particle extensions of mGRAD and aGRAD
- 5. Numerical illustration
- 6. Summary

 $\mathbf{x}_1 \longrightarrow \mathbf{x}_2 \longrightarrow \mathbf{x}_3 \longrightarrow \cdots$

- Examples:
 - econometrics/finance,
 - ecology,
 - engineering,
 - epidemiology,
 - weather forcasting,
 - ...

• T observations: $\mathbf{y}_1, \ldots, \mathbf{y}_T$.

$$\begin{array}{cccc} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_T \\ \uparrow g_1 & \uparrow g_2 & & \uparrow g_T \\ \mathbf{x}_1 & \overbrace{f_2} & \mathbf{x}_2 & \overbrace{f_3} & \cdots & \overbrace{f_T} & \mathbf{x}_T \end{array}$$

$$ig \in \mathcal{X} \coloneqq \mathbb{R}^D$$
,

 $\begin{array}{cccc} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_T \\ \uparrow g_1 & \uparrow g_2 & & \uparrow g_T \\ \mathbf{x}_1 & \xrightarrow{f_2} & \mathbf{x}_2 & \xrightarrow{f_3} & \cdots & \xrightarrow{f_T} & \mathbf{x}_T \end{array}$ • T observations: $\mathbf{y}_1, \dots, \mathbf{y}_T$. • D-dimensional latent states: $\mathbf{x}_t = \begin{bmatrix} x_{t,1} \\ \vdots \\ x_{t,D} \end{bmatrix} \in \mathcal{X} \coloneqq \mathbb{R}^D$, • Joint smoothing distribution: $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) \propto \prod f_t(\mathbf{x}_t|\mathbf{x}_{t-1})g_t(\mathbf{y}_t|\mathbf{x}_t).$

 $\begin{array}{cccc} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_T \\ \uparrow g_1 & \uparrow g_2 & \uparrow g_T \\ \mathbf{x}_1 & \xrightarrow{f_2} \mathbf{x}_2 & \xrightarrow{f_3} \cdots & \xrightarrow{f_T} \mathbf{x}_T \end{array}$ $\begin{array}{l} T \text{ observations: } \mathbf{y}_1, \dots, \mathbf{y}_T. \\ D \text{-dimensional latent states: } \mathbf{x}_t = \begin{bmatrix} x_{t,1} \\ \vdots \\ x_{t,D} \end{bmatrix} \in \mathcal{X} \coloneqq \mathbb{R}^D, \\ \end{array}$ $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) \propto \prod f_t(\mathbf{x}_t|\mathbf{x}_{t-1})g_t(\mathbf{y}_t|\mathbf{x}_t).$

Assumption: densities ft and gt are differentiable (in the states); densities/gradients can be evaluated pointwise.

 $\begin{array}{cccc} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_T \\ \uparrow g_1 & \uparrow g_2 & \uparrow g_T \\ \mathbf{x}_1 & \xrightarrow{f_2} \mathbf{x}_2 & \xrightarrow{f_3} \cdots & \xrightarrow{f_T} \mathbf{x}_T \end{array}$ $\begin{array}{l} T \text{ observations: } \mathbf{y}_1, \dots, \mathbf{y}_T. \\ D \text{-dimensional latent states: } \mathbf{x}_t = \begin{bmatrix} x_{t,1} \\ \vdots \\ x_{t,D} \end{bmatrix} \in \mathcal{X} \coloneqq \mathbb{R}^D, \\ \end{array}$ $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) \propto \prod f_t(\mathbf{x}_t|\mathbf{x}_{t-1})g_t(\mathbf{y}_t|\mathbf{x}_t).$

- Assumption: densities f_t and g_t are differentiable (in the states); densities/gradients can be evaluated pointwise.
- Goal: find efficient MCMC algorithms targetting $\pi_T(\mathbf{x}_{1:T})$.

 $\begin{array}{cccc} \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_T \\ \uparrow g_1 & \uparrow g_2 & & \uparrow g_T \\ \mathbf{x}_1 & \xrightarrow{f_2} & \mathbf{x}_2 & \xrightarrow{f_3} & \cdots & \xrightarrow{f_T} & \mathbf{x}_T \end{array}$ • T observations: $\mathbf{y}_1, \dots, \mathbf{y}_T$. • D-dimensional latent states: $\mathbf{x}_t = \begin{bmatrix} x_{t,1} \\ \vdots \\ x_{t,D} \end{bmatrix} \in \mathcal{X} \coloneqq \mathbb{R}^D$, • Joint smoothing distribution: $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T}) \propto \prod f_t(\mathbf{x}_t|\mathbf{x}_{t-1})g_t(\mathbf{y}_t|\mathbf{x}_t).$

- Assumption: densities ft and gt are differentiable (in the states); densities/gradients can be evaluated pointwise.
- Goal: find efficient MCMC algorithms targetting $\pi_T(\mathbf{x}_{1:T})$.
- **Problem:** $\pi_T(\mathbf{x}_{1:T})$ may be high dimensional (*T* or *D* large).

• More generally: we are interested in a distribution $\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$ on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where

• More generally: we are interested in a distribution $\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$ on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where $- M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;

$$\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$$

on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where
- $M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;
- $G_t(\mathbf{x}_{t-1:t}) > 0$ is called *potential function*.

• More generally: we are interested in a distribution

$$\begin{aligned} \pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) &= \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}), \\ \text{on } \mathcal{X}^T \text{ (with } \mathcal{X} \coloneqq \mathbb{R}^D \text{), where} \\ &- M_t(\cdot | \mathbf{x}_{t-1}) \text{ is a density of a mutation kernel;} \\ &- G_t(\mathbf{x}_{t-1:t}) > 0 \text{ is called potential function.} \end{aligned}$$

• Assumption: M_t and G_t are differentiable; both functions and their gradients can be evaluated point-wise.

$$\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$$

on \mathcal{X}^T (with $\mathcal{X} := \mathbb{R}^D$), where
- $M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;
- $G_t(\mathbf{x}_{t-1:t}) > 0$ is called potential function.

- Assumption: M_t and G_t are differentiable; both functions and their gradients can be evaluated point-wise.
- For $t \leq T$, define the *filters*: $\pi_t(\mathbf{x}_{1:t}) \propto \prod_{s=1}^t Q_s(\mathbf{x}_{s-1:s})$.

$$\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$$

on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where
- $M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;
- $G_t(\mathbf{x}_{t-1:t}) > 0$ is called *potential function*.

- Assumption: M_t and G_t are differentiable; both functions and their gradients can be evaluated point-wise.
- For $t \leq T$, define the *filters*: $\pi_t(\mathbf{x}_{1:t}) \propto \prod_{s=1}^t Q_s(\mathbf{x}_{s-1:s})$.
- **Example:** For state-space models, *one* possible Feynman–Kac representation of $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T})$ is

$$\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$$

on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where
- $M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;
- $G_t(\mathbf{x}_{t-1:t}) > 0$ is called *potential function*.

- Assumption: M_t and G_t are differentiable; both functions and their gradients can be evaluated point-wise.
- For $t \leq T$, define the *filters*: $\pi_t(\mathbf{x}_{1:t}) \propto \prod_{s=1}^t Q_s(\mathbf{x}_{s-1:s})$.
- **Example:** For state-space models, *one* possible Feynman–Kac representation of $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T})$ is $-M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = f_t(\mathbf{x}_t|\mathbf{x}_{t-1})$; and

$$\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$$

on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where
- $M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;
- $G_t(\mathbf{x}_{t-1:t}) > 0$ is called *potential function*.

- Assumption: M_t and G_t are differentiable; both functions and their gradients can be evaluated point-wise.
- For $t \leq T$, define the *filters*: $\pi_t(\mathbf{x}_{1:t}) \propto \prod_{s=1}^t Q_s(\mathbf{x}_{s-1:s})$.
- **Example:** For state-space models, *one* possible Feynman–Kac representation of $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T})$ is

-
$$M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = f_t(\mathbf{x}_t | \mathbf{x}_{t-1})$$
; and

$$- G_t(\mathbf{x}_{t-1:t}) = g_t(\mathbf{y}_t | \mathbf{x}_t)$$

• More generally: we are interested in a distribution

$$\pi_T(\mathbf{x}_{1:T}) \propto \prod_{t=1}^T M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) G_t(\mathbf{x}_{t-1:t}) = \prod_{t=1}^T Q_t(\mathbf{x}_{t-1:t}),$$

on \mathcal{X}^T (with $\mathcal{X} \coloneqq \mathbb{R}^D$), where
 $-M_t(\cdot | \mathbf{x}_{t-1})$ is a density of a mutation kernel;
 $-G_t(\mathbf{x}_{t-1:t}) > 0$ is called *potential function*.

- Assumption: M_t and G_t are differentiable; both functions and their gradients can be evaluated point-wise.
- For $t \leq T$, define the *filters*: $\pi_t(\mathbf{x}_{1:t}) \propto \prod_{s=1}^t Q_s(\mathbf{x}_{s-1:s})$.
- **Example:** For state-space models, *one* possible Feynman–Kac representation of $\pi_T(\mathbf{x}_{1:T}) = p(\mathbf{x}_{1:T}|\mathbf{y}_{1:T})$ is

-
$$M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = f_t(\mathbf{x}_t|\mathbf{x}_{t-1})$$
; and
- $G_t(\mathbf{x}_{t-1:t}) = g_t(\mathbf{y}_t|\mathbf{x}_t)$

Then, $Q_t(\mathbf{x}_{t-1:t}) = p(\mathbf{x}_t, \mathbf{y}_t | \mathbf{x}_{t-1})$ and $\pi_t(\mathbf{x}_{1:t}) = p(\mathbf{x}_{1:t} | \mathbf{y}_{1:t})$.

Talk outline

1. State-space models/Feynman–Kac representation

2. Existing methods

- 3. Particle extensions of MALA and aMALA
- 4. Particle extensions of mGRAD and aGRAD
- 5. Numerical illustration
- 6. Summary

Talk outline

2. Existing methods

2.1 'Classical' MCMC

- 2.2 Conditional sequential Monte Carlo (CSMC)
- 2.3 Particle-RWM: An existing combination of MCMC and CSMC

 'Classical' MCMC methods are agnostic to the state-space model structure.

- 'Classical' MCMC methods are agnostic to the state-space model structure.
- For the moment, write $\mathbf{x} \coloneqq \mathbf{x}_{1:T}$, so that

$$\pi(\mathbf{x}) \coloneqq \pi_T(\mathbf{x}) \propto M(\mathbf{x}) G(\mathbf{x}),$$

where

- 'Classical' MCMC methods are agnostic to the state-space model structure.
- For the moment, write $\mathbf{x} \coloneqq \mathbf{x}_{1:T}$, so that

$$\pi(\mathbf{x}) \coloneqq \pi_T(\mathbf{x}) \propto M(\mathbf{x}) G(\mathbf{x}),$$

where

-
$$M(\mathbf{x}) \coloneqq \prod_{t=1}^{T} M_t(\mathbf{x}_t | \mathbf{x}_{t-1})$$
 ('prior');

- 'Classical' MCMC methods are agnostic to the state-space model structure.
- For the moment, write $\mathbf{x} \coloneqq \mathbf{x}_{1:T}$, so that

$$\pi(\mathbf{x}) \coloneqq \pi_T(\mathbf{x}) \propto M(\mathbf{x}) G(\mathbf{x}),$$

where

$$- M(\mathbf{x}) \coloneqq \prod_{t=1}^{T} M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) \quad (\text{'prior'}); - G(\mathbf{x}) \coloneqq \prod_{t=1}^{T} G_t(\mathbf{x}_{t-1:t}) \quad (\text{'likelihood'}).$$

- 'Classical' MCMC methods are agnostic to the state-space model structure.
- For the moment, write $\mathbf{x} \coloneqq \mathbf{x}_{1:T}$, so that

$$\pi(\mathbf{x}) \coloneqq \pi_T(\mathbf{x}) \propto M(\mathbf{x}) G(\mathbf{x}),$$

where

$$- M(\mathbf{x}) \coloneqq \prod_{t=1}^{T} M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) \quad \text{('prior');} \\ - G(\mathbf{x}) \coloneqq \prod_{t=1}^{T} G_t(\mathbf{x}_{t-1:t}) \quad \text{('likelihood').}$$

• Note: \mathbf{x} is thus (TD)-dimensional.

• [Marginal sampler] Metropolis–Hastings (MH)² algorithm:

- [Marginal sampler] Metropolis-Hastings (MH)² algorithm:
 - 1. propose $ilde{\mathbf{x}} \sim q(ilde{\mathbf{x}} | \mathbf{x})$;

- [Marginal sampler] Metropolis-Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})q(\tilde{\mathbf{x}}|\mathbf{x})}$.

- [Marginal sampler] Metropolis-Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})q(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x})q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.

- [Marginal sampler] Metropolis–Hastings (MH)² algorithm:
 - 1. propose $ilde{\mathbf{x}} \sim q(ilde{\mathbf{x}} | \mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})a(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x}) q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.
- [Auxiliary sampler]

- [Marginal sampler] Metropolis–Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})a(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x}) q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.
- [Auxiliary sampler]
 - 1. propose $\mathbf{u} \sim q(\mathbf{u} | \mathbf{x})$ and $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}} | \mathbf{u}, \mathbf{x})$;
- [Marginal sampler] Metropolis–Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})a(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x}) q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.
- [Auxiliary sampler]
 - 1. propose $\mathbf{u} \sim q(\mathbf{u} | \mathbf{x})$ and $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}} | \mathbf{u}, \mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability

$$1 \wedge \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{u}|\tilde{\mathbf{x}})q(\mathbf{x}|\mathbf{u},\tilde{\mathbf{x}})}{\pi(\mathbf{x})q(\mathbf{u}|\mathbf{x})q(\tilde{\mathbf{x}}|\mathbf{u},\mathbf{x})} = \alpha(\mathbf{x},\tilde{\mathbf{x}}) \overline{\frac{q(\mathbf{u}|\tilde{\mathbf{x}},\tilde{\mathbf{x}})}{q(\mathbf{u}|\tilde{\mathbf{x}},\mathbf{x})}}$$

 $=:h(\mathbf{u})$

²Metropolis et al. (1953); Hastings (1970)
³Ceperley and Dewing (1999)
⁴Andrieu and Vihola (2016)

- [Marginal sampler] Metropolis–Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})a(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x}) q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.
- [Auxiliary sampler]
 - 1. propose $\mathbf{u} \sim q(\mathbf{u} | \mathbf{x})$ and $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}} | \mathbf{u}, \mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability

$$1 \wedge \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{u}|\tilde{\mathbf{x}})q(\mathbf{x}|\mathbf{u},\tilde{\mathbf{x}})}{\pi(\mathbf{x})q(\mathbf{u}|\mathbf{x})q(\tilde{\mathbf{x}}|\mathbf{u},\mathbf{x})} = \alpha(\mathbf{x},\tilde{\mathbf{x}}) \overline{\frac{q(\mathbf{u}|\tilde{\mathbf{x}},\tilde{\mathbf{x}})}{q(\mathbf{u}|\tilde{\mathbf{x}},\mathbf{x})}}$$

 $=:h(\mathbf{u})$

• Two interpretations of the auxiliary sampler:

²Metropolis et al. (1953); Hastings (1970)
 ³Ceperley and Dewing (1999)
 ⁴Andrieu and Vihola (2016)

- [Marginal sampler] Metropolis–Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})a(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x}) q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.
- [Auxiliary sampler]
 - 1. propose $\mathbf{u} \sim q(\mathbf{u} | \mathbf{x})$ and $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}} | \mathbf{u}, \mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability

$$1 \wedge \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{u}|\tilde{\mathbf{x}})q(\mathbf{x}|\mathbf{u},\tilde{\mathbf{x}})}{\pi(\mathbf{x})q(\mathbf{u}|\mathbf{x})q(\tilde{\mathbf{x}}|\mathbf{u},\mathbf{x})} = \alpha(\mathbf{x},\tilde{\mathbf{x}}) \overline{\frac{q(\mathbf{u}|\mathbf{x},\tilde{\mathbf{x}})}{q(\mathbf{u}|\tilde{\mathbf{x}},\mathbf{x})}}$$

 $=:h(\mathbf{u})$

- Two interpretations of the auxiliary sampler:
 - 1. Standard MH conditional on \mathbf{u} , i.e. targetting $\pi(\mathbf{x};\mathbf{u}) = \pi(\mathbf{x})q(\mathbf{u}|\mathbf{x})$.
 - 2. MH with randomised acceptance ratio³ (since $\mathbb{E}[h(\mathbf{u})|\mathbf{x}, \tilde{\mathbf{x}}] = 1$).

²Metropolis et al. (1953); Hastings (1970)

³Ceperley and Dewing (1999)

⁴Andrieu and Vihola (2016)

- [Marginal sampler] Metropolis–Hastings (MH)² algorithm:
 - 1. propose $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability $\alpha(\mathbf{x}, \tilde{\mathbf{x}}) \coloneqq 1 \land \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{x}|\tilde{\mathbf{x}})}{\pi(\mathbf{x})a(\tilde{\mathbf{x}}|\mathbf{x})}$.
- Assume $q(\tilde{\mathbf{x}}|\mathbf{x}) = \int q(\tilde{\mathbf{x}}|\mathbf{u}, \mathbf{x}) q(\mathbf{u}|\mathbf{x}) \, \mathrm{d}\mathbf{u}$.
- [Auxiliary sampler]
 - 1. propose $\mathbf{u} \sim q(\mathbf{u} | \mathbf{x})$ and $\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}} | \mathbf{u}, \mathbf{x})$;
 - 2. accept $\tilde{\mathbf{x}}$ with probability

$$1 \wedge \frac{\pi(\tilde{\mathbf{x}})q(\mathbf{u}|\tilde{\mathbf{x}})q(\mathbf{x}|\mathbf{u},\tilde{\mathbf{x}})}{\pi(\mathbf{x})q(\mathbf{u}|\mathbf{x})q(\tilde{\mathbf{x}}|\mathbf{u},\mathbf{x})} = \alpha(\mathbf{x},\tilde{\mathbf{x}}) \frac{q(\mathbf{u}|\mathbf{x},\tilde{\mathbf{x}})}{q(\mathbf{u}|\tilde{\mathbf{x}},\mathbf{x})}$$

 $=:h(\mathbf{u})$

- Two interpretations of the auxiliary sampler:
 - 1. Standard MH conditional on \mathbf{u} , i.e. targetting $\pi(\mathbf{x};\mathbf{u}) = \pi(\mathbf{x})q(\mathbf{u}|\mathbf{x})$.
 - 2. MH with randomised acceptance ratio³ (since $\mathbb{E}[h(\mathbf{u})|\mathbf{x}, \tilde{\mathbf{x}}] = 1$).
- Efficiency of auxiliary sampler \leq efficiency of marginal sampler.⁴

²Metropolis et al. (1953); Hastings (1970)

⁴Andrieu and Vihola (2016)

³Ceperley and Dewing (1999)

A simple MCMC algorithm

Independent Metropolis–Hastings (IMH)⁵:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = M(\tilde{\mathbf{x}}).$$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in D → increasing line;
- must grow superlinearly in $D \rightsquigarrow$ decreasing line.

• [Marginal sampler] Random-walk Metropolis (RWM)⁶:

 $q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x}, \delta \mathbf{I}).$

⁶Metropolis et al. (1953)

• [Marginal sampler] Random-walk Metropolis (RWM)⁶:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x}, \delta \mathbf{I}).$$

• [Marginal sampler] Random-walk Metropolis (RWM)⁶:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x}, \delta \mathbf{I}).$$

- Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling
 - 1. $\mathbf{u} \sim N(\mathbf{x}, \frac{\delta}{2}\mathbf{I});$

⁶Metropolis et al. (1953)

• [Marginal sampler] Random-walk Metropolis (RWM)⁶:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x}, \delta \mathbf{I}).$$

- Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling
 - 1. $\mathbf{u} \sim N(\mathbf{x}, \frac{\delta}{2}\mathbf{I});$ 2. $\tilde{\mathbf{x}} \sim N(\mathbf{u}, \frac{\delta}{2}\mathbf{I}).$

• [Marginal sampler] Random-walk Metropolis (RWM)⁶:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x}, \delta \mathbf{I}).$$

- Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling
 - 1. $\mathbf{u} \sim N(\mathbf{x}, \frac{\delta}{2}\mathbf{I});$ 2. $\tilde{\mathbf{x}} \sim N(\mathbf{u}, \frac{\delta}{2}\mathbf{I}).$
- [Auxiliary sampler] Not integrating out u in the acceptance ratio is statistically equivalent to the marginal sampler.

⁶Metropolis et al. (1953)

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in $D \rightsquigarrow$ decreasing line.

 [Marginal sampler] Metropolis-adjusted Langevin algorithm (MALA)⁷:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; \mathbf{x} + \frac{\delta}{2}\nabla \log \pi(\mathbf{x}), \delta \mathbf{I}).$$

⁷Besag (1994)
 ⁸Titsias and Papaspiliopoulos (2018)

 [Marginal sampler] Metropolis-adjusted Langevin algorithm (MALA)⁷:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x} + \frac{\delta}{2}\nabla \log \pi(\mathbf{x}), \delta \mathbf{I}).$$

- Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling

⁷Besag (1994)

⁸Titsias and Papaspiliopoulos (2018)

 [Marginal sampler] Metropolis-adjusted Langevin algorithm (MALA)⁷:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x} + \frac{\delta}{2}\nabla \log \pi(\mathbf{x}), \delta \mathbf{I}).$$

• Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling 1. $\mathbf{u} \sim N(\mathbf{x} + \frac{\delta}{2}\nabla \log \pi(\mathbf{x}), \frac{\delta}{2}\mathbf{I});$

⁷Besag (1994)

⁸Titsias and Papaspiliopoulos (2018)

 [Marginal sampler] Metropolis-adjusted Langevin algorithm (MALA)⁷:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x} + \frac{\delta}{2}\nabla \log \pi(\mathbf{x}), \delta \mathbf{I}).$$

Can sample from q(x̃|x) by sampling
 1. u ~ N(x + δ/2∇ log π(x), δ/2I);
 2. x̃ ~ N(u, δ/2I).

⁷Besag (1994)

⁸Titsias and Papaspiliopoulos (2018)

 [Marginal sampler] Metropolis-adjusted Langevin algorithm (MALA)⁷:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; \mathbf{x} + \frac{\delta}{2}\nabla \log \pi(\mathbf{x}), \delta \mathbf{I}).$$

- Can sample from q(x̃|x) by sampling
 1. u ~ N(x + δ/2∇ log π(x), δ/2I);
 2. x̃ ~ N(u, δ/2I).
- [Auxiliary sampler] Not integrating out u in the acceptance ratio gives the auxiliary MALA (aMALA)⁸.

⁷Besag (1994)

⁸Titsias and Papaspiliopoulos (2018)

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow **linearly** in $D \rightsquigarrow$ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in $D \rightsquigarrow$ decreasing line.

[Marginal sampler] Preconditioned
 Crank–Nicolson–Langevin (PCNL)⁹ algorithm:

 $q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (1-\beta)\mathbf{m} + \beta[\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla\log G(\mathbf{x})], (1-\beta^2)\mathbf{C}),$

where $\beta \coloneqq 2/(2+\delta)$.

⁹Cotter et al. (2013)

[Marginal sampler] Preconditioned
 Crank–Nicolson–Langevin (PCNL)⁹ algorithm:

 $q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (1-\beta)\mathbf{m} + \beta[\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla\log G(\mathbf{x})], (1-\beta^2)\mathbf{C}),$

where $\beta \coloneqq 2/(2+\delta)$.

[Marginal sampler] Preconditioned
 Crank–Nicolson–Langevin (PCNL)⁹ algorithm:

 $q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (1-\beta)\mathbf{m} + \beta[\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla\log G(\mathbf{x})], (1-\beta^2)\mathbf{C}),$

where $\beta \coloneqq 2/(2+\delta)$.

• Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling 1. $\mathbf{u} \sim N(\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla \log G(\mathbf{x}), \frac{\delta}{2}\mathbf{C});$

[Marginal sampler] Preconditioned
 Crank–Nicolson–Langevin (PCNL)⁹ algorithm:

 $q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (1-\beta)\mathbf{m} + \beta[\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla\log G(\mathbf{x})], (1-\beta^2)\mathbf{C}),$

where $\beta \coloneqq 2/(2+\delta)$.

Can sample from q(x̃|x) by sampling
 1. u ~ N(x + δ/2 C∇ log G(x), δ/2 C);
 2. x̃ ~ N((1 − β)m + βu, (1 − β)C).

⁹Cotter et al. (2013)

[Marginal sampler] Preconditioned
 Crank–Nicolson–Langevin (PCNL)⁹ algorithm:

 $q(\tilde{\mathbf{x}}|\mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}}; (1-\beta)\mathbf{m} + \beta[\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla\log G(\mathbf{x})], (1-\beta^2)\mathbf{C}),$

where $\beta \coloneqq 2/(2+\delta)$.

- Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling 1. $\mathbf{u} \sim N(\mathbf{x} + \frac{\delta}{2}\mathbf{C}\nabla \log G(\mathbf{x}), \frac{\delta}{2}\mathbf{C});$
 - 2. $\tilde{\mathbf{x}} \sim N((1-\tilde{\beta})\mathbf{m}+\tilde{\beta}\mathbf{u},(1-\tilde{\beta})\mathbf{C}).$
- **[Auxiliary sampler]** Not integrating out **u** in the acceptance ratio gives an auxiliary PCNL (aPCNL) algorithm.

⁹Cotter et al. (2013)

• [Marginal sampler] Marginal gradient (mGRAD)¹⁰ algorithm:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}[\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x})], \mathbf{B}),$$

where $\mathbf{B}\coloneqq \frac{\delta}{2}\mathbf{A}^2+\mathbf{A}$ and $\mathbf{A}=(\mathbf{C}+\frac{\delta}{2}\mathbf{I})^{-1}\mathbf{C}.$

¹⁰Titsias and Papaspiliopoulos (2018)

• [Marginal sampler] Marginal gradient (mGRAD)¹⁰ algorithm:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}[\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x})], \mathbf{B}),$$

where $\mathbf{B} \coloneqq \frac{\delta}{2}\mathbf{A}^2 + \mathbf{A}$ and $\mathbf{A} = (\mathbf{C} + \frac{\delta}{2}\mathbf{I})^{-1}\mathbf{C}$.

¹⁰Titsias and Papaspiliopoulos (2018)

• [Marginal sampler] Marginal gradient (mGRAD)¹⁰ algorithm:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}[\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x})], \mathbf{B}),$$

where $\mathbf{B} \coloneqq \frac{\delta}{2}\mathbf{A}^2 + \mathbf{A}$ and $\mathbf{A} = (\mathbf{C} + \frac{\delta}{2}\mathbf{I})^{-1}\mathbf{C}$.

1.
$$\mathbf{u} \sim N(\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x}), \frac{\delta}{2}\mathbf{I});$$

¹⁰Titsias and Papaspiliopoulos (2018)

• [Marginal sampler] Marginal gradient (mGRAD)¹⁰ algorithm:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}[\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x})], \mathbf{B}),$$

where $\mathbf{B} \coloneqq \frac{\delta}{2}\mathbf{A}^2 + \mathbf{A}$ and $\mathbf{A} = (\mathbf{C} + \frac{\delta}{2}\mathbf{I})^{-1}\mathbf{C}$.

1.
$$\mathbf{u} \sim N(\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x}), \frac{\delta}{2}\mathbf{I});$$

2. $\tilde{\mathbf{x}} \sim N((\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}\mathbf{u}, \frac{\delta}{2}\mathbf{A}).$

¹⁰Titsias and Papaspiliopoulos (2018)

• [Marginal sampler] Marginal gradient (mGRAD)¹⁰ algorithm:

$$q(\tilde{\mathbf{x}}|\mathbf{x}) = N(\tilde{\mathbf{x}}; (\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}[\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x})], \mathbf{B}),$$

where $\mathbf{B} \coloneqq \frac{\delta}{2}\mathbf{A}^2 + \mathbf{A}$ and $\mathbf{A} = (\mathbf{C} + \frac{\delta}{2}\mathbf{I})^{-1}\mathbf{C}$.

- Can sample from $q(\tilde{\mathbf{x}}|\mathbf{x})$ by sampling

1.
$$\mathbf{u} \sim N(\mathbf{x} + \frac{\delta}{2}\nabla \log G(\mathbf{x}), \frac{\delta}{2}\mathbf{I});$$

2.
$$\tilde{\mathbf{x}} \sim N((\mathbf{I} - \mathbf{A})\mathbf{m} + \mathbf{A}\mathbf{u}, \frac{\delta}{2}\mathbf{A}).$$

• **[Auxiliary sampler]** Not integrating out **u** in the acceptance ratio gives the auxiliary gradient (aGRAD)¹⁰ algorithm.

¹⁰Titsias and Papaspiliopoulos (2018)

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

 Summary: 'Classical' MCMC methods can use 'local' moves guided by:

- Summary: 'Classical' MCMC methods can use 'local' moves guided by:
 - gradient information (e.g., as in MALA);

- Summary: 'Classical' MCMC methods can use 'local' moves guided by:
 - gradient information (e.g., as in MALA);
 - Gaussian prior information (e.g., as in Crank–Nicholson type methods and mGRAD/aGRAD).

- Summary: 'Classical' MCMC methods can use 'local' moves guided by:
 - gradient information (e.g., as in MALA);
 - Gaussian prior information (e.g., as in Crank–Nicholson type methods and mGRAD/aGRAD).
 - \rightsquigarrow favourable scaling with D (for small, fixed T).

- Summary: 'Classical' MCMC methods can use 'local' moves guided by:
 - gradient information (e.g., as in MALA);
 - Gaussian prior information (e.g., as in Crank–Nicholson type methods and mGRAD/aGRAD).

 \rightsquigarrow favourable scaling with D (for small, fixed T).

• **Problem:** 'Classical' MCMC methods do not exploit the 'decorrelation-over-time' property the state-space model.
Summary of 'classical' MCMC methods

- Summary: 'Classical' MCMC methods can use 'local' moves guided by:
 - gradient information (e.g., as in MALA);
 - Gaussian prior information (e.g., as in Crank–Nicholson type methods and mGRAD/aGRAD).

 \rightsquigarrow favourable scaling with D (for small, fixed T).

 Problem: 'Classical' MCMC methods do not exploit the 'decorrelation-over-time' property the state-space model.
→ suboptimal scaling with T (for fixed D).

approximate marginals, the number of iterations

- can be **constant** in $T \rightsquigarrow$ horizontal line: •
- must increase in T → decreasing line.

Talk outline

- 2. Existing methods
- 2.1 'Classical' MCMC
- 2.2 Conditional sequential Monte Carlo (CSMC)
- 2.3 Particle-RWM: An existing combination of MCMC and CSMC

• For the moment: *D* small.

¹¹Andrieu et al. (2010)

- For the moment: *D* small.
- CSMC algorithm¹¹.

¹¹Andrieu et al. (2010)

- For the moment: *D* small.
- CSMC algorithm¹¹.
 - Induces π_T -invariant MCMC kernel.

- For the moment: *D* small.
- CSMC algorithm¹¹.
 - Induces π_T -invariant MCMC kernel.
- Sequentially builds proposal in the 'time'-direction:

- For the moment: *D* small.
- CSMC algorithm¹¹.
 - Induces π_T -invariant MCMC kernel.
- Sequentially builds proposal in the 'time'-direction:
 - using N+1 interacting samples ('particles'),

- For the moment: *D* small.
- CSMC algorithm¹¹.
 - Induces π_T -invariant MCMC kernel.
- Sequentially builds proposal in the 'time'-direction:
 - using N + 1 interacting samples ('particles'),
 - avoids curse of dimensionality in T (for fixed D).

Algorithm 1 (CSMC). Given $\mathbf{x}_{1:T} \in \mathcal{X}^T$:

- 1. for t = 1, ..., T,
 - 1.1 set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$,
 - 1.2 [resampling] if t > 1, set $a_{t-1}^0 := 0$; sample $a_{t-1}^n = i$ w.p. W_{t-1}^i , for $n \in [N]$,
 - 1.3 [sampling] isample $\mathbf{x}_t^n \sim M_t(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n})$ for $n \in [N]$,
 - 1.4 [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.
 - 1.5 for $n \in [N]_0$, set $W^n_t \coloneqq w^n_t / \sum_{m=0}^N w^m_t$;
- 2. sample $l_T = i \in [N]_0$ w.p. W_T^i .
- 3. [ancestral tracing] for $t = T 1, \ldots, 1$, set $l_t \coloneqq a_t^{l_{t+1}}$.
- 4. return $\mathbf{x}'_{1:T} \coloneqq (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_t^{l_T}).$

- Set $\mathbf{x}_1^0 \coloneqq \mathbf{x}_1$. Sample $\mathbf{x}_1^{1:N} \sim \prod_{n=1}^N M_1(\mathbf{x}_1^n)$.

$$\begin{array}{ll} \bullet & {\rm Set} \; {\bf x}_t^0 \coloneqq {\bf x}_t, \, a_{t-1}^0 \coloneqq 0. \\ \bullet & {\rm Sample} \; ({\bf x}_t^{1:N}, a_{t-1}^{1:N}) \sim \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} M_t({\bf x}_t^n | {\bf x}_{t-1}^{a_{t-1}^n}), \\ & - \; {\rm where} \; W_t^n \propto G_t({\bf x}_{t-1}^{a_{t-1}^n}, {\bf x}_t^n). \end{array}$$

time

$$\begin{array}{l} \text{ Set } \mathbf{x}_{t}^{0} \coloneqq \mathbf{x}_{t}, \, a_{t-1}^{0} \coloneqq 0. \\ \text{ Sample } (\mathbf{x}_{t}^{1:N}, a_{t-1}^{1:N}) \sim \prod_{n=1}^{N} W_{t-1}^{a_{t-1}^{n}} M_{t}(\mathbf{x}_{t}^{n} | \mathbf{x}_{t-1}^{a_{t-1}^{n}}), \\ \text{ - where } W_{t}^{n} \propto G_{t}(\mathbf{x}_{t-1}^{a_{t-1}^{n}}, \mathbf{x}_{t}^{n}). \end{array}$$

time

$$\begin{array}{ll} \bullet & {\rm Set} \; {\bf x}_t^0 \coloneqq {\bf x}_t, \, a_{t-1}^0 \coloneqq 0. \\ \bullet & {\rm Sample} \; ({\bf x}_t^{1:N}, a_{t-1}^{1:N}) \sim \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} M_t({\bf x}_t^n | {\bf x}_{t-1}^{a_{t-1}^n}), \\ & - \; {\rm where} \; W_t^n \propto G_t({\bf x}_{t-1}^{a_{t-1}^n}, {\bf x}_t^n). \end{array}$$

Given reference path $\mathbf{x}_{1:T}$ (current state of MCMC chain):

 $\begin{array}{ll} \bullet & {\rm Set} \; \mathbf{x}_{t}^{0} \coloneqq \mathbf{x}_{t}, \, a_{t-1}^{0} \coloneqq 0. \\ \bullet & {\rm Sample} \; (\mathbf{x}_{t}^{1:N}, a_{t-1}^{1:N}) \sim \prod_{n=1}^{N} W_{t-1}^{a_{t-1}^{n}} M_{t}(\mathbf{x}_{t}^{n} | \mathbf{x}_{t-1}^{a_{t-1}^{n}}), \\ & - \; {\rm where} \; W_{t}^{n} \propto G_{t}(\mathbf{x}_{t-1}^{a_{t-1}^{n}}, \mathbf{x}_{t}^{n}). \end{array}$

time

$$\begin{array}{ll} \bullet & {\rm Set} \; {\bf x}_t^0 \coloneqq {\bf x}_t, \, a_{t-1}^0 \coloneqq 0. \\ \bullet & {\rm Sample} \; ({\bf x}_t^{1:N}, a_{t-1}^{1:N}) \sim \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} M_t({\bf x}_t^n | {\bf x}_{t-1}^{a_{t-1}^n}), \\ & - \; {\rm where} \; W_t^n \propto G_t({\bf x}_{t-1}^{a_{t-1}^n}, {\bf x}_t^n). \end{array}$$

time

$$\begin{array}{l} \text{ Set } \mathbf{x}_{t}^{0} \coloneqq \mathbf{x}_{t}, \, a_{t-1}^{0} \coloneqq 0. \\ \text{ Sample } (\mathbf{x}_{t}^{1:N}, a_{t-1}^{1:N}) \sim \prod_{n=1}^{N} W_{t-1}^{a_{t-1}^{n}} M_{t}(\mathbf{x}_{t}^{n} | \mathbf{x}_{t-1}^{a_{t-1}^{n}}), \\ \text{ - where } W_{t}^{n} \propto G_{t}(\mathbf{x}_{t-1}^{a_{t-1}^{n}}, \mathbf{x}_{t}^{n}). \end{array}$$

time

Given reference path $\mathbf{x}_{1:T}$ (current state of MCMC chain):

time

Given reference path $\mathbf{x}_{1:T}$ (current state of MCMC chain):

1. Sample $l_T \sim W_T^{l_T}$.

time

time

time

time

time

1. Sample $l_T \sim W_T^{l_T}$. 2. Set $l_t \coloneqq a_t^{l_{t+1}}$, for $t = T - 1, \dots, 1$. 3. Return $\mathbf{x}'_{1:T} \coloneqq (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_T^{l_T})$ (new state of MCMC chain). • induces π_T -invariant MCMC kernel $P_{\mathsf{CSMC}}(\mathbf{x}'_{1:T}|\mathbf{x}_{1:T})$.

- induces π_T -invariant MCMC kernel $P_{\mathsf{CSMC}}(\mathbf{x}'_{1:T}|\mathbf{x}_{1:T})$.
- T "accept-reject decisions".

Problem: $\mathbf{x}'_{1:T} = (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_T^{l_T}) \& \mathbf{x}_{1:T} = (\mathbf{x}_1^0, \dots, \mathbf{x}_T^0)$ coalesce
Mixing

Problem: $\mathbf{x}'_{1:T} = (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_T^{l_T}) \& \mathbf{x}_{1:T} = (\mathbf{x}_1^0, \dots, \mathbf{x}_T^0)$ coalesce

- controlling the 'acceptance rates' requires $N \sim T$ (Andrieu et al., 2018; Koskela et al., 2020)

Algorithm 2 (CSMC). Given $\mathbf{x}_{1:T} \in \mathcal{X}^T$:

- 1. for t = 1, ..., T,
 - 1.1 set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$,
 - 1.2 [resampling] if t > 1, set $a_{t-1}^0 := 0$; sample $a_{t-1}^n = i$ w.p. W_{t-1}^i , for $n \in [N]$,
 - 1.3 [sampling] sample $\mathbf{x}_t^n \sim M_t(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n})$ for $n \in [N]$,
 - 1.4 [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.
 - 1.5 for $n \in [N]_0$, set $W^n_t \coloneqq w^n_t / \sum_{m=0}^N w^m_t$;
- 2. sample $l_T = i \in [N]_0$ w.p. W_T^i .
- 3. [ancestral tracing] for $t = T 1, \ldots, 1$, set $l_t \coloneqq a_t^{l_{t+1}}$.
- 4. return $\mathbf{x}'_{1:T} \coloneqq (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_t^{l_T}).$

Algorithm 2 (CSMC). Given $\mathbf{x}_{1:T} \in \mathcal{X}^T$:

- 1. for t = 1, ..., T,
 - 1.1 set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$,
 - 1.2 [resampling] if t > 1, set $a_{t-1}^0 \coloneqq 0$; sample $a_{t-1}^n = i$ w.p. W_{t-1}^i , for $n \in [N]$,
 - 1.3 [sampling] sample $\mathbf{x}_t^n \sim M_t(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n})$ for $n \in [N]$,
 - 1.4 [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$. 1.5 for $n \in [N]_0$, set $W_t^n \coloneqq w_t^n / \sum_{m=0}^N w_t^m$; W^i
- 2. sample $i \in [N]$ w.p. $\frac{W_T^i}{1 W_T^0}$; set $l_T \coloneqq i$ w.p. $1 \wedge \frac{1 W_T^0}{1 W_T^i}$; otherwise, set $l_T \coloneqq 0$;
- 3. [ancestral tracing] for $t = T 1, \ldots, 1$, set $l_t \coloneqq a_t^{l_{t+1}}$.
- 4. return $\mathbf{x}'_{1:T} \coloneqq (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_t^{l_T}).$

Algorithm 2 (CSMC). Given $\mathbf{x}_{1:T} \in \mathcal{X}^T$:

- 1. for t = 1, ..., T,
 - 1.1 set $\mathbf{x}_t^0\coloneqq \mathbf{x}_t$,
 - 1.2 [resampling] if t > 1, set $a_{t-1}^0 \coloneqq 0$; sample $a_{t-1}^n = i$ w.p. W_{t-1}^i , for $n \in [N]$,
 - 1.3 [sampling] sample $\mathbf{x}_t^n \sim M_t(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n})$ for $n \in [N]$,
 - 1.4 [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.
 - 1.5 for $n \in [N]_0$, set $W_t^n \coloneqq w_t^n / \sum_{m=0}^N w_t^m$;
- 2. sample $i \in [N]$ w.p. $\frac{W_T^i}{1 W_T^0}$; set $l_T \coloneqq i$ w.p. $1 \wedge \frac{1 W_T^0}{1 W_T^i}$; otherwise, set $l_T \coloneqq 0$;
- 3. [backward sampling] for t = T 1, ..., 1, sample $l_t = i \in [N]_0$ w.p. $\frac{W_t^i Q_{t+1}(\mathbf{x}_t^i, \mathbf{x}_{t+1}^{l_{t+1}})}{\sum_{n=0}^N W_t^n Q_{t+1}(\mathbf{x}_t^n, \mathbf{x}_{t+1}^{l_{t+1}})};$
- 4. return $\mathbf{x}'_{1:T} \coloneqq (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_t^{l_T}).$

time

time

time

time

time

time

- Forms new lineage $\mathbf{x}'_{1:T} = (\mathbf{x}_1^{l_1}, \dots, \mathbf{x}_T^{l_T}).$
- Frees us from having to grow N with T (Lee et al., 2020).

 $\overline{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2} \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in *T* → decreasing line.

 $\boxed{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2} \implies \text{Informally, to stably approximate marginals, the number of iterations}}$

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in $T \rightsquigarrow$ decreasing line.

• all acceptance rates $\rightarrow 0$ (Finke and Thiery, 2023);

- all acceptance rates $\rightarrow 0$ (Finke and Thiery, 2023);
- even with backward sampling.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in $D \rightsquigarrow$ decreasing line.

Summary of the CSMC algorithm

• **Summary:** The CSMC algorithm exploits the 'decorrelation-over-time' property the state-space model.
Summary of the CSMC algorithm

 Summary: The CSMC algorithm exploits the 'decorrelation-over-time' property the state-space model.
 → favourable scaling with T (for small, fixed D).

Summary of the CSMC algorithm

- Summary: The CSMC algorithm exploits the 'decorrelation-over-time' property the state-space model.
 → favourable scaling with T (for small, fixed D).
- Problem: The CSMC algorithm cannot use 'local' moves.

Summary of the CSMC algorithm

- Summary: The CSMC algorithm exploits the 'decorrelation-over-time' property the state-space model.
 → favourable scaling with T (for small, fixed D).
- Problem: The CSMC algorithm cannot use 'local' moves.
 → curse of dimension in D (for fixed T).

Talk outline

2. Existing methods

- 2.1 'Classical' MCMC
- 2.2 Conditional sequential Monte Carlo (CSMC)
- 2.3 Particle-RWM: An existing combination of MCMC and CSMC

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

¹²Finke and Thiery (2023); see also Malory (2021)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.
 - Step 1c marginally proposes (for $n \neq 0$):

 $\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t, \delta_t \mathbf{I}).$

¹²Finke and Thiery (2023); see also Malory (2021)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.
 - Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t, \delta_t \mathbf{I}).$$

• Reduces to RWM if N = T = 1.

¹²Finke and Thiery (2023); see also Malory (2021)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.
 - Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathbf{N}(\mathbf{x}_t, \delta_t \mathbf{I}).$$

- Reduces to RWM if N = T = 1.
- Dimensionally stable if $\delta_t = O(D^{-1})$.¹²

¹²Finke and Thiery (2023); see also Malory (2021)

- Set $\mathbf{x}_1^0 \coloneqq \mathbf{x}_1$.
- Sample $(\mathbf{u}_1, \mathbf{x}_1^{1:N}) \sim \mathrm{N}(\mathbf{u}_1; \mathbf{x}_1^0, \frac{\delta_1}{2}\mathbf{I}) \prod_{n=1}^N \mathrm{N}(\mathbf{x}_1^n; \mathbf{u}_1, \frac{\delta_1}{2}\mathbf{I}).$

- Set $\mathbf{x}_1^0 \coloneqq \mathbf{x}_1$.
- Sample $(\mathbf{u}_1, \mathbf{x}_1^{1:N}) \sim \mathrm{N}(\mathbf{u}_1; \mathbf{x}_1^0, \frac{\delta_1}{2}\mathbf{I}) \prod_{n=1}^N \mathrm{N}(\mathbf{x}_1^n; \mathbf{u}_1, \frac{\delta_1}{2}\mathbf{I}).$

Particle-RWM $(D \to \infty)$

- Set $\mathbf{x}_1^0 \coloneqq \mathbf{x}_1$.
- Sample $(\mathbf{u}_1, \mathbf{x}_1^{1:N}) \sim \mathrm{N}(\mathbf{u}_1; \mathbf{x}_1^0, \frac{\delta_1}{2}\mathbf{I}) \prod_{n=1}^N \mathrm{N}(\mathbf{x}_1^n; \mathbf{u}_1, \frac{\delta_1}{2}\mathbf{I}).$

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

time

- Set $\mathbf{x}_t^0 \coloneqq \mathbf{x}_t$, $a_{t-1}^0 \coloneqq 0$. Sample $(\mathbf{u}_t, \mathbf{x}_t^{1:N}, a_{t-1}^{1:N}) \sim \mathcal{N}(\mathbf{u}_t; \mathbf{x}_t^0, \frac{\delta_t}{2}\mathbf{I}) \prod_{n=1}^N W_{t-1}^{a_{t-1}^n} \mathcal{N}(\mathbf{x}_t^n; \mathbf{u}_t, \frac{\delta_t}{2}\mathbf{I})$, - where $W_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n)$.

 $\overline{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2} \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- can be constant in T → horizontal line;
- must increase in $T \rightsquigarrow$ decreasing line.

 $\overline{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2} \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in *T* → decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $\begin{array}{l} (\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{c=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably} \\ \text{approximate marginals, the number of iterations} \end{array}$

- must grow **linearly** in $D \rightsquigarrow$ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Extended target distribution (admits $\pi_T(\mathbf{x}_{1:T})$ as a marginal!):

$$\pi'_{T}(\mathbf{x}_{1:T}, \mathbf{u}_{1:T}) \coloneqq \pi_{T}(\mathbf{x}_{1:T}) \prod_{t=1}^{T} N(\mathbf{u}_{t}; \mathbf{x}_{t}, \frac{\delta_{t}}{2}\mathbf{I})$$

$$\propto \prod_{t=1}^{T} \underbrace{N(\mathbf{x}_{t}; \mathbf{u}_{t}, \frac{\delta_{t}}{2}\mathbf{I})}_{=:M'_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1}; \mathbf{u}_{t})} \underbrace{M_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})G_{t}(\mathbf{x}_{t-1:t})}_{=:G'_{t}(\mathbf{x}_{t-1:t})},$$

Extended target distribution (admits $\pi_T(\mathbf{x}_{1:T})$ as a marginal!):

$$\pi'_{T}(\mathbf{x}_{1:T}, \mathbf{u}_{1:T}) \coloneqq \pi_{T}(\mathbf{x}_{1:T}) \prod_{t=1}^{T} N(\mathbf{u}_{t}; \mathbf{x}_{t}, \frac{\delta_{t}}{2}\mathbf{I})$$

$$\propto \prod_{t=1}^{T} \underbrace{N(\mathbf{x}_{t}; \mathbf{u}_{t}, \frac{\delta_{t}}{2}\mathbf{I})}_{=:M'_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1}; \mathbf{u}_{t})} \underbrace{M_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})G_{t}(\mathbf{x}_{t-1:t})}_{=:G'_{t}(\mathbf{x}_{t-1:t})},$$

Equivalent formulation of Particle-RWM:

1. sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, for $t = 1, \dots, T$;

Extended target distribution (admits $\pi_T(\mathbf{x}_{1:T})$ as a marginal!):

$$\pi'_{T}(\mathbf{x}_{1:T}, \mathbf{u}_{1:T}) \coloneqq \pi_{T}(\mathbf{x}_{1:T}) \prod_{t=1}^{T} N(\mathbf{u}_{t}; \mathbf{x}_{t}, \frac{\delta_{t}}{2}\mathbf{I})$$

$$\propto \prod_{t=1}^{T} \underbrace{N(\mathbf{x}_{t}; \mathbf{u}_{t}, \frac{\delta_{t}}{2}\mathbf{I})}_{=:M'_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1}; \mathbf{u}_{t})} \underbrace{M_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})G_{t}(\mathbf{x}_{t-1:t})}_{=:G'_{t}(\mathbf{x}_{t-1:t})},$$

- 1. sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, for $t = 1, \dots, T$;
- 2. run standard CSMC algorithm but replace

Extended target distribution (admits $\pi_T(\mathbf{x}_{1:T})$ as a marginal!):

$$\pi'_{T}(\mathbf{x}_{1:T}, \mathbf{u}_{1:T}) \coloneqq \pi_{T}(\mathbf{x}_{1:T}) \prod_{t=1}^{T} N(\mathbf{u}_{t}; \mathbf{x}_{t}, \frac{\delta_{t}}{2}\mathbf{I})$$

$$\propto \prod_{t=1}^{T} \underbrace{N(\mathbf{x}_{t}; \mathbf{u}_{t}, \frac{\delta_{t}}{2}\mathbf{I})}_{=:M'_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1}; \mathbf{u}_{t})} \underbrace{M_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})G_{t}(\mathbf{x}_{t-1:t})}_{=:G'_{t}(\mathbf{x}_{t-1:t})},$$

- 1. sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, for $t = 1, \dots, T$;
- 2. run standard CSMC algorithm but replace
 - $M_t(\mathbf{x}_t|\mathbf{x}_{t-1})$ by $M_t'(\mathbf{x}_t|\mathbf{x}_{t-1};\mathbf{u}_t)$;

Extended target distribution (admits $\pi_T(\mathbf{x}_{1:T})$ as a marginal!):

$$\pi'_{T}(\mathbf{x}_{1:T}, \mathbf{u}_{1:T}) \coloneqq \pi_{T}(\mathbf{x}_{1:T}) \prod_{t=1}^{T} N(\mathbf{u}_{t}; \mathbf{x}_{t}, \frac{\delta_{t}}{2}\mathbf{I})$$

$$\propto \prod_{t=1}^{T} \underbrace{N(\mathbf{x}_{t}; \mathbf{u}_{t}, \frac{\delta_{t}}{2}\mathbf{I})}_{=:M'_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1}; \mathbf{u}_{t})} \underbrace{M_{t}(\mathbf{x}_{t}|\mathbf{x}_{t-1})G_{t}(\mathbf{x}_{t-1:t})}_{=:G'_{t}(\mathbf{x}_{t-1:t})},$$

- 1. sample $\mathbf{u}_t \sim N(\mathbf{x}_t, \frac{\delta_t}{2}\mathbf{I})$, for $t = 1, \dots, T$;
- 2. run standard CSMC algorithm but replace

$$\begin{array}{l} - \ M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) \ \text{by} \ M_t'(\mathbf{x}_t | \mathbf{x}_{t-1}; \mathbf{u}_t); \\ - \ G_t(\mathbf{x}_{t-1:t}) \ \text{by} \ G_t'(\mathbf{x}_{t-1:t}). \end{array}$$

 Summary: Particle-RWM exploits 'decorrelation-over-time' property of the state-space model and also uses 'local' moves.

 Summary: Particle-RWM exploits 'decorrelation-over-time' property of the state-space model and also uses 'local' moves.
 → favourable scaling in T & dimensional stability in D.

- Summary: Particle-RWM exploits 'decorrelation-over-time' property of the state-space model and also uses 'local' moves.
 → favourable scaling in T & dimensional stability in D.
- Problem: Particle-RWM does not utilise

- Summary: Particle-RWM exploits 'decorrelation-over-time' property of the state-space model and also uses 'local' moves.
 → favourable scaling in T & dimensional stability in D.
- Problem: Particle-RWM does not utilise
 - gradient information (e.g., as in MALA);

- Summary: Particle-RWM exploits 'decorrelation-over-time' property of the state-space model and also uses 'local' moves.
 → favourable scaling in T & dimensional stability in D.
- Problem: Particle-RWM does not utilise
 - gradient information (e.g., as in MALA);
 - Gaussian prior information (e.g., as in Crank–Nicholson type methods and mGRAD/aGRAD).

Talk outline

- 1. State-space models/Feynman–Kac representation
- 2. Existing methods
- 3. Particle extensions of MALA and aMALA
- 4. Particle extensions of mGRAD and aGRAD
- 5. Numerical illustration
- 6. Summary
Talk outline

- 3. Particle extensions of MALA and aMALA
- 3.1 Exploiting filter gradients (gradients w.r.t. $\log \pi_t$)
- 3.2 Exploiting smoothing gradients (gradients w.r.t. $\log \pi_T$)

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] set $\bar{\mathbf{x}}_t \coloneqq \frac{1}{N+1} \sum_{n=0}^N \mathbf{x}_t^n$ and, for $n \in [N]_0$,

$$w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n) F_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n, \bar{\mathbf{x}}_t).$$

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] set $\bar{\mathbf{x}}_t \coloneqq \frac{1}{N+1} \sum_{n=0}^N \mathbf{x}_t^n$ and, for $n \in [N]_0$,

$$w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n) F_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n, \bar{\mathbf{x}}_t).$$

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \delta_t \mathbf{I}).$$

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] set $\bar{\mathbf{x}}_t \coloneqq \frac{1}{N+1} \sum_{n=0}^N \mathbf{x}_t^n$ and, for $n \in [N]_0$,

$$w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n) F_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n, \bar{\mathbf{x}}_t).$$

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \delta_t \mathbf{I}).$$

• Reduces to MALA if N = T = 1.

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] set $\bar{\mathbf{x}}_t \coloneqq \frac{1}{N+1} \sum_{n=0}^N \mathbf{x}_t^n$ and, for $n \in [N]_0$,

$$w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n) F_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n, \bar{\mathbf{x}}_t).$$

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_{t}^{n} \sim \mathrm{N}(\mathbf{x}_{t} + \frac{\delta_{t}}{2} \nabla_{\mathbf{x}_{t}} \log \pi_{t}(\mathbf{x}_{1:t}), \delta_{t} \mathbf{I}).$$

- Reduces to MALA if N = T = 1.
- Not integrating out the auxiliary variable u_t in the weights (and in the backward kernel) gives the Particle-aMALA.

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] set $\bar{\mathbf{x}}_t \coloneqq \frac{1}{N+1} \sum_{n=0}^N \mathbf{x}_t^n$ and, for $n \in [N]_0$,

$$w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n) F_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n, \bar{\mathbf{x}}_t).$$

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_{t}^{n} \sim \mathrm{N}(\mathbf{x}_{t} + \frac{\delta_{t}}{2} \nabla_{\mathbf{x}_{t}} \log \pi_{t}(\mathbf{x}_{1:t}), \delta_{t} \mathbf{I}).$$

- Reduces to MALA if N = T = 1.
- Not integrating out the auxiliary variable u_t in the weights (and in the backward kernel) gives the Particle-aMALA.

- 'random-weight' version of Particle-MALA;

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] set $\bar{\mathbf{x}}_t \coloneqq \frac{1}{N+1} \sum_{n=0}^N \mathbf{x}_t^n$ and, for $n \in [N]_0$,

$$w_t^n \propto Q_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n) F_t(\mathbf{x}_{t-1}^{a_{t-1}^n}, \mathbf{x}_t^n, \bar{\mathbf{x}}_t).$$

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \delta_t \mathbf{I}).$$

- Reduces to MALA if N = T = 1.
- Not integrating out the auxiliary variable u_t in the weights (and in the backward kernel) gives the Particle-aMALA.
 - 'random-weight' version of Particle-MALA;
 - reduces to aMALA if N = T = 1.

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in *T* → decreasing line.

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in *T* → decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in D → increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Talk outline

3. Particle extensions of MALA and aMALA

- 3.1 Exploiting filter gradients (gradients w.r.t. $\log \pi_t$)
- 3.2 Exploiting smoothing gradients (gradients w.r.t. $\log \pi_T$)

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

- 1c. **[sampling]** sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t'(\mathbf{x}_{t-2}^{a_{t-1}^n}, \mathbf{x}_t^n; \mathbf{u}_{t-1:t})$,
 - 3. [backward sampling] (*omitted*)

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

- 1c. **[sampling]** sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t'(\mathbf{x}_{t-2}^{a_{t-1}^n}, \mathbf{x}_t^n; \mathbf{u}_{t-1:t})$,
 - 3. [backward sampling] (*omitted*)
 - Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \delta_t \mathbf{I}).$$

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto G_t'(\mathbf{x}_{t-2}^{a_{t-1}^n}, \mathbf{x}_t^n; \mathbf{u}_{t-1:t})$,
 - 3. [backward sampling] (*omitted*)
 - Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \delta_t \mathbf{I}).$$

• Using gradients w.r.t. $\log \pi_T(\mathbf{x}_{1:T})$ (rather than $\log \pi_t(\mathbf{x}_{1:t})$) comes at cost of having only 2nd-order Markovianity.

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \frac{\delta_t}{2} \mathbf{I})$, and $\mathbf{x}_t^n \sim N(\mathbf{u}_t, \frac{\delta_t}{2} \mathbf{I})$, for $n \in [N]$,
- 1d. [weighting] for $n \in [N]_0$, set $w_t^n \propto G'_t(\mathbf{x}_{t-2}^{a_{t-1}^n}, \mathbf{x}_t^n; \mathbf{u}_{t-1:t})$,
 - 3. [backward sampling] (*omitted*)
 - Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_T(\mathbf{x}_{1:T}), \delta_t \mathbf{I}).$$

- Using gradients w.r.t. $\log \pi_T(\mathbf{x}_{1:T})$ (rather than $\log \pi_t(\mathbf{x}_{1:t})$) comes at cost of having only 2nd-order Markovianity.
- Again reduces to aMALA if N = T = 1.

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in *T* → decreasing line.

- can be constant in T → horizontal line;
- must increase in *T* → decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

- must grow linearly in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Talk outline

- $1. \ State-space \ models/Feynman-Kac \ representation$
- 2. Existing methods
- 3. Particle extensions of MALA and aMALA
- 4. Particle extensions of mGRAD and aGRAD
- 5. Numerical illustration
- 6. Summary

Talk outline

- 4. Particle extensions of mGRAD and aGRAD
- 4.1 Exploiting conditionally Gaussian prior dynamics
- 4.2 Exploiting unconditionally Gaussian prior dynamics
- 4.3 Interpolation between CSMC and Particle-MALA/aMALA

Conditionally Gaussian prior dynamics

• For the moment, assume that

$$M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t).$$

Assuming $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t)$

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$ and $\mathbf{x}_t^n \sim M_t'(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n}; \mathbf{u}_t)$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t)$

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$ and $\mathbf{x}_t^n \sim M'_t(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n}; \mathbf{u}_t)$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)
 - Here,

 $M'_t(\mathbf{x}_t|\mathbf{x}_{t-1};\mathbf{u}_t) \propto \mathrm{N}(\mathbf{x}_t;\mathbf{m}_t(\mathbf{x}_{t-1}),\mathbf{C}_t) \,\mathrm{N}(\mathbf{u}_t;\mathbf{x}_t,\frac{\delta_t}{2}\mathbf{I}),$

is the 'fully-adapted auxiliary-particle filter' proposal for the pseudo observation \mathbf{u}_t :

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t)$

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$ and $\mathbf{x}_t^n \sim M_t'(\cdot | \mathbf{x}_{t-1}^{a_{t-1}}; \mathbf{u}_t)$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)
 - Here,

$$M'_t(\mathbf{x}_t|\mathbf{x}_{t-1};\mathbf{u}_t) \propto \mathrm{N}(\mathbf{x}_t;\mathbf{m}_t(\mathbf{x}_{t-1}),\mathbf{C}_t)\,\mathrm{N}(\mathbf{u}_t;\mathbf{x}_t,\frac{\delta_t}{2}\mathbf{I}),$$

is the 'fully-adapted auxiliary-particle filter' proposal for the pseudo observation \mathbf{u}_t :

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_{t}^{n} \sim \mathrm{N}((\mathbf{I} - \mathbf{A}_{t})\mathbf{m}_{t}(\mathbf{x}_{t-1}^{a_{t-1}^{n}}) + \mathbf{A}_{t}[\mathbf{x}_{t} + \frac{\delta_{t}}{2}\nabla_{\mathbf{x}_{t}}\log G_{t}(\mathbf{x}_{t-1:t})], \mathbf{B}_{t}),$$

where $\mathbf{B}_t \coloneqq \frac{\delta_t}{2} \mathbf{A}_t^2 + \mathbf{A}_t$ and $\mathbf{A}_t = (\mathbf{C}_t + \frac{\delta_t}{2} \mathbf{I})^{-1} \mathbf{C}_t$.

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t)$

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:

- 1c. [sampling] sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$ and $\mathbf{x}_t^n \sim M_t'(\cdot | \mathbf{x}_{t-1}^{a_{t-1}}; \mathbf{u}_t)$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)
 - Here,

$$M'_t(\mathbf{x}_t|\mathbf{x}_{t-1};\mathbf{u}_t) \propto \mathrm{N}(\mathbf{x}_t;\mathbf{m}_t(\mathbf{x}_{t-1}),\mathbf{C}_t)\,\mathrm{N}(\mathbf{u}_t;\mathbf{x}_t,\frac{\delta_t}{2}\mathbf{I}),$$

is the 'fully-adapted auxiliary-particle filter' proposal for the pseudo observation \mathbf{u}_t :

• Step 1c marginally proposes (for $n \neq 0$):

$$\mathbf{x}_{t}^{n} \sim \mathrm{N}((\mathbf{I} - \mathbf{A}_{t})\mathbf{m}_{t}(\mathbf{x}_{t-1}^{a_{t-1}^{n}}) + \mathbf{A}_{t}[\mathbf{x}_{t} + \frac{\delta_{t}}{2}\nabla_{\mathbf{x}_{t}}\log G_{t}(\mathbf{x}_{t-1:t})], \mathbf{B}_{t}),$$

where $\mathbf{B}_t \coloneqq \frac{\delta_t}{2} \mathbf{A}_t^2 + \mathbf{A}_t$ and $\mathbf{A}_t = (\mathbf{C}_t + \frac{\delta_t}{2} \mathbf{I})^{-1} \mathbf{C}_t$.

• Reduces to mGRAD if N = T = 1.

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t(\mathbf{x}_{t-1}))$

 Not integrating out the auxiliary variable ut in the weights/backward kernel of Particle-mGRAD gives the Particle-aGRAD algorithm:

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t(\mathbf{x}_{t-1}))$

 Not integrating out the auxiliary variable ut in the weights/backward kernel of Particle-mGRAD gives the Particle-aGRAD algorithm:

- 'random-weight' version of Particle-mGRAD;

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t(\mathbf{x}_{t-1}))$

- Not integrating out the auxiliary variable ut in the weights/backward kernel of Particle-mGRAD gives the Particle-aGRAD algorithm:
 - 'random-weight' version of Particle-mGRAD;
 - implementable even if $C_t = C_t(x_{t-1})$ depends on x_{t-1} ;

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t(\mathbf{x}_{t-1}))$

- Not integrating out the auxiliary variable ut in the weights/backward kernel of Particle-mGRAD gives the Particle-aGRAD algorithm:
 - 'random-weight' version of Particle-mGRAD;
 - implementable even if $\mathbf{C}_t = \mathbf{C}_t(\mathbf{x}_{t-1})$ depends on \mathbf{x}_{t-1} ;
 - reduces to aGRAD if N = T = 1.

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in $T \rightsquigarrow$ decreasing line.

- can be constant in T → horizontal line;
- must increase in *T* → decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Scaling with D $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = 25, N = 31$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Talk outline

- 4. Particle extensions of mGRAD and aGRAD
- 4.1 Exploiting conditionally Gaussian prior dynamics
- 4.2 Exploiting unconditionally Gaussian prior dynamics
- 4.3 Interpolation between CSMC and Particle-MALA/aMALA
Gaussian prior dynamics

• Now assume $\mathbf{m}_t(\mathbf{x}_{t-1}) = \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{b}_t$, i.e.:

$$M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{b}_t, \mathbf{C}_t).$$

Twisted Particle-aGRAD

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{b}_t, \mathbf{C}_t)$

Algorithm 7 (Twisted Particle-aGRAD). For $t \in [T]$, sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$. Then, run the CSMC algorithm with the following modifications.

- 1c. [sampling] $\mathbf{x}_t^n \sim M_t'(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n}; \mathbf{u}_{t:T})$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)
 - 3. [backward sampling] (*omitted*)

Twisted Particle-aGRAD

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{b}_t, \mathbf{C}_t)$

Algorithm 7 (Twisted Particle-aGRAD). For $t \in [T]$, sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$. Then, run the CSMC algorithm with the following modifications.

- 1c. [sampling] $\mathbf{x}_t^n \sim M_t'(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n}; \mathbf{u}_{t:T})$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)
 - 3. [backward sampling] (*omitted*)
 - Here,

 $M_t'(\mathbf{x}_t|\mathbf{x}_{t-1};\mathbf{u}_{t:T})$

$$\propto \int_{\mathcal{X}^{T-t}} \left[\prod_{s=t}^T \mathrm{N}(\mathbf{x}_s; \mathbf{F}_s \mathbf{x}_{s-1} + \mathbf{b}_s, \mathbf{C}_s) \, \mathrm{N}(\mathbf{u}_s; \mathbf{x}_s, \frac{\delta_s}{2} \mathbf{I}) \right] \mathrm{d}\mathbf{x}_{t+1:T},$$

is the **'fully-twisted particle filter'** proposal for the pseudo observations $\mathbf{u}_{t:T}$:

Twisted Particle-aGRAD

Assuming $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{b}_t, \mathbf{C}_t)$

Algorithm 7 (Twisted Particle-aGRAD). For $t \in [T]$, sample $\mathbf{u}_t \sim N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log G_t(\mathbf{x}_{t-1:t}), \frac{\delta_t}{2} \mathbf{I})$. Then, run the CSMC algorithm with the following modifications.

- 1c. [sampling] $\mathbf{x}_t^n \sim M_t'(\cdot | \mathbf{x}_{t-1}^{a_{t-1}^n}; \mathbf{u}_{t:T})$, for $n \in [N]$,
- 1d. [weighting] (*omitted*)
 - 3. [backward sampling] (*omitted*)
 - Here,
 - $M'_t(\mathbf{x}_t|\mathbf{x}_{t-1};\mathbf{u}_{t:T})$

$$\propto \int_{\mathcal{X}^{T-t}} \left[\prod_{s=t}^T \mathrm{N}(\mathbf{x}_s; \mathbf{F}_s \mathbf{x}_{s-1} + \mathbf{b}_s, \mathbf{C}_s) \, \mathrm{N}(\mathbf{u}_s; \mathbf{x}_s, \frac{\delta_s}{2} \mathbf{I}) \right] \mathrm{d}\mathbf{x}_{t+1:T},$$

is the **'fully-twisted particle filter'** proposal for the pseudo observations $\mathbf{u}_{t:T}$:

• Reduces to aGRAD if N = T = 1.

 $\overline{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2} \implies \text{Informally, to stably}}$ approximate marginals, the number of iterations

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in $T \rightsquigarrow$ decreasing line.

 $\overline{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2} \implies \text{Informally, to stably}}$ approximate marginals, the number of iterations

- can be **constant** in $T \rightsquigarrow$ horizontal line;
- must increase in *T* → decreasing line.

 $(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 \implies \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

 $\overline{(\text{Average ESJD}) = \frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2 } \Longrightarrow \text{Informally, to stably approximate marginals, the number of iterations}$

- must grow **linearly** in *D* ~→ horizontal line;
- can grow sublinearly in *D* ~→ increasing line;
- must grow superlinearly in *D* ~→ decreasing line.

Talk outline

4. Particle extensions of mGRAD and aGRAD

- 4.1 Exploiting conditionally Gaussian prior dynamics
- 4.2 Exploiting unconditionally Gaussian prior dynamics
- 4.3 Interpolation between CSMC and Particle-MALA/aMALA

• Assume $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t, \mathbf{C}_t).$

- Assume $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t, \mathbf{C}_t).$
- Recall: Particle-mGRAD/Particle-aGRAD marginally propose:

 $\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{a}_t, \mathbf{B}_t), \quad \text{for } n \neq 0,$

where (with $\mathbf{A}_t = (\mathbf{C}_t + rac{\delta_t}{2}\mathbf{I})^{-1}\mathbf{C}_t$),

$$\mathbf{a}_t \coloneqq (\mathbf{I} - \mathbf{A}_t)\mathbf{m}_t + \mathbf{A}_t[\mathbf{x}_t + \frac{\delta_t}{2}\nabla_{\mathbf{x}_t}\log G_t(\mathbf{x}_{t-1:t})],$$
$$\mathbf{B}_t \coloneqq \frac{\delta_t}{2}\mathbf{A}_t^2 + \mathbf{A}_t,$$

- Assume $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t, \mathbf{C}_t).$
- Recall: Particle-mGRAD/Particle-aGRAD marginally propose:

 $\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{a}_t, \mathbf{B}_t), \ \ \text{for} \ n
eq 0,$

where (with $\mathbf{A}_t = (\mathbf{C}_t + rac{\delta_t}{2}\mathbf{I})^{-1}\mathbf{C}_t$),

$$\mathbf{a}_t \coloneqq (\mathbf{I} - \mathbf{A}_t)\mathbf{m}_t + \mathbf{A}_t[\mathbf{x}_t + \frac{\delta_t}{2}\nabla_{\mathbf{x}_t}\log G_t(\mathbf{x}_{t-1:t})],\\ \mathbf{B}_t \coloneqq \frac{\delta_t}{2}\mathbf{A}_t^2 + \mathbf{A}_t,$$

- If prior is highly informative (all eigenvalues of \mathbf{C}_t small) then $\mathbf{A}_t \approx \mathbf{0}$ and

- Assume $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t, \mathbf{C}_t).$
- Recall: Particle-mGRAD/Particle-aGRAD marginally propose:

 $\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{a}_t, \mathbf{B}_t), \ \ \text{for} \ n
eq 0,$

where (with $\mathbf{A}_t = (\mathbf{C}_t + rac{\delta_t}{2}\mathbf{I})^{-1}\mathbf{C}_t$),

$$\mathbf{a}_t \coloneqq (\mathbf{I} - \mathbf{A}_t)\mathbf{m}_t + \mathbf{A}_t[\mathbf{x}_t + \frac{\delta_t}{2}\nabla_{\mathbf{x}_t}\log G_t(\mathbf{x}_{t-1:t})],$$
$$\mathbf{B}_t \coloneqq \frac{\delta_t}{2}\mathbf{A}_t^2 + \mathbf{A}_t,$$

• If prior is highly **informative** (all eigenvalues of C_t small) then $A_t \approx 0$ and CSMC proposal

 $N(\mathbf{a}_t, \mathbf{B}_t) \approx \widetilde{N(\mathbf{m}_t, \mathbf{C}_t)}.$

- Assume $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t, \mathbf{C}_t).$
- Recall: Particle-mGRAD/Particle-aGRAD marginally propose:

 $\mathbf{x}_t^n \sim \mathrm{N}(\mathbf{a}_t, \mathbf{B}_t), \ \ \text{for} \ n
eq 0$,

where (with $\mathbf{A}_t = (\mathbf{C}_t + rac{\delta_t}{2}\mathbf{I})^{-1}\mathbf{C}_t$),

$$\mathbf{a}_t \coloneqq (\mathbf{I} - \mathbf{A}_t)\mathbf{m}_t + \mathbf{A}_t[\mathbf{x}_t + \frac{\delta_t}{2}\nabla_{\mathbf{x}_t}\log G_t(\mathbf{x}_{t-1:t})],\\ \mathbf{B}_t \coloneqq \frac{\delta_t}{2}\mathbf{A}_t^2 + \mathbf{A}_t,$$

• If prior is highly informative (all eigenvalues of C_t small) then $A_t \approx 0$ and CSMC proposal

$$N(\mathbf{a}_t, \mathbf{B}_t) \approx \widetilde{N(\mathbf{m}_t, \mathbf{C}_t)}.$$

- If prior is highly uninformative (all eigenvalues of C_t large) then $A_t \approx I$ and

- Assume $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t, \mathbf{C}_t).$
- Recall: Particle-mGRAD/Particle-aGRAD marginally propose:

where (with $\mathbf{A}_t = (\mathbf{C}_t + rac{\delta_t}{2}\mathbf{I})^{-1}\mathbf{C}_t$),

$$\mathbf{a}_t \coloneqq (\mathbf{I} - \mathbf{A}_t)\mathbf{m}_t + \mathbf{A}_t[\mathbf{x}_t + \frac{\delta_t}{2}\nabla_{\mathbf{x}_t}\log G_t(\mathbf{x}_{t-1:t})],\\ \mathbf{B}_t \coloneqq \frac{\delta_t}{2}\mathbf{A}_t^2 + \mathbf{A}_t,$$

• If prior is highly **informative** (all eigenvalues of C_t small) then $A_t \approx 0$ and CSMC proposal

$$N(\mathbf{a}_t, \mathbf{B}_t) \approx \widetilde{N(\mathbf{m}_t, \mathbf{C}_t)}.$$

- If prior is highly uninformative (all eigenvalues of C_t large) then $A_t \approx I$ and

$$N(\mathbf{a}_t, \mathbf{B}_t) \approx N(\mathbf{x}_t + \frac{\delta_t}{2} \nabla_{\mathbf{x}_t} \log \pi_t(\mathbf{x}_{1:t}), \delta_t \mathbf{I}).$$

(marginal) Particle-MALA/Particle-aMALA proposal 51 / 61

Scaling with prior informativeness $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{x}_{t-1}, \lambda \mathbf{I}), G_t(\mathbf{x}_{t-1:t}) = N(\mathbf{y}_t; \mathbf{x}_t, \mathbf{I}); T = D = 10, N = 31$

(Average ESJD) = $\frac{1}{TD} \sum_{t=1}^{T} \sum_{d=1}^{D} (x_{t,d}^{\text{new}} - x_{t,d}^{\text{old}})^2$.

Convergence to CSMC for highly informative priors

A1 $M_t(\cdot | \mathbf{x}_{t-1}) = N(\mathbf{m}_t, \mathbf{C}_t)$, with G_t bounded and \mathbf{C}_t invertible. **A2** $\exists C_0, C_1 \ge 0$ such that $\|\nabla \log G_t(\mathbf{x}_t)\|_2 \le C_0 + C_1 \|\mathbf{x}_t\|_2$.

Proposition 1. For some $D, T, N \ge 1$, assume A1–A2, and assume that there exists a sequence $(\lambda_k)_{k\ge 1}$ in $(0,\infty)$ with $\max_{t\in[T]} \max \operatorname{eigenval}(\mathbf{C}_{t,k}) \le \lambda_k \to 0$ as $k \to \infty$. Then for any $\varepsilon > 0$, there exists a sequence $(F_{T,k})_{k\ge 1}$ of subsets of \mathcal{X}^T with $\lim_{k\to\infty} \pi_{T,k}(F_{T,k}) = 1$ such that

$$\begin{split} \sup_{\mathbf{x}_{1:T} \in F_{T,k}} & \|P_{\mathsf{Particle-mGRAD},k}(\cdot | \mathbf{x}_{1:T}) \\ & \mathbf{x}_{1:T} \in F_{T,k} & -P_{\mathsf{CSMC},k}(\cdot | \mathbf{x}_{1:T}) \|_{\mathrm{TV}} \in \mathrm{O}(\lambda_{k}^{(1-\varepsilon)/4}); \\ & \sup_{\mathbf{x}_{1:T} \in F_{T,k}} & \|P_{\mathsf{Particle-aGRAD},k}(\cdot | \mathbf{x}_{1:T}) \\ & \mathbf{x}_{1:T} \in F_{T,k} & -P_{\mathsf{CSMC},k}(\cdot | \mathbf{x}_{1:T}) \|_{\mathrm{TV}} \in \mathrm{O}(\lambda_{k}^{(1-\varepsilon)/4}). \end{split}$$

Convergence to Particle-MALA for uninformative priors

A3 $\max_{d \in [D]} \int_{\mathcal{X}} x_{t,d}^2 G_t(\mathbf{x}_t) \, \mathrm{d}\mathbf{x}_t < \infty$, where $x_{t,d}$ is the dth component of \mathbf{x}_t .

Proposition 2. For some $D, T, N \ge 1$, assume A1–A3, and assume that there exists a sequence $(\lambda_k)_{k\ge 1}$ in $(0,\infty)$ with $\min_{t\in[T]} \min \operatorname{eigenval}(\mathbf{C}_{t,k}) \ge \lambda_k \to \infty$ as $k \to \infty$. Then for any $\varepsilon > 0$, there exists a sequence $(F_{T,k})_{k\ge 1}$ of subsets of \mathcal{X}^T with $\lim_{k\to\infty} \pi_{T,k}(F_{T,k}) = 1$ such that

$$\begin{split} \sup_{\mathbf{x}_{1:T}\in F_{T,k}} & \|P_{\mathsf{Particle-m}\mathsf{GRAD},k}(\cdot|\mathbf{x}_{1:T}) \\ & -P_{\mathsf{Particle-MALA},k}(\cdot|\mathbf{x}_{1:T})\|_{\mathsf{TV}} \in \mathcal{O}(\lambda_{k}^{-(1-\varepsilon)/4}); \\ \sup_{\mathbf{x}_{1:T}\in F_{T,k}} & \|P_{\mathsf{Particle-a}\mathsf{GRAD},k}(\cdot|\mathbf{x}_{1:T}) \\ & -P_{\mathsf{Particle-a}\mathsf{MALA},k}(\cdot|\mathbf{x}_{1:T})\|_{\mathsf{TV}} \in \mathcal{O}(\lambda_{k}^{-(1-\varepsilon)/4}). \end{split}$$

Talk outline

- $1. \ State-space \ models/Feynman-Kac \ representation$
- 2. Existing methods
- 3. Particle extensions of MALA and aMALA
- 4. Particle extensions of mGRAD and aGRAD
- 5. Numerical illustration
- 6. Summary

Multivariate stochastic volatility model

• Potential function/observation density:

$$G_t(\mathbf{x}_{t-1:t}) = g_t(\mathbf{y}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{0}, \operatorname{diag}(\exp \mathbf{x}_t)).$$

Multivariate stochastic volatility model

• Potential function/observation density:

$$G_t(\mathbf{x}_{t-1:t}) = g_t(\mathbf{y}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{0}, \operatorname{diag}(\exp \mathbf{x}_t)).$$

• Mutation kernel/transition density:

$$M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = f_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; 0.9\mathbf{x}_{t-1}, \tau \mathbf{H}),$$

where, with $\rho=0.25$,

$$\mathbf{H} = \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{bmatrix}$$

٠

Multivariate stochastic volatility model

• Potential function/observation density:

$$G_t(\mathbf{x}_{t-1:t}) = g_t(\mathbf{y}_t | \mathbf{x}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{0}, \operatorname{diag}(\exp \mathbf{x}_t)).$$

• Mutation kernel/transition density:

$$M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = f_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; 0.9\mathbf{x}_{t-1}, \tau \mathbf{H}),$$

where, with $\rho=0.25$,

$$\mathbf{H} = \begin{bmatrix} 1 & \rho & \cdots & \rho \\ \rho & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \rho \\ \rho & \cdots & \rho & 1 \end{bmatrix}$$

- The prior variance $\tau>0$ controls 'prior informativeness'.

Multivariate stochastic volatility model, continued T = 128, D = 30, N = 31; δ_t tuned to achieve 75 % acceptance rate

Proposed methods which do not require (conditionally or unconditionally) Gaussian dynamics compared with Particle-RWM as a baseline.

Multivariate stochastic volatility model, continued T = 128, D = 30, N = 31; δ_t tuned to achieve 75 % acceptance rate

Proposed methods which require only *conditionally* Gaussian dynamics, i.e., $M_t(\mathbf{x}_t | \mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{m}_t(\mathbf{x}_{t-1}), \mathbf{C}_t(\mathbf{x}_{t-1}))$ (Particle-mGRAD algorithm also needs $\mathbf{C}_t(\mathbf{x}_{t-1}) = \mathbf{C}_t$). ' $(\kappa = 0$ ' indicates no gradient usage. ^{57 / 61}

Multivariate stochastic volatility model, continued $T = 128, D = 30, N = 31; \delta_t$ tuned to achieve 75% acceptance rate

Proposed methods which require *unconditionally* Gaussian dynamics i.e., $M_t(\mathbf{x}_t|\mathbf{x}_{t-1}) = N(\mathbf{x}_t; \mathbf{F}_t \mathbf{x}_{t-1} + \mathbf{b}_t, \mathbf{C}_t)$, compared with aGRAD (which also makes this assumption) as baseline. '($\kappa = 0$)' indicates no gradient usage.^{58 / 61}

Talk outline

- $1. \ State-space \ models/Feynman-Kac \ representation$
- 2. Existing methods
- 3. Particle extensions of MALA and aMALA
- 4. Particle extensions of mGRAD and aGRAD
- 5. Numerical illustration
- 6. Summary

• We have proposed MCMC methods for state-inference in high-dimensional state-space models.

- We have proposed MCMC methods for state-inference in high-dimensional state-space models.
- From 'classical' MCMC (e.g., MALA or mGRAD) our methods borrow the ability to make local moves guided by gradient or Gaussian-prior information:

- We have proposed MCMC methods for state-inference in high-dimensional state-space models.
- From 'classical' MCMC (e.g., MALA or mGRAD) our methods borrow the ability to make local moves guided by gradient or Gaussian-prior information:

 \rightsquigarrow favourable scaling with the state dimension, D.

- We have proposed MCMC methods for state-inference in high-dimensional state-space models.
- From 'classical' MCMC (e.g., MALA or mGRAD) our methods borrow the ability to make local moves guided by gradient or Gaussian-prior information:

 → favourable scaling with the state dimension, D.
- From CSMC, our methods borrow the ability to exploit the 'decorrelation-over-time' model property:

- We have proposed MCMC methods for state-inference in high-dimensional state-space models.
- From 'classical' MCMC (e.g., MALA or mGRAD) our methods borrow the ability to make local moves guided by gradient or Gaussian-prior information:

 → favourable scaling with the state dimension, D.
- From CSMC, our methods borrow the ability to exploit the 'decorrelation-over-time' model property:

 \rightsquigarrow favourable scaling with the time horizon, T.

- We have proposed MCMC methods for state-inference in high-dimensional state-space models.
- From 'classical' MCMC (e.g., MALA or mGRAD) our methods borrow the ability to make local moves guided by gradient or Gaussian-prior information:

 → favourable scaling with the state dimension, D.
- From CSMC, our methods borrow the ability to exploit the 'decorrelation-over-time' model property:
 → favourable scaling with the time horizon, T.
- All our methods can be implemented in O(NT) operations per iteration (for fixed D).

- We have proposed MCMC methods for state-inference in high-dimensional state-space models.
- From 'classical' MCMC (e.g., MALA or mGRAD) our methods borrow the ability to make local moves guided by gradient or Gaussian-prior information:

 → favourable scaling with the state dimension, D.
- From CSMC, our methods borrow the ability to exploit the 'decorrelation-over-time' model property:
 → favourable scaling with the time horizon, T.
- All our methods can be implemented in O(NT) operations per iteration (for fixed D).
- All our methods are exact (they leave $\pi_T(\mathbf{x}_{1:T})$ invariant).

Summary, continued

The methods mentioned in this work (new methods are in *italic*).

Method	Special case if $N = T = 1$
CSMC [†]	IMH
Particle-RWM	RWM
Particle-aMALA	aMALA
Particle-MALA	MALA
Particle-aMALA+	aMALA
Particle-aGRAD	aGRAD
Particle-mGRAD	mGRAD
Particle-aGRAD+	aGRAD
Twisted Particle-aGRAD(+)	aGRAD
Particle-PCNL & more [‡]	PCNL

[†] In our taxonomy, CSMC could be called 'Particle-IMH'. However, the latter already refers to a different algorithm in Andrieu et al. (2010).

 ‡ auxiliary, smoothing-gradient ('+') and twisted versions.

• For T = 1 and N = 1, our methods reduce to well known 'classical' MCMC algorithms.

Summary, continued

The methods mentioned in this work (new methods are in *italic*).

Method	Special case if $N = T = 1$
CSMC [†]	IMH
Particle-RWM	RWM
Particle-aMALA	aMALA
Particle-MALA	MALA
Particle-aMALA+	aMALA
Particle-aGRAD	aGRAD
Particle-mGRAD	mGRAD
Particle-aGRAD+	aGRAD
Twisted Particle-aGRAD(+)	aGRAD
Particle-PCNL & more [‡]	PCNL

[†] In our taxonomy, CSMC could be called 'Particle-IMH'. However, the latter already refers to a different algorithm in Andrieu et al. (2010).

 ‡ auxiliary, smoothing-gradient ('+') and twisted versions.

- For T = 1 and N = 1, our methods reduce to well known 'classical' MCMC algorithms.
- For T = 1 and N > 1, our methods are novel 'multi-proposal' variants of these 'classical' MCMC algorithms.

Summary, continued

The methods mentioned in this work (new methods are in *italic*).

Method	Special case if $N = T = 1$
CSMC [†]	IMH
Particle-RWM	RWM
Particle-aMALA	aMALA
Particle-MALA	MALA
Particle-aMALA+	aMALA
Particle-aGRAD	aGRAD
Particle-mGRAD	mGRAD
Particle-aGRAD+	aGRAD
Twisted Particle-aGRAD(+)	aGRAD
Particle-PCNL & more [‡]	PCNL

[†] In our taxonomy, CSMC could be called 'Particle-IMH'. However, the latter already refers to a different algorithm in Andrieu et al. (2010).

 ‡ auxiliary, smoothing-gradient ('+') and twisted versions.

- For T = 1 and N = 1, our methods reduce to well known 'classical' MCMC algorithms.
- For T = 1 and N > 1, our methods are novel 'multi-proposal' variants of these 'classical' MCMC algorithms.
- More details: https://arxiv.org/pdf/2401.14868
Literature I

- Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3):269–342. With discussion.
- Andrieu, C., Lee, A., and Vihola, M. (2018). Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers. *Bernoulli*, 24(2):842–872.
- Andrieu, C. and Vihola, M. (2016). Establishing some order amongst exact approximations of MCMCs. Annals of Applied Probability, 26(5):2661–2696.
- Besag, J. E. (1994). Contribution to the discussion on 'Representations of knowledge in complex systems' by Grenander, U and Miller, M. I.. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 56(4):549–581.
- Ceperley, D. M. and Dewing, M. (1999). The penalty method for random walks with uncertain energies. The Journal of Chemical Physics, 110(20):9812–9820.
- Corenflos, A. and Särkkä, S. (2023). Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems. arXiv preprint arXiv:2303.00301.
- Cotter, S. L., Roberts, G. O., Stuart, A. M., and White, D. (2013). MCMC methods for functions: Modifying old algorithms to make them faster. *Statistical Science*, 28(3):424–446.
- Finke, A. and Thiery, A. H. (2023). Conditional sequential Monte Carlo in high dimensions. The Annals of Statistics, 51(2):437–463.
- Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. *Biometrika*, 57(1):97–109.
- Koskela, J., Jenkins, P. A., Johansen, A. M., and Spano, D. (2020). Asymptotic genealogies of interacting particle systems with an application to sequential Monte Carlo. *The Annals of Statistics*, 48(1):560–583.
- Lee, A., Singh, S. S., and Vihola, M. (2020). Coupled conditional backward sampling particle filter. Annals of Statistics, 48(5):3066–3089.
- Malory, S. (2021). Bayesian inference for stochastic processes. PhD thesis, Lancaster University.
- Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state calculations by fast computing machines. *Journal of Chemical Physics*, 21(6):1087–1092.
- Titsias, M. K. and Papaspiliopoulos, O. (2018). Auxiliary gradient-based sampling algorithms. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(4):749–767.