Particle-MALA and Particle-mGRAD

Gradient-based MCMC methods for
high-dimensional state-space models!

Adrien Corenflos* Axel Finkef

*The University of Warwick, UK

fLoughborough University, UK

14th June 2024

"https://arxiv.org/pdf/2401.14868
1/61

https://arxiv.org/pdf/2401.14868

Talk outline

1. State-space models/Feynman—Kac representation

Motivation: State-space model

X1 X9 X3

2/61

Motivation: State-space model

X1 X9 X3

P f3 fa

2/61

Motivation: State-space model

yi y2 y3
X1 X9 X3

P f3 fa

2/61

Motivation: State-space model

Y1 Y2 ys
T g1 I 92 I g3
X1 X2 X3

P f3 fa

2/61

Motivation: State-space model

Y1 y2 Y3
Tgl Igz Ig:a
X1 X2 X3

P f3 fa

= Examples:
— econometrics/finance,
— ecology,
— engineering,
— epidemiology,
— weather forcasting,

2/61

Motivation: State-space model, continued

Y1 Y2 yr
I g1 T g2 T gr
X1 X9 XT
Ja I3 Ir

3/61

Motivation: State-space model, continued

Y1 Y2 yr
I g1 T 92 T gr
Xl XQ “ e XT
Ja I3 Ir

= T observations: yi,...,yr.

3/61

Motivation: State-space model, continued

y1 y2 yr
Igl Ig2 TQT
X1 X9 X7
f2 f3 fr
= T observations: yi,...,yr. T1
= D-dimensional latent states: x;, = | : | € X =RP,
Zt,D

3/61

Motivation: State-space model, continued

y1 y2 yr
Igl Ig2 TQT
X1 X9 X7
f2 f3 fr
= T observations: yi,...,yr. T1
= D-dimensional latent states: x;, = | : | € X =RP,
= Joint smoothing distribution: Tt D
T
mr(xir) = p(xrrlyrr) o [filxexe-1)g:(yelxe).
t=1

3/61

Motivation: State-space model, continued

y1 y2 yr
Igl Ig2 TQT
X1 X9 X7
f2 f3 fr
= T observations: yi,...,yr. T1
= D-dimensional latent states: x;, = | : | € X =RP,
= Joint smoothing distribution: Tt D
T
mr(xir) = p(xrrlyrr) o [filxexe-1)g:(yelxe).
t=1

= Assumption: densities f; and g¢; are differentiable (in the
states); densities/gradients can be evaluated pointwise.

3/61

Motivation: State-space model, continued

y1 y2 yr
Igl Ig2 TQT
X1 X9 X7
f2 f3 fr
= T observations: yi,...,yr. T1
= D-dimensional latent states: x;, = | : | € X =RP,
= Joint smoothing distribution: Tt D
T
mr(x1r) = p(xrrlyrr) o [filxelxi—1) g (yelxe).
t=1

= Assumption: densities f; and g¢; are differentiable (in the
states); densities/gradients can be evaluated pointwise.

= Goal: find efficient MCMC algorithms targetting 7 (x1.7).

3/61

Motivation: State-space model, continued

y1 y2 yr
Igl Ig2 TQT
X1 X9 X7
f2 f3 fr
= T observations: yi,...,yr. T1
= D-dimensional latent states: x;, = | : | € X =RP,
= Joint smoothing distribution: Tt D
T
mr(x1r) = p(xrrlyrr) o [filxelxi—1) g (yelxe).
t=1

= Assumption: densities f; and g¢; are differentiable (in the
states); densities/gradients can be evaluated pointwise.

= Goal: find efficient MCMC algorithms targetting 7 (x1.7).
= Problem: 7p(x1.77) may be high dimensional (7" or D large).

3/61

Generic Feynman—Kac representation

= More generally' we are interested in a distribution

mr(X1.7) OCHMt X¢|xt-1)Ge(xt-1:1) HQt Xt—1:t)
t=1

on X1 (with & := RP), where

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.

= Assumption: M; and G; are differentiable; both functions
and their gradients can be evaluated point-wise.

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.
= Assumption: M; and G; are differentiable; both functions
and their gradients can be evaluated point-wise.

= For t < T, define the filters: m(x1.¢) o [[4q Qs(Xs—1.5)-

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.
= Assumption: M; and G; are differentiable; both functions
and their gradients can be evaluated point-wise.
= For t < T, define the filters: m(x1.t) o¢ [[heq Qs(Xs—1:5).

= Example: For state-space models, one possible Feynman—Kac
representation of mr(x1.77) = p(x1.7|y1.7) is

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.
= Assumption: M; and G; are differentiable; both functions
and their gradients can be evaluated point-wise.
= For t < T, define the filters: m(x1.t) o¢ [[heq Qs(Xs—1:5).
= Example: For state-space models, one possible Feynman—Kac
representation of mr(x1.77) = p(x1.7|y1.7) is
= Mi(x¢|x¢-1) = fir(x¢|x¢-1); and

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.
= Assumption: M; and G; are differentiable; both functions
and their gradients can be evaluated point-wise.
= For t < T, define the filters: m(x1.t) o¢ [[heq Qs(Xs—1:5).
= Example: For state-space models, one possible Feynman—Kac
representation of mr(x1.77) = p(x1.7|y1.7) is
- My(x¢|x¢-1) = fo(x¢[x¢-1); and
= Gi(x¢-1:4) = g¢(yelxe)

4/61

Generic Feynman—Kac representation

= More generally: we are interested in a distribution
T

mr(x1r) oc [[Me(xe|xi—1)Ge(x¢-1:4) HQt Xt—1:t)
t=1

on X1 (with & := RP), where
— M;(-|x¢—1) is a density of a mutation kernel,
— Gy(x¢—1.t) > 0 is called potential function.
= Assumption: M; and G; are differentiable; both functions
and their gradients can be evaluated point-wise.
= For t < T, define the filters: m(x1.t) o¢ [[heq Qs(Xs—1:5).
= Example: For state-space models, one possible Feynman—Kac
representation of mr(x1.77) = p(x1.7|y1.7) is
- My(x¢|x¢-1) = fo(x¢[x¢-1); and
= Gi(x¢-1:4) = g¢(yelxe)
Then, Q¢(x¢—1:) = p(X¢, y¢|x¢—1) and 74 (X1:) = P(X1:t|y1:t)-

4/61

Talk outline

2. Existing methods

Talk outline

2. Existing methods
2.1 ‘Classical’ MCMC

MCMC methods

= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.

5/ 61

MCMC methods

= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.

= For the moment, write X := x;.7, so that
m(x) = mp(x) x M (x)G(x),

where

5/ 61

MCMC methods

= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.

= For the moment, write X := x;.7, so that
m(x) = mp(x) x M (x)G(x),

where
— M(x) = [Ti—y Mi(xe|xs-1) (‘prior');

5/ 61

MCMC methods

= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.

= For the moment, write X := x;.7, so that
m(x) = mp(x) x M (x)G(x),

where
- M(x) = T1,_ My(xelxi—1) (‘prior');
- G(x) =TI, Gi(xs_14) (likelihood’).

5/ 61

MCMC methods

= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.

= For the moment, write X := x;.7, so that
m(x) = mp(x) x M (x)G(x),

where
- M(x) = T1,_ My(xelxi—1) (‘prior');
- G(x) =TI, Gi(xs_14) (likelihood’).

= Note: x is thus (7'D)-dimensional.

5/ 61

MCMC methods
= [Marginal sampler] Metropolis—Hastings (MH)? algorithm:

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

= [Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)

m(x)g(X[x)

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)
m(x)q(x[x)’

= Assume ¢(x|x) = [¢(X|u,x)q(ulx) du.

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)

= Assume q(i|x) — fq(i‘uax)q(ubc) du. 7T(X Q(\X)

[Auxiliary sampler]

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)

= Assume q(i|x) — fq(i‘uax)q(ubc) du. 7T(X Q(\X)

[Auxiliary sampler]
1. propose u ~ ¢(ulx) and x ~ ¢(X|u, x);

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)

= Assume q(i|x) — fq(i‘uax)q(ubc) du. 7T(X Q(\X)

[Auxiliary sampler]
1. propose u ~ ¢(ulx) and x ~ ¢(X|u, x);
2. accept X with probability =:h(u)

| A TE)g(ulF)g(xfu, %)

m(x)g(ulx)q(x|u, x)

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)
) ~ m(x)q(x[x)’
= Assume ¢(x|x) = [¢(X|u,x)q(ulx) du.
[Auxiliary sampler]
1. propose u ~ ¢(ulx) and x ~ ¢(X|u, x);

2. accept X with probability =:h(u)
- - - —
m(X)q(ulx)q(x[u, %) - q(ulx, X)
= =a(x,X) ————
7(x)q(ulx)q(X|u, x) q(ulx,x)

= Two interpretations of the auxiliary sampler:

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)
) ~ m(x)q(x[x)’
= Assume ¢(x|x) = [¢(X|u,x)q(ulx) du.
[Auxiliary sampler]
1. propose u ~ ¢(ulx) and x ~ ¢(X|u, x);

2. accept X with probability =:h(u)
- - - —
m(X)q(ulx)q(x[u, %) - q(ulx, X)
= =a(x,X) ————
7(x)q(ulx)q(X|u, x) q(ulx,x)

= Two interpretations of the auxiliary sampler:

1. Standard MH conditional on wu, i.e. targetting 7(x; u) = 7(x)q(u|x).
2. MH with randomised acceptance ratio® (since E[h(u)|x,%] = 1).

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)
) ~ m(x)q(x[x)’
= Assume ¢(x|x) = [¢(X|u,x)q(ulx) du.
[Auxiliary sampler]
1. propose u ~ ¢(ulx) and x ~ ¢(X|u, x);
2. accept X with probability =:h(u)

W(i)Q(uB{)q(xlu’i) — alx. % Q(u|X7X)
N e A '

= Two interpretations of the auxiliary sampler:

1. Standard MH conditional on u, i.e. targetting m(x;u) = m(x)q(ulx).
2. MH with randomised acceptance ratio® (since E[h(u)|x, %] = 1).

» Efficiency of auxiliary sampler < efficiency of marginal sampler.

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
6/ 61

A simple MCMC algorithm

= Independent Metropolis—Hastings (IMH)>:

®Hastings (1970)
7/61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;xt,I); T = 25, N =31

10.0 -
a
=
1%
) i
o L0
&
<
-
g
\<E/ === IMH
X
Q

0.1~

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = mgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 8 /61

Proposing local moves

= [Marginal sampler] Random-walk Metropolis (RWM)®:

q(x|x) = N(x; x, dI).

®Metropolis et al. (1953)
9/ 61

Proposing local moves

= [Marginal sampler] Random-walk Metropolis (RWM)®:
q(x|x) = N(x; x, dI).

= Can sample from ¢(X|x) by sampling

®Metropolis et al. (1953)
9/ 61

Proposing local moves

= [Marginal sampler] Random-walk Metropolis (RWM)®:
q(x|x) = N(x; x, dI).

= Can sample from ¢(X|x) by sampling
1. u~ N(x, 2I);

®Metropolis et al. (1953)
9/ 61

Proposing local moves

= [Marginal sampler] Random-walk Metropolis (RWM)®:
q(x|x) = N(x; x, dI).

= Can sample from ¢(X|x) by sampling
1. u~ N(x, 2I);
2. %~ N(u, $I)

®Metropolis et al. (1953)
9/ 61

Proposing local moves

= [Marginal sampler] Random-walk Metropolis (RWM)®:
q(x|x) = N(x; x, dI).

= Can sample from ¢(X|x) by sampling
1. u~ N(x, 2I);
2. %~ N(u, $I)
= [Auxiliary sampler] Not integrating out u in the acceptance
ratio is statistically equivalent to the marginal sampler.

®Metropolis et al. (1953)

9/61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;xt,I); T = 25, N =31

10.0 =
(=)
-
n
=) J
o 1.0
a0
]
S -
54 IMH
\<—C/ RWM
X
a
0.1~

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = mgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 10/ 61

Exploiting gradient information

= [Marginal sampler] Metropolis-adjusted Langevin algorithm
(MALA)7:

q(%|x) = N(%;x + $V log (x), 51).

"Besag (1994)

8Titsias and Papaspiliopoulos (2018)
11/ 61

Exploiting gradient information

= [Marginal sampler] Metropolis-adjusted Langevin algorithm
(MALA)7:

q(%|x) = N(%;x + $V log (x), 51).

= Can sample from ¢(X|x) by sampling

"Besag (1994)

8Titsias and Papaspiliopoulos (2018)
11/ 61

Exploiting gradient information

= [Marginal sampler] Metropolis-adjusted Langevin algorithm
(MALA)7:

q(%|x) = N(%;x + $V log (x), 51).

= Can sample from ¢(X|x) by sampling
1. u~N(x+ ngogw(x), %I);

"Besag (1994)

8Titsias and Papaspiliopoulos (2018)
11/ 61

Exploiting gradient information

= [Marginal sampler] Metropolis-adjusted Langevin algorithm
(MALA)7:

q(%|x) = N(%;x + $V log (x), 51).
= Can sample from ¢(X|x) by sampling

1. u~N(x+ $Vlogm(x), $1);
2. %~ N(u, 3I).

"Besag (1994)

8Titsias and Papaspiliopoulos (2018)
11/ 61

Exploiting gradient information

= [Marginal sampler] Metropolis-adjusted Langevin algorithm
(MALA)7:

q(%|x) = N(%;x + $V log (x), 51).

= Can sample from ¢(X|x) by sampling
1. u~N(x+ $Vlogm(x), $1);
2. %~ N(u, 3I).
= [Auxiliary sampler] Not integrating out u in the acceptance
ratio gives the auxiliary MALA (aMALA)Z.

"Besag (1994)
8Titsias and Papaspiliopoulos (2018)

11/ 61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =
a
-
A
S 10~
) - == M
S
= == = = = RWM
= TTTTFTF ——— MALA
X -
Q - = = aMALA
0.1-

10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD Zt 1 Zd L@y = z?’d) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 12 /61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =
a
-
wn
= i
o 1.0
) IMH
S
g == RWM
= TFFFFFEEE ——— MALA
X -
Q - = = aMALA
0.1-

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD Zt 1 Zd L@y = zgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 12 /61

Exploiting Gaussian priors (and gradient info)
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Preconditioned
Crank-Nicolson-Langevin (PCNL)? algorithm:
q(X[x) = N(%; (1 - B)m + f[x + 5CVlog G(x)], (1 — #%)C),

where 3 :=2/(2+).

°Cotter et al. (2013)
13 / 61

Exploiting Gaussian priors (and gradient info)
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Preconditioned
Crank-Nicolson-Langevin (PCNL)? algorithm:
q(X[x) = N(%; (1 - B)m + f[x + 5CVlog G(x)], (1 — #%)C),

where 3 :=2/(2+).
= Can sample from ¢(X|x) by sampling

°Cotter et al. (2013)
13 / 61

Exploiting Gaussian priors (and gradient info)
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Preconditioned
Crank-Nicolson-Langevin (PCNL)? algorithm:

q(X[x) = N(%; (1 - B)m + f[x + 5CVlog G(x)], (1 — #%)C),

where 3 :=2/(2+).
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $CVlogG(x), 3C);

°Cotter et al. (2013)
13 / 61

Exploiting Gaussian priors (and gradient info)
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Preconditioned
Crank-Nicolson-Langevin (PCNL)? algorithm:

q(X[x) = N(%; (1 - B)m + f[x + 5CVlog G(x)], (1 — #%)C),

where 3 :=2/(2+).
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $CVlogG(x), 3C);
2. x~N((1-pm+ pu,(1-75)C).

°Cotter et al. (2013)
13 / 61

Exploiting Gaussian priors (and gradient info)
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Preconditioned
Crank-Nicolson-Langevin (PCNL)? algorithm:

q(X[x) = N(%; (1 - B)m + f[x + 5CVlog G(x)], (1 — #%)C),

where 3 :=2/(2+).
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $CVlogG(x), 3C);
2. x~N((1-p)m+ pu,(1-75)C).
= [Auxiliary sampler] Not integrating out u in the acceptance
ratio gives an auxiliary PCNL (aPCNL) algorithm.

°Cotter et al. (2013)

13/ 61

Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.

9Titsias and Papaspiliopoulos (2018)
14 / 61

Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.
= Can sample from ¢(X|x) by sampling

9Titsias and Papaspiliopoulos (2018)
14 / 61

Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $Vleg G(x), 3I);

9Titsias and Papaspiliopoulos (2018)
14 / 61

Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $Vleg G(x), 3I);
2. x ~N(I-A)m+ Au, 2A).

9Titsias and Papaspiliopoulos (2018)
14 / 61

Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $Vleg G(x), 3I);
2. x ~N(I-A)m+ Au, 2A).
= [Auxiliary sampler] Not integrating out u in the acceptance
ratio gives the auxiliary gradient (aGRAD)! algorithm.

9Titsias and Papaspiliopoulos (2018)
14 / 61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =
a)
=
wn
M i
o L0 === IMH
Q0
< = = = RWM
4
= === =-C - —— MALA
\<_:/ - SEFRRRRR
S = =B = = = aMALA
01 aGRAD

10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD Zt 1 Zd L@y = z?’d) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 15 / 61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;xt,I); T = 25, N =31

10.0 =
)
-
wn
&) i
o L0 IMH
&
© RWM
g
< MALA
X aMALA
Q
aGRAD
0.1~

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = mgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 15 / 61

Summary of ‘classical’ MCMC methods

= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:

16 / 61

Summary of ‘classical’ MCMC methods

= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:
— gradient information (e.g., as in MALA);

16 / 61

Summary of ‘classical’ MCMC methods

= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:
— gradient information (e.g., as in MALA);

— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).

16 / 61

Summary of ‘classical’ MCMC methods

= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:
— gradient information (e.g., as in MALA);

— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).

~~ favourable scaling with D (for small, fixed 7).

16 / 61

Summary of ‘classical’ MCMC methods

= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:
— gradient information (e.g., as in MALA);

— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).

~~ favourable scaling with D (for small, fixed 7).

= Problem: ‘Classical’ MCMC methods do not exploit the
‘decorrelation-over-time' property the state-space model.

16 / 61

Summary of ‘classical’ MCMC methods

= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:
— gradient information (e.g., as in MALA);

— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).

~~ favourable scaling with D (for small, fixed 7).

= Problem: ‘Classical’ MCMC methods do not exploit the
‘decorrelation-over-time' property the state-space model.
~~ suboptimal scaling with T" (for fixed D).

16 / 61

Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); D = 10, N = 31
0.5

0.4

|
A |
2
A o - == IMH
& = = = RWM
o
() — /]
g ., MALA
< = = = aMALA

aGRAD

Time horizon, T'

(Average ESJD) = TD Zt 1 Zd 1 Ty — a:?lg)Q — Informally, to stably
approximate marglnals the number of |terat|0ns

= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.

17/ 61

Talk outline

2. Existing methods

2.2 Conditional sequential Monte Carlo (CSMC)

Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.

1 Andrieu et al. (2010)
18 / 61

Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.
» CSMC algorithm?!.

1 Andrieu et al. (2010)
18 / 61

Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.
» CSMC algorithm?!.

— Induces mp-invariant MCMC kernel.

1 Andrieu et al. (2010)
18 / 61

Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.
» CSMC algorithm?!.
— Induces mp-invariant MCMC kernel.

= Sequentially builds proposal in the ‘time’-direction:

1 Andrieu et al. (2010)
18 / 61

Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.

» CSMC algorithm?!.
— Induces mp-invariant MCMC kernel.

= Sequentially builds proposal in the ‘time’-direction:
— using N + 1 interacting samples (‘particles’),

1 Andrieu et al. (2010)
18 / 61

Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.
» CSMC algorithm?!.
— Induces mp-invariant MCMC kernel.
= Sequentially builds proposal in the ‘time’-direction:

— using N + 1 interacting samples (‘particles’),
— avoids curse of dimensionality in T (for fixed D).

" Andrieu et al. (2010)
18 / 61

Algorithm 1 (CSMC). Given x;.77 € X7T:

1. fort=1,...,T,
1.1 set x¥ = xy,
1.2 [resampling] if t > 1, set a)_; := 0; sample a?* ; =i w.p. W}_, for

n € [N],

1.3 [sampling] isample x} ~ M, (- |x,*7") for n € [N],
1.4 [weighting] for n € [N]o, set w} oc Gy(x, 5", x7).
1.5 for n € [N]o, set W;* := w?/ZZ:o wy;

2. sample [=i € [N]o w.p. Wi.

3. [ancestral tracing] fort =T —1,...,1, set [; .= ait“.

!
4. return x\. = (xi, .. 7).

19/ 61

Proposal

space

time
Given reference path xi.7 (current state of MCMC chain):

20 / 61

Proposal

spae

time
Given reference path xi.7 (current state of MCMC chain):
» Set x{ = x.
= Sample x|}V ~ TTV; My (x}).

20 / 61

Proposal

)

)

sp@e

)
time
Given reference path X1.T (current state of MCMC chain):
= Setx):=x;, a n
! Somle G T W)

— where W OCGt(Xt 1 aXt) 20 / 61

Proposal

time

Given reference path X1.T (current state of MCMC chain):

L Set Xt =X, a }\] an
= Sample (x;* a% 1)~ Hn WM),
— where W o Gy(x;t5 ,xf) .

Proposal

)

)

time
Given reference path X1.T (current state of MCMC chain):
= Set Xt =Xt Q }\] an
= Sample (x; a% 1) ~ Hn 1 W 1Mt(X?|XtiEI)1

— where W OCGt(Xt 1 aXt) 20 / 61

Proposal

time

Given reference path X1.T (current state of MCMC chain):
» Setxy :=x a SN o
= Sample (x;" a% i)~ Hn WM,

— where W OCGt(Xt 1 aXt) 20 / 61

Proposal

@ QD
time

Given reference path X1.T (current state of MCMC chain):

u Set Xt =Xt a }\] an
= Sample (x}V a% 1) ~ Hn W 1Mt(X?|XtiEI)1

— where W o Gy(x;t5 ,xt)

20 / 61

Proposal

@

J S o
time
Given reference path X1.T (current state of MCMC chain):

L Set Xt =Xt a }\] an
= Sample (x; a% 1) ~ Hn M),

— where W OCGt(Xt 1 aXt) 20 / 61

Proposal

@ QD
time

Given reference path X1.T (current state of MCMC chain):

u Set Xt =Xt a }\] an
= Sample (x}V a% 1) ~ Hn W 1Mt(X?|XtiEI)1

— where W o Gy(x;t5 ,xt)

20 / 61

Proposal

. '
@ ?
time

Given reference path X1.T (current state of MCMC chain):

L Set Xt =Xt a }\] an
= Sample (x; a% 1) ~ Hn M),

— where W o Gy(x;t5 ,xt)

20 / 61

Selecting new reference path

21/ 61

Selecting new reference path

@
@&

&)

1. Sample I ~ W:]’FT.

21/ 61

Selecting new reference path

@

@
@ ¢
time

1. Sample I ~ W:]’FT.
2. Set [::ai”“, fort=T-1,...,1.

21/ 61

Selecting new reference path

@

@
@ ¢
time

1. Sample I ~ W:]’FT.
2. Set [::ai”“, fort=T-1,...,1.

21/ 61

Selecting new reference path

@

@
@ ¢
time

1. Sample I ~ W:]’FT.
2. Set [::ai”“, fort=T-1,...,1.

21/ 61

Selecting new reference path

@

9
= @

@

time

1. Sample I ~ W:]’FT.
2. Set [::ai”“, fort=T-1,...,1.

21/ 61

Selecting new reference path

1. Sample I ~ W:]’FT.
2. Set [::ai”“, fort=T-1,...,1.
3. Return x|, == (x!,...,x}%) (new state of MCMC chain).
21/ 61

= induces mp-invariant MCMC kernel Pesmc(x).7|%1.7).

22 /61

= induces mp-invariant MCMC kernel Pesmc(x).7|%1.7).

= T "accept-reject decisions”.

22 /61

23 /61

23 /61

23 /61

23 /61

23 /61

23 /61

I
Problem: x|, = (x}',...,x%) & x1.7 = (x),...,x}) coalesce

0

23 /61

)
5 @
time

I
Problem: x|, = (x}',...,x%) & x1.7 = (x),...,x}) coalesce

= controlling the ‘acceptance rates’ requires N ~ T' (Andrieu
et al., 2018; Koskela et al., 2020)

23 /61

Algorithm 2 (CSMC). Given x;.77 € X7T:

1. fort=1,...,T,
1.1 set x¥ = xy,
1.2 [resampling] if t > 1, set a)_; := 0; sample a?* ; =i w.p. W}_, for

n € [N],

1.3 [sampling] sample x} ~ M, (- |x;*7!) for n € [N],
1.4 [weighting] for n € [N]o, set w} oc Gy(x, 7", x7).
1.5 for n € [N]o, set W;* := w?/ZZ:o wy;

2. sample [=i € [N]o w.p. Wik.

3. [ancestral tracing] for t =T —1,...,1, set [; .= ait“.

!
4. return x\. = (x1, .. %),

24 / 61

Algorithm 2 (CSMC). Given x;.77 € X7

1 fort=1,...,T,
1.1 set x?¥ == x;,
1.2 [resampling] if t > 1, set a?_; := 0; sample a} |, =i w.p. W} _,, for

n € [N],

1.3 [sampling] sample x}* ~ M, (- |xi’11) for n € [N],
1.4 [weighting] for n € [N]o, set wt x Gt(x??’ll,x?).
1.5 for n € [N]o, set W} :== wj /Zm o wi;

z _ WO
2. sample i € [N] w.p. —=L— set I == i w.p. 1 A ——Z; otherwise,
1— W 1— Wi
set [:=0;
3. [ancestral tracing] fort =T —1,...,1, set [; := aif“.
4. return x. = (xU,.. LX),

24 / 61

Algorithm 2 (CSMC). Given x;.7 € X7T:

1. fort=1,...,T,
1.1 set x¥ == x;,
1.2 [resampling] if ¢ > 1, set a}_; := 0; sample a* ; =i w.p. W/_, for

n € [N],

1.3 [sampling] sample x}* ~ M, (- |xi’11) for n € [N],
1.4 [weighting] for n € [N]y, set w}" x Gt(xi’f,x?).
1.5 for n € [N]o, set W} := w?/ZZZO wy™;

. Wi) 1-— WIQ)
2. sample i € [N] w.p. m; set lp =i w.p. 1A m otherwise,

set 7 == 0;
3. [backward sampling] for t =T —1,...,1, sample I, =i € [N]y w.p.
Wi Quri (x, %51
YAl WP Qe (%7, Xi?ll)

4. return x| = (x1, ... x0T,

24 / 61

Backward-sampling extension

e @ '
v
@ ?
time

. [l
= Forms new lineage x|..» = (x},... X).

25 / 61

Backward-sampling extension

e @ '
v
@ ?
time

. [l
= Forms new lineage x|..» = (x},... X).

25 / 61

Backward-sampling extension

e @ '
v
@ ?
time

. [l
= Forms new lineage x|..» = (x},... X).

25 / 61

Backward-sampling extension

e @ '
v
@ ?
time

. [l
= Forms new lineage x|..» = (x},... X).

25 / 61

Backward-sampling extension

time
H / _ 1] lT
= Forms new lineage x|.. = (x7',...,x7).

25 / 61

Backward-sampling extension

time
H / _ 1] lT
= Forms new lineage x|.. = (x7',...,x7).

25 / 61

Backward-sampling extension

time

. [l
= Forms new lineage x/., = (Xlll sy X).

= Frees us from having to grow N with 7" (Lee et al., 2020).

25 / 61

Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); D = 10, N = 31
0.5

0.4

=) |

5 0.3 - i

Lf) - = = RWM

a0

] —— MALA

IS4 -

é 0.2 = = = aMALA

aGRAD
—— CSMC
0.1

250 500 750 1000

Time horizon, T'

(Average ESJD) = TD Zt 1 Zd 1 Ty — a:?lg)Q — Informally, to stably
approximate marglnals the number of |terat|0ns

= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.

26 / 61

Scaling with T’

Mt(Xt|Xt—1) = N(Xt;Xz—hI), Gt(xt—lzt) = N(Yt§Xt,I);

Average ESJD

0.5 7

0.4 7

0.3 7

0.0~ 1 i i
250 500 750

Time horizon, T'

new old\2
(Average ESID) = 75 Zt 1 Zd 1 —7g)
approximate marglnals the number of |terat|0ns
can be constant in T' ~» horizontal line;

must increase in T ~~ decreasing line.

1
1000

D =10, N =31

IMH
RWM
MALA
aMALA
aGRAD
— CSMC

= Informally, to stably

26 / 61

Breakdown of CSMC as D — oo

space

time

27 / 61

Breakdown of CSMC as D — oo

space

time

27 / 61

Breakdown of CSMC as D — oo

space

time

27 / 61

Breakdown of CSMC as D — oo

space

time

27 / 61

Breakdown of CSMC as D — oo

space

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

27 / 61

Breakdown of CSMC as D — oo

time

= all acceptance rates — 0 (Finke and Thiery, 2023);

27 / 61

Breakdown of CSMC as D — oo

time

= all acceptance rates — 0 (Finke and Thiery, 2023);

= even with backward sampling.

27 / 61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =

o

@?

A - == mm

& = = = RWM

c

g ——— MALA

< - = = aMALA

X

Q aGRAD
—— osMC

10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD Zt 1 Zd L@y = z?’d) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 28 / 61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;xt,I); T = 25, N =31

10.0 =

&

@?

A /\ IMH

o 1.0

% RWM

g MALA
< aMALA
X

Q aGRAD

0.1- —— csMC

\

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = mgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 28 / 61

Summary of the CSMC algorithm

» Summary: The CSMC algorithm exploits the
‘decorrelation-over-time' property the state-space model.

29 / 61

Summary of the CSMC algorithm

» Summary: The CSMC algorithm exploits the
‘decorrelation-over-time' property the state-space model.
~~ favourable scaling with 7" (for small, fixed D).

29 / 61

Summary of the CSMC algorithm

» Summary: The CSMC algorithm exploits the
‘decorrelation-over-time' property the state-space model.
~~ favourable scaling with 7" (for small, fixed D).

= Problem: The CSMC algorithm cannot use ‘local’ moves.

29 / 61

Summary of the CSMC algorithm

» Summary: The CSMC algorithm exploits the
‘decorrelation-over-time' property the state-space model.
~~ favourable scaling with 7" (for small, fixed D).

= Problem: The CSMC algorithm cannot use ‘local’ moves.
~+ curse of dimension in D (for fixed T').

29 / 61

Talk outline

2. Existing methods

2.3 Particle-RWM: An existing combination of MCMC and CSMC

Particle random-walk Metropolis (Particle-RWM)
Finke and Thiery (2023)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x¢, %I), and x}' ~ N(uy, ‘;—tI), for
n € [N],

1d. [weighting] for n € [N]o, set w}’ Qt(x?inal,x?).

2Finke and Thiery (2023); see also Malory (2021)
30/ 61

Particle random-walk Metropolis (Particle-RWM)
Finke and Thiery (2023)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x¢, %I), and x}' ~ N(uy, ‘;—tI), for
n € [N],

1d. [weighting] for n € [N]o, set w}’ Qt(x?inal,x?).

= Step lc marginally proposes (for n # 0):

X? ~ N(Xt, (StI)

2Finke and Thiery (2023); see also Malory (2021)

30 / 61

Particle random-walk Metropolis (Particle-RWM)
Finke and Thiery (2023)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x¢, %I), and x}' ~ N(uy, ‘;—tI), for
n € [N],

1d. [weighting] for n € [N]o, set w}’ Qt(x?inal,x?).

= Step lc marginally proposes (for n # 0):
X? ~ N(Xt, (StI)

= Reduces to RWM if N =T =1.

2Finke and Thiery (2023); see also Malory (2021)

30 / 61

Particle random-walk Metropolis (Particle-RWM)
Finke and Thiery (2023)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x¢, %I), and x}' ~ N(uy, ‘;—tI), for
n € [N],

1d. [weighting] for n € [N]o, set w}’ Qt(x?inal,x?).

= Step lc marginally proposes (for n # 0):
X? ~ N(Xt, (StI)

» Reduces to RWM if N =T = 1.
= Dimensionally stable if 5, = O(D~1).12

2Finke and Thiery (2023); see also Malory (2021)

30 / 61

Particle-RWM (D — o0)

space

time
Given reference path x.7 (current state of MCMC chain):

= Set x{ = x;.
= Sample (ul,x%:N) ~ N(ul;x(l), %I) 5:1 N(x7;u, %I).

31/ 61

Particle-RWM (D — o0)

)]
time

Given reference path x.7 (current state of MCMC chain):

= Set x{ = x;.
= Sample (ul,x%:N) ~ N(ul;x(l), %I) 5:1 N(x7;u, %I).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):

= Set x{ = x;.

= Sample (up, x3V) ~ N(uy;x9, %I) N N, %I).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):
= Set X? = xy, a? :— 0.

= Sample (ut’xtﬁv’]\]_])n'\’ N(utaxta b})HN 1 Wy tll N(x} ;U 5 I),
— where W;* Qt(xt:f,xt).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Setx) =%, a 2}\7 ()
= Sample (ut,X%) @)n'\' N(ut,x?, 2)HN 1th11N(Xt ;U 5 I)v
— where W;* Qt(xt’ 1 xE).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):

™ Set X? = Xt, ag\?l = 0 5 N an
. Samp|e (ut, X%: ’a%_]\{)nw N(uta Xto, éI) Hn:1 Wt—til N(ng Ut, %I)y
— where W/* « Qt(X?iElvxg)'

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Set xV = x, a) ap_y = = 0.
. Sample (%1 al) ~ N(usx, 51 T1, W Nexps g, 51),

— where W;* Qt(x?’ 1 xE).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Setx) =%, a 2}\7 ()
= Sample (ut,X%) @)n'\' N(ut,x?, 2)HN 1th11N(Xt yUt; 5 I)v
— where W;* Qt(xt’ 1 xE).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Set xV = x, a) ap_y = = 0.
. Sample (%1 al) ~ N(usx, 51 T1, W Nexps g, 51),

— where W;* Qt(x?’ 1 xE).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):
» Set x¥ :=x¢, a ’fvl = 0.
« Sample (%™ af) ~ N(w:), 40 T, W/ NG m, 4T),
— where W o« Qu(x,7",x}).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Setx) =%, a 2}\7 ()
= Sample (ut,X%) @)n'\' N(ut,x?, 2)HN 1th11N(Xt yUt; 5 I)v
— where W;* Qt(xt’ 1 xE).

31/ 61

Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Set x) :=x;, a) | = 0. .

5Ty TTY ay_

S A N) ~ N, $1 L W NG, 40),
— where W;* Qt(xt’ll,xt)

31/ 61

Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):

= Set x) :=x;, a) | = 0.

: : N o0
= Sample (uy, x}™V, afY) ~ N(ugx?, $1) [I02, W7 N(xp; uy, $1),
— where W/* « Qt(x?_’?vx?)-

31/ 61

Scaling with T’

Mt(Xt|Xt_1) = N(xt;xt_l,I), Gt(xt_l;t) = N(yt;Xt,I); D = 10, N = 31
0.5

0.4

=) | === IMH

@ 03] = = = RWM

% —— MALA

)

g ., = = = aMALA

< aGRAD
—— CSMC

— ParticleeRWM

T
250 500 750 1000

Time horizon, T'

(Average ESJD) = TD Zt 1 Zd 1 Ty — a:?lg)Q — Informally, to stably
approximate marglnals the number of |terat|0ns

= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.

32 /61

Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;xt,I); D = 10, N = 31
0.5 7

0.4
) IMH

B 03"

7o RWM
o MALA
e
2 02- aMALA

< aGRAD

CSMC

0.1~ Particle-RWM

0.0~ 1 i i 1
250 500 750 1000

Time horizon, T'

(Average ESJD) = TD Zt 1 Zd 1 TPy — a:flg)2 — Informally, to stably
approximate marglnals the number of |terat|0ns
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.
32 /61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =

)
@ === IMH
&5}
° = = = RWM
Q0
< —— MALA
g
< = = = aMALA
X aGRAD
Q

—— CSMC

— ParticleeRWM

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

Average ESJD) = -1 Ti Df eV — 2014)2 — |nformally, to stably
TD Zut=124d=1\"t,d t,d

approximate marginals, the number of iterations
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 33/61

Scalin

g with D

My (x¢|xi-1) = N(x¢;%0-1,I), Gi(x¢e—1:¢) = N(ye; %, I); T =25, N =31

10.0 —

o

A

€3]

o 1.0 =

&

g

<

X

a
0.1~

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

(Average ESJD) TD Zt, Zd (2 = Iglg

approximate marglnals the number of |terat|ons

must grow linearly in D ~ horizontal line;
can grow sublinearly in D ~- increasing line;
must grow superlinearly in D ~~ decreasing line.

)2

= Informally, to

IMH

RWM

MALA
aMALA
aGRAD
CSMC
Particle-RWM

stably

33 /61

Extended state-space view of Particle-RWM
Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:

34 /61

Extended state-space view of Particle-RWM
Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:
1. sample uy ~ N(xy, %I), fort=1,...,T;

34 /61

Extended state-space view of Particle-RWM
Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:
1. sample uy ~ N(xy, %I), fort=1,...,T;
2. run standard CSMC algorithm but replace

34 /61

Extended state-space view of Particle-RWM
Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:
1. sample uy ~ N(xy, %I), fort=1,...,T;
2. run standard CSMC algorithm but replace
= Mi(x¢|x¢-1) by M{(x¢|x;—1;0);

34 /61

Extended state-space view of Particle-RWM
Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:

1. sample uy ~ N(xy, %I), fort=1,...,T;
2. run standard CSMC algorithm but replace
= Mi(x¢|x¢-1) by M{(x¢|x;—1;0);

= Gi(x¢—1:¢) by Gi(x¢-1:4).

34 /61

Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’
property of the state-space model and also uses ‘local’ moves.

35/ 61

Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’
property of the state-space model and also uses ‘local’ moves.
~ favourable scaling in T' & dimensional stability in D.

35/ 61

Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’

property of the state-space model and also uses ‘local’ moves.

~ favourable scaling in T' & dimensional stability in D.
= Problem: Particle-RWM does not utilise

35/ 61

Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’

property of the state-space model and also uses ‘local’ moves.

~ favourable scaling in T' & dimensional stability in D.

= Problem: Particle-RWM does not utilise
— gradient information (e.g., as in MALA);

35/ 61

Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’
property of the state-space model and also uses ‘local’ moves.
~ favourable scaling in T' & dimensional stability in D.

= Problem: Particle-RWM does not utilise

— gradient information (e.g., as in MALA);
— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).

35/ 61

Talk outline

3. Particle extensions of MALA and aMALA

Talk outline

3. Particle extensions of MALA and aMALA
3.1 Exploiting filter gradients (gradients w.r.t. log ;)

Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [samplmg] sample u; ~ N(x; + th log m(x1:¢), %I), and
~ N(uy, &1), for n € [N]

1d. [welghtmg] set x; = N+1 SN x) and, for n € [N]o,

w? X Qt (XtiEl) X?)Ft (thf ’ X?,)_(t)‘

36 / 61

Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %th log 7 (x1:¢), %I), and
X} ~ N(uy, %I), for n € [N],
1d. [weighting] set x; = ﬁ SN) and, for n € [N]o,

n a1 _p F al g -
wy X Qt(xt—l Xt t(Xt—l VXY Xp).

= Step lc marginally proposes (for n # 0):

x; ~ N(x; + %th log m¢(x1:4), 6:1).

36 / 61

Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %th log 7 (x1:¢), %I), and
X} ~ N(uy, %I), for n € [N],
1d. [weighting] set x; = ﬁ SN) and, for n € [N]o,

n a1 _p F al g -
wy X Qt(xt—l Xt t(Xt—l VXY Xp).

= Step lc marginally proposes (for n # 0):
x; ~ N(x; + %th log m¢(x1:4), 6:1).

= Reduces to MALA if N =T = 1.

36 / 61

Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %V, log 7 (x1:¢), %), and
X} ~ N(uy, %I), for n € [N],

1d. [weighting] set x; = ﬁ SN) and, for n € [N]o,

n a1 _p F al g -
wy X Qt(xt—l Xt t(Xt—l VXY Xp).

= Step lc marginally proposes (for n # 0):
x; ~ N(x; + %th log m¢(x1:4), 6:1).

= Reduces to MALA if N =T = 1.

= Not integrating out the auxiliary variable u; in the weights
(and in the backward kernel) gives the Particle-aMALA.

36 / 61

Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %V, log 7 (x1:¢), %), and
X} ~ N(uy, %I), for n € [N],

1d. [weighting] set x; = ﬁ SN) and, for n € [N]o,

n a1 _p F al g -
wy X Qt(xt—l Xt t(Xt—l VXY Xp).

= Step lc marginally proposes (for n # 0):
x; ~ N(x; + %th log m¢(x1:4), 6:1).

= Reduces to MALA if N =T = 1.

= Not integrating out the auxiliary variable u; in the weights
(and in the backward kernel) gives the Particle-aMALA.

— ‘random-weight’ version of Particle-MALA;

36 / 61

Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %V, log 7 (x1:¢), %), and
X} ~ N(uy, %I), for n € [N],

1d. [weighting] set x; = ﬁ SN) and, for n € [N]o,

n a1 _p F al g -
wy X Qt(xt—l Xt t(Xt—l VXY Xp).

= Step lc marginally proposes (for n # 0):
x; ~ N(x; + %th log m¢(x1:4), 6:1).

= Reduces to MALA if N =T = 1.

= Not integrating out the auxiliary variable u; in the weights
(and in the backward kernel) gives the Particle-aMALA.

— ‘random-weight’ version of Particle-MALA;
— reduces to aMALA if N =T = 1.

36 / 61

Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_u) = N(yt;Xt,I); D = 10, N =31

0.5

0.4

- == IMH
Q = = = RWM
B0 —— MALA
) | = = = aMALA
£ \

. | | aGRAD
< —— ©sMC

— ParticleeRWM

— Particlee MALA

L
| = = = Particle-aMALA
|

-~

T
250 500 750 1000

Time horizon, T'

(Average ESJD) = % 23:1 Zle(ar?zw - :cflg)Q = Informally, to stably
approximate marginals, the number of iterations
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.
37 /61

Scaling with T’

Mt(Xt|Xt—1) = N(Xt§xt—171), Gt(xt—lzt) = N(Yt§Xt,I);

0.5 7

0.4 7

Average ESJD

0.1~

0.0~ 1 i i
250 500 750 1000

Time horizon, T'

(Average ESJD) = TD Zt) Zd 1 zhew _ 552}3)2

approximate marglnals the number of |terat|0ns
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.

D =10, N =31

IMH

RWM

MALA

aMALA
aGRAD

CSMC
Particle-RWM
Particle-MALA
Particle-aMALA

= Informally, to stably

37 /61

Scaling with D

Mt(Xt|Xt_1) = N(xt;xt_l,I), Gt(xt_u) = N(yt;Xt,I); T = 25, N =31

10.0 =

—~ === IMH
)

@ = = = RWM

&5}

° —— MALA
Q0

< = = = aMALA
g

< aGRAD
X —— CSMC
Q

— ParticleeRWM
— ParticleMALA
______________ = = = Particle-aMALA

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

(Average ESJD) = % 23;1 25—1($tn3w — 2914)2 —> Informally, to stably
approximate marginals, the number of iterations ’

= must grow linearly in D ~ horizontal line;

= can grow sublinearly in D ~ increasing line;

= must grow superlinearly in D ~~ decreasing line. 38 /61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =

—~ IMH
)

@ RWM
=

° MALA
Q0

< aMALA
g

< aGRAD
X CcSMC
Q

0.1 Particle-RWM
— ParticleeMALA
= = = Particle-aMALA

1 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD Zt 1 Zd L@y = zgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 38 /61

Talk outline

3. Particle extensions of MALA and aMALA

3.2 Exploiting smoothing gradients (gradients w.r.t. log 77)

Particle-aMALA+

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %Vx,, log 7 (x1.7), %tI),
and x} ~ N(uy, %1), for n € [N],

1d. [weighting] for n € [N]o, set w!" oc G} (x, 152 X, 0 7Y X uy_1.4),

n
A1

3. [backward sampling] (*omitted*)

39 /61

Particle-aMALA+

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %Vx,, log 7 (x1.7), %tI),
and x} ~ N(uy, %1), for n € [N],

1d. [weighting] for n € [N]o, set w!" oc G} (x, 152 X, 0 7Y X uy_1.4),

n
A1

3. [backward sampling] (*omitted*)

= Step lc marginally proposes (for n # 0):

xy ~ N(x; + %vxt log mp(x1.7), 01).

39 / 61

Particle-aMALA+

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %Vx,, log 7 (x1.7), %tI),
and x} ~ N(uy, %1), for n € [N],

1d. [weighting] for n € [N]o, set w!" oc G} (x, 152 X, 0 7Y X uy_1.4),

n
A1

3. [backward sampling] (*omitted*)

= Step lc marginally proposes (for n # 0):
xy ~ N(x; + %vxt log mp(x1.7), 01).

= Using gradients w.r.t. log 77 (x1.7) (rather than log 7 (x1.))
comes at cost of having only 2nd-order Markovianity.

39 /61

Particle-aMALA+

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %Vx,, log 7 (x1.7), %tI),
and x} ~ N(uy, %1), for n € [N],

1d. [weighting] for n € [N]o, set w!" oc G} (x, 152 X, 0 7Y X uy_1.4),

n
A1

3. [backward sampling] (*omitted*)

= Step lc marginally proposes (for n # 0):
xy ~ N(x; + %vxt log mp(x1.7), 01).

= Using gradients w.r.t. log 77 (x1.7) (rather than log 7 (x1.))
comes at cost of having only 2nd-order Markovianity.

= Again reduces to aMALA if N =T = 1.

39 /61

Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_u) = N(yt;Xt,I); D = 10, N =31

0.5

4
04) - == IMH

= = = RWM
— MALA
= = = aMALA
\ aGRAD
— — CSMC

Average ESJD

— ParticleeRWM

o1 — ParticleeMALA

v = = = Particle-aMALA
|
| *rerrt Particle-aMALA+

250 500 750 1000

Time horizon, T'

(Average ESJD) = % 23:1 Zle(ar?zw - :cflg)Q = Informally, to stably
approximate marginals, the number of iterations
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.
40 / 61

Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); D = 10, N = 31
0.5 7

047 IMH

RWM
03 MALA
aMALA

M e R R R R R R R R R R aGRAD
0.2 7

Average ESJD

CSMC
Particle-RWM
0.1~ Particle-MALA
Particle-aMALA

*rerrt Particle-aMALA+
0.0~ i i | 1
250 500 750 1000

Time horizon, T'

(Average ESJD) = TD Zt 1 Zd 1 TPy — a:flg)2 — Informally, to stably
approximate marglnals the number of |terat|0ns
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.
40 / 61

Scaling with D

Mi(x¢|xe—1) = N(x¢;%¢-1,I), Ge(x¢—1:¢) = N(y¢; x¢,I); T =25, N =31
10.0 =
= = = IMH

= = = RWM
—— MALA

= = = aMALA
aGRAD
— CSMC

Dx (Average ESJD)

— ParticleeRWM
— ParticleeMALA

= = = Particle-aMALA
rroris ParticleeaMALA+

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

Average ESJD) = -1 Ti Df eV — 2014)2 — |nformally, to stably
TD Zut=124d=1\"t,d t,d

approximate marginals, the number of iterations
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 41 /61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =

N IMH
3 RWM
MALA
1.0 ~
; aMALA
] aGRAD
CSMC

Particle-RWM

Dx (Average ESJD)

0.1~ Particle-MALA
Particle-aMALA
*rerrt Particle-aMALA+

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = x?’d) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 41 /61

Talk outline

4. Particle extensions of mGRAD and aGRAD

Talk outline

4. Particle extensions of mGRAD and aGRAD
4.1 Exploiting conditionally Gaussian prior dynamics

Conditionally Gaussian prior dynamics

= For the moment, assume that

My (x¢]x¢—1) = N(x¢; my(x4-1), Cy).

42 / 61

Particle-mGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(xt_l), Ct)

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:
lc. [sampling] sample u; ~ N(x; + % Vy, log Gy (x—1:¢), & 1)
and X7 ~ M/(-[x;"}";u,), for n € [N],

1d. [weighting] (*omitted*)

43 / 61

Particle-mGRAD

Assuming Mt(xt\xt_l) = N(xt;mt(xt_l), Ct)

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:
lc. [sampling] sample u; ~ N(x; + % Vy, log Gy (x—1:¢), & 1)
and x} ~ M/(-|x;"7), for n € [N],

1d. [weighting] (*omitted*)

= Here,
JWt/(Xt|Xt—1; Ut) X N(Xt; mt(xt—1)7 Ct) N(ut; Xt, %I)a

is the ‘fully-adapted auxiliary-particle filter’ proposal for
the pseudo observation uy:

43 / 61

Particle-mGRAD

Assuming Mt(xt\xt_l) = N(xt;mt(xt_l), Ct)

Algorithm 6 (Particle-mGRAD). I\/Iodify CSMC as follows:

lc. [sampling] sample ut ~ N(x¢ + %V, log Gy (x¢—1:¢), %T)
and x7 ~ M/(-[x;"7 5 wy), for n 6 [N],

1d. [weighting] (*omitted*)

= Here,
J\"ft/(xt|xt—1; ut) X N(Xt; mt(xt—1)7 Ct) N(ut; Xt, %I)a

is the ‘fully-adapted auxiliary-particle filter’ proposal for
the pseudo observation uy:
» Step lc marginally proposes (for n # 0):

xy ~ N((I—- At)mt(xfi‘f) + Aylx: + %th log G¢(x¢—1:¢)], By),
where B, = 2% A? + Ay and Ay = (C; + %I)~!Cy.

43 / 61

Particle-mGRAD

Assuming Mt(xt\xt_l) = N(xt;mt(xt_l), Ct)

Algorithm 6 (Particle-mGRAD). I\/Iodify CSMC as follows:

lc. [sampling] sample ut ~ N(x¢ + %V, log Gy (x¢—1:¢), %T)
and x7 ~ M/(-[x;"7 5 wy), for n 6 [N],

1d. [weighting] (*omitted*)

= Here,
J\"ft/(xt|xt—1; ut) X N(Xt; mt(xt—1)7 Ct) N(ut; Xt, %I)a

is the ‘fully-adapted auxiliary-particle filter’ proposal for
the pseudo observation uy:
» Step lc marginally proposes (for n # 0):

xy ~ N((I—- At)mt(xfi‘f) + Aylx: + &fo log G¢(x¢—1:¢)], By),

where B, = 2% A? + Ay and Ay = (C; + %I)~!Cy.
= Reduces to mGRAD iftN=T=1.

43 / 61

Particle-aGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(Xt_1)7 Ct(xt_l))

= Not integrating out the auxiliary variable u; in the
weights/backward kernel of Particle-mGRAD gives the
Particle-aGRAD algorithm:

44 / 61

Particle-aGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(Xt_1)7 Ct(xt_l))

= Not integrating out the auxiliary variable u; in the
weights/backward kernel of Particle-mGRAD gives the
Particle-aGRAD algorithm:

— ‘random-weight' version of Particle-mGRAD;

44 / 61

Particle-aGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(Xt_1)7 Ct(xt_l))

= Not integrating out the auxiliary variable u; in the
weights/backward kernel of Particle-mGRAD gives the
Particle-aGRAD algorithm:
— ‘random-weight' version of Particle-mGRAD;
— implementable even if C; = C¢(x:—1) depends on x;_1;

44 / 61

Particle-aGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(Xt_1)7 Ct(xt_l))

= Not integrating out the auxiliary variable u; in the
weights/backward kernel of Particle-mGRAD gives the
Particle-aGRAD algorithm:
— ‘random-weight' version of Particle-mGRAD;
— implementable even if C; = C¢(x:—1) depends on x;_1;
— reduces to aGRAD if N =T = 1.

44 / 61

Scaling with T’

Mt(Xt|Xt_1) = N(xt;xt_l,I), Gt(xt_u) = N(yt;Xt,I); D = 10, N =31

Average ESJD

0.5

0.4 7

0.3 7

500 75

Time horizon, T'

1 T D
(Ayerage ESJP) =TD Zt:l Zd_:l(!
approximate marginals, the number of iterations

0

new
Td

can be constant in T' ~» horizontal line;
must increase in T ~~ decreasing line.

1000

IMH

RWM

MALA

aMALA

aGRAD

CSMC
Particle-RWM
Particle-MALA
Particle-aMALA
Particle-aMALA+
Particlee-mGRAD
Particle-aGRAD

— :cflg)Q = Informally, to stably

45 / 61

Scaling with T’

Mt(Xt|Xt—1) = N(Xt§xt—171), Gt(xt—lzt) = N(Yt§Xt,I); D

Average ESJD

0.5 7

0.4
|

i

0.2 7

0.1~

0.0~

500

Time horizon, T'

new old\2
(Average ESID) = 7715 Zt 1 Zd 1 —7g)
approximate marglnals the number of |terat|0ns
can be constant in T' ~» horizontal line;
must increase in T ~~ decreasing line.

=10, N =31

IMH

RWM

MALA

aMALA

aGRAD

CSMC
Particle-RWM
Particle-MALA
Particle-aMALA
Particle-aMALA+
Particlee-mGRAD
Particle-aGRAD

= Informally, to stably

45 / 61

Scaling with D
Mt(Xt|Xt_1) = N(xt;xt_l,I), Gt(xt_u) = N(yt;Xt,I); T = 25, N =31

10.0 =
- == IMH

RN S
.

= = = RWM
—— MALA
= = = aMALA

aGRAD
—— CSMC
— ParticleeRWM

Dx (Average ESJD)

— Particle-MALA
0.1- = = = Particle-aMALA
*rrrrt o Particle-aMALA+

— ParticlemGRAD

1 1 1 1 1 1 1 1 1 1 = = = Particle-aGRAD
10 20 30 40 50 60 70 80 90 100

State dimension, D

(Average ESJD) = % Zf:l Zle(zt“zw - z?}g)Q = Informally, to stably
approximate marginals, the number of iterations

= must grow linearly in D ~ horizontal line;

= can grow sublinearly in D ~ increasing line;

= must grow superlinearly in D ~~ decreasing line. 46 / 61

Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =
IMH
_— RWM
MALA
B aMALA
b aGRAD
CSMC

Particle-RWM

Dx (Average ESJD)

Particle-MALA
0.1~ Particle-aMALA
Particle-aMALA+
— ParticlemGRAD

| | | | | | | | 1 1 = = = Particle-aGRAD
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD Zt 1 Zd L@y = zgd) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 46 / 61

Talk outline

4. Particle extensions of mGRAD and aGRAD

4.2 Exploiting unconditionally Gaussian prior dynamics

Gaussian prior dynamics

= Now assume my(x;—1) = Fyx;—1 + by, i.e.

My (x¢|xt—1) = N(x¢; Fyxi—1 + by, Cy).

47 / 61

Twisted Particle-aGRAD

Assuming My (x¢|x¢—1) = N(x¢; Fix¢—1 + by, Cy)

Algorithm 7 (Twisted Particle-aGRAD). For ¢t € [T], sample
u; ~ N(x; + %th log G¢(x¢—1:¢), %I). Then, run the CSMC al-
gorithm with the following modifications.

lc. [sampling] x}* ~ M/(- \xﬁgl;ut:T), for n € [N],
1d. [weighting] (*omitted*)
3. [backward sampling] (*omitted*)

48 / 61

Twisted Particle-aGRAD

Assuming My (x¢|x¢—1) = N(x¢; Fix¢—1 + by, Cy)

Algorithm 7 (Twisted Particle-aGRAD). For ¢t € [T], sample
u; ~ N(x; + %th log G¢(x¢—1:¢), %I). Then, run the CSMC al-
gorithm with the following modifications.

lc. [sampling] x}' ~ M/(- \X:g’llgut;T), for n € [N],
1d. [weighting] (*omitted*)
3. [backward sampling] (*omitted*)

= Here,

]\ﬂ(xt’Xt—li, ut:T)

“ /
XxXT—t

is the ‘fully-twisted particle filter’ proposal for the pseudo
observations u;.7:

T
H N(Xs; Foxs_1 + bs; Cs) N(us; Xs, %I) dxt+1:T7

s=t

48 / 61

Twisted Particle-aGRAD

Assuming My (x¢|x¢—1) = N(x¢; Fix¢—1 + by, Cy)

Algorithm 7 (Twisted Particle-aGRAD). For ¢t € [T], sample
u; ~ N(x; + %th log G¢(x¢—1:¢), %I). Then, run the CSMC al-
gorithm with the following modifications.

lc. [sampling] x}' ~ M/(- \xﬁgl;ut:T), for n € [N],
1d. [weighting] (*omitted*)
3. [backward sampling] (*omitted*)

= Here,

]\ﬂ(xt’Xt—li, ut:T)

“ /
XxXT—t

is the ‘fully-twisted particle filter’ proposal for the pseudo
observations u;.7:
= Reduces to aGRAD if N =T =1. 48/ 61

T
H N(Xs; Foxs_1 + bs; Cs) N(us; Xs, %I) dxt+1:T,

s=t

Scaling with T’

- == IMH

04 - == RWM

= = = aMALA
aGRAD

— — CSMC
— ParticleeRWM

Average ESJD

— ParticleeMALA
= = = ParticleeaMALA

Particle-aMALA+

— ParticlemGRAD

0.0 === = = = Particle-aGRAD
250 500 750 1000 trerr Twisted Particle-aGRAD

Time horizon, T'

(Average ESJD) = % 23:1 Zle(ar?zw - :cflg)Q = Informally, to stably
approximate marginals, the number of iterations
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.
49 / 61

Scaling with T’

My (xe|xt-1) = N(x¢5%¢-1,1), Ge(x¢—1.¢) = N(y¢;%¢,I); D =10, N = 31

0.5
IMH

0.4 ' RWM
aMALA

37 aGRAD
CSMC

0.2 = Particle-RWM

Average ESJD

Particle-MALA
Particle-aMALA
0.1~ Particle-aM ALA+
ParticleemGRAD
Particle-aGRAD
0.0~ i i i 1

250 500 750 1000 Twisted Particle-aGRAD

Time horizon, T'

(Average ESJD) = TD Zt 1 Zd 1 TPy — a:flg)2 — Informally, to stably
approximate marglnals the number of |terat|0ns
= can be constant in T' ~~ horizontal line;
= must increase in T' ~~ decreasing line.
49 / 61

Scaling with D

Mt(xt|xt_1) = N(Xt;Xt_hI), Gt(xt_u) = N(yt;.?(.t-’ I), T = 25, N =31

10.0 = o
=== IMH

= = = RWM

— MALA

= = = aMALA
aGRAD

—— CSMC
— ParticleeRWM
— Particle- MALA

Dx (Average ESJD)

= = = Particle-aMALA
*rrrrt ParticleeaMALA+
— ParticlemGRAD
= = = Particle-aGRAD

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 Twisted Particle-aGRAD

State dimension, D

Average ESJD) = -1 Ti Df eV — 2014)2 — |nformally, to stably
TD Zut=124d=1\"t,d t,d

approximate marginals, the number of iterations
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 50 / 61

Scaling with D

Mt(xt|xt_1):N(xt;xt_1,) Gt(xt_l t)—N(yt7Xt,I) T—25 N =31

10.0 = e
o0 IMH
| RWM
Y MALA
aMALA
'5 aGRAD
CSMC
Particle-RWM
Particle-MALA

Dx (Average ESJD)

Particle-aMALA

0.1~
Particle-aMALA+

ParticleemGRAD
Particle-aGRAD

10 20 30 40 50 60 70 80 90 100 terrrt Twisted Particle-aGRAD

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = x?’d) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line.

50 / 61

Talk outline

4. Particle extensions of mGRAD and aGRAD

4.3 Interpolation between CSMC and Particle-MALA/aMALA

Intuition
= Assume Mt(Xt‘thl) = N(Xt; my, Ct)

51/ 61

Intuition
= Assume Mt(Xt‘thl) = N(Xt; my, Ct)
= Recall: Particle-mGRAD /Particle-aGRAD marginally propose:

xy ~ N(as, By), formn #0,
where (with A, = (C; + 21)71C,),

a; = (I — At)mt + At[Xt + %th log Gt(Xt,];t)},
B, = %A} + Ay,

51/ 61

Intuition

= Assume Mt(Xt‘thl) = N(xt;mt,Ct).

= Recall: Particle-mGRAD /Particle-aGRAD marginally propose:

xy ~ N(as, By), formn #0,
where (with A, = (C; + 21)71C,),

a; = (I — At)mt + At[Xt + %th log Gt(xtfl:t)}a
B, = %A} + Ay,

= If prior is highly informative (all eigenvalues of C; small)
then A; ~ 0 and

51 /61

Intuition
= Assume Mt(Xt‘thl) = N(Xt; my, Ct)
= Recall: Particle-mGRAD /Particle-aGRAD marginally propose:

xy ~ N(as, By), formn #0,
where (with A, = (C; + 21)71C,),

a; = (I — At)mt + At[Xt + %th log Gt(xtfl:t)}a
B, = %A} + Ay,

= If prior is highly informative (all eigenvalues of C; small)
then Ay ~ 0 and CSMC proposal

——
N(at, Bt> ~ N(mt, Cf)

51/ 61

Intuition
= Assume Mt(Xt‘thl) = N(Xt; my, Ct)
= Recall: Particle-mGRAD /Particle-aGRAD marginally propose:
xy ~ N(as, By), formn #0,
where (with A, = (C; + 21)71C,),
a; = (I — At)mt + At[Xt + %th log Gt(xtfl:t)}a
B, = %A} + Ay,

= If prior is highly informative (all eigenvalues of C; small)
then A; ~ 0 and CSMC proposal
——
N(at, Bt) =~ N(mt, Cf)
= If prior is highly uninformative (all eigenvalues of C; large)
then A; ~ T and

51/ 61

Intuition

= Assume Mt(Xt‘thl) = N(xt;mt,Ct).

= Recall: Particle-mGRAD /Particle-aGRAD marginally propose:

xy ~ N(as, By), formn #0,
where (with A, = (C; + 21)71C,),
a; = (I — At)mt + At[Xt + %th log Gt(xtfl:t)}a
B, = %A} + Ay,

= If prior is highly informative (all eigenvalues of C; small)
then A; ~ 0 and CSMC proposal
——
N(at, Bt) ~ N(mt, Cf)
= If prior is highly uninformative (all eigenvalues of C; large)
then A; ~ T and
N(ay, By) = N(x; + %th log 7 (x1:¢), 6:1).

(marginal) Particle-MALA /Particle-aMALA proposal

51/ 61

Scaling with prior informativeness

Mt(Xt|Xt_1) = N(Xt;Xt_h /\I), Gt(xt—lrt) = N(yt;Xt7I); T=D= 10, N =31

Average ESJD

2.0~

— CSMC
= = = Particle-aMALA
Particle-MALA

rrrrt Particle-aMALA+

0.5~

= = = Particle-aGRAD
— ParticlemGRAD
rrrrt Twisted Particle-aGRAD

0.0

0.01 10

Prior variance, A

T D
(Average ESJD) = % thl Zdzl(a;fzw — a:flg)2

52 / 61

Convergence to CSMC for highly informative priors

Al M,;(-|x¢—1) = N(my, C;), with G; bounded and C; invertible.
A2 3 Cy,C1 > 0 such that HV]Oth(Xt)HQ < Cy+ ClHXtHQ.

Proposition 1. For some D, T, N > 1, assume A1-A2, and

assume that there exists a sequence (A;)g>1 in (0,00) with
maxye () max eigenval(Cy) < Ay — 0 as k — oo. Then for any

e > 0, there exists a sequence (Frj)i>1 of subsets of XT with
limy_ o 7TT7]€(FT7;€) =1 such that

sup || Pparticle-mGRAD,k (- |X1.7) o
TRk Pesme (- [xar) v € OO

sup | Pparticle-aGRAD & (* [X1:7) o
XTEEE - Peyic (- [xar) ey € OAY T,

53 / 61

Convergence to Particle-MALA for uninformative priors

A3 maxgep) [y xf’th(xt) dx; < 0o, where ;4 is the dth
component of x;.

Proposition 2. For some D, T, N > 1, assume A1-A3, and
assume that there exists a sequence (A;)g>1 in (0,00) with
min, (7 min eigenval(Cy) > Ay — oo as k — oo. Then for any
€ > 0, there exists a sequence (Fr)g>1 of subsets of X1 with
limg 00 WT,k(FT,k) =1 such that

sup || Prarticle-mGRAD, & (- [X1:7)
x1.7E€EFT K

— Pranicle maLa k(- [x1.7) v € OO, 797,

sup || Prarticle-aGRAD k(- |X1:7)

rEP —(1—e)/4
MATEITE P iceaMALAE (- [%X17) [y € O()\k(&)/).

54 / 61

Talk outline

5. Numerical illustration

Multivariate stochastic volatility model

= Potential function/observation density:

Gt(xt—lzt) = gt(Yt’Xt) = N(Yt§ 0, diag(exp Xt))-

55 / 61

Multivariate stochastic volatility model
= Potential function/observation density:
Gt(xt—lzt) = gt(Yt’Xt) = N(Yt% 0, diag(exp Xt))-
= Mutation kernel/transition density:
Mi(xt|x¢—1) = fr(xe|xi—1) = N(x¢; 0.9x—1, TH),

where, with p = 0.25,

L p P
H=|"

‘. p

p p 1

55 / 61

Multivariate stochastic volatility model
= Potential function/observation density:
Gt(xt—lzt) = gt(Yt’Xt) = N(Yt% 0, diag(exp Xt))-
= Mutation kernel/transition density:
Mi(xt|x¢—1) = fr(xe|xi—1) = N(x¢; 0.9x—1, TH),

where, with p = 0.25,

L p P
H=|"

: . - p

p...pl

= The prior variance 7 > 0 controls ‘prior informativeness’.

55 / 61

Multivariate stochastic volatility model, continued
T =128, D = 30, N = 31; ; tuned to achieve 75 % acceptance rate

Unnormalised ‘ Per second l
1600 7
1
0.8 A
1200 A
0.6
78} —— ParticleeRWM
[9p]
= - - Particle-aMALA
& 800
g 800 0.4 — Particle- MALA
o}
= Particle-aMALA+
400 4 0.2
0 T T 0.0 T T |
0.1 0.5 1 2 0.1 0.5 1 2

Prior variance, 7

Proposed methods which do not require (conditionally or unconditionally)

Gaussian dynamics compared with Particle-RWM as a baseline. 56 / 61

Multivariate stochastic volatility model, continued
T =128, D = 30, N = 31; ; tuned to achieve 75 % acceptance rate

Unnormalised ‘ Per second ‘

1600 A

¢ Particle-RWM
1200 4 !

0.6 1 Particle-aMALA
] Particle-MALA
Particle-aMALA+

0.4 H - = Particle-aGRAD

Median ESS

— ParticlemGRAD

Particle-aGRAD (k = 0)
400 24
02 ParticlemGRAD (r = 0)

0 T T 0.0 T T)
0.1 0.5 1 2 01 0.5 1 2

Prior variance, 7

Proposed methods which require only conditionally Gaussian dynamics, i.e.,
M (x¢|x¢—1) = N(x¢; me(xe—1), C(x¢—1)) (Particle-mGRAD algorithm also
needs C;(x;—1) = C;). ‘(x = 0)' indicates no gradient usage. 57/ 6

Multivariate stochastic volatility model, continued
T =128, D = 30, N = 31; ; tuned to achieve 75 % acceptance rate

Unnormalised ‘ Per second ‘

P ') . Particle- RWM
1000 1" 3 Particle-aMALA
,,,,,,,,,,,,,,, y Particle-MALA

4000 -) ::: Particle-aMALA+

s Particle-aGRAD
: Particle-mGRAD
2000 Twisted Particle-aGRAD
aGRAD

N Particle-aGRAD (k = 0)
ParticlemGRAD (k = 0)

Median ESS

1000 A
Twisted Particle-aGRAD (x = 0)

%o 051 301
Prior variance, 7
Proposed methods which require unconditionally Gaussian dynamics i.e.,
My (x¢|x¢—1) = N(x¢; Fex¢e—1 + by, Cy), compared with aGRAD (which also
makes this assumption) as baseline. ‘(x = 0)’ indicates no gradient usage. 58/ !

Talk outline

6. Summary

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

59 / 61

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:

59 / 61

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:
~» favourable scaling with the state dimension, D.

59 / 61

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:
~» favourable scaling with the state dimension, D.

= From CSMC, our methods borrow the ability to exploit the
‘decorrelation-over-time' model property:

59 / 61

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:
~» favourable scaling with the state dimension, D.

= From CSMC, our methods borrow the ability to exploit the
‘decorrelation-over-time' model property:
~» favourable scaling with the time horizon, T.

59 / 61

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:
~» favourable scaling with the state dimension, D.

= From CSMC, our methods borrow the ability to exploit the
‘decorrelation-over-time' model property:
~» favourable scaling with the time horizon, T.

= All our methods can be implemented in O(NT') operations
per iteration (for fixed D).

59 / 61

Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:
~» favourable scaling with the state dimension, D.

= From CSMC, our methods borrow the ability to exploit the
‘decorrelation-over-time' model property:
~» favourable scaling with the time horizon, T.

= All our methods can be implemented in O(NT') operations
per iteration (for fixed D).

= All our methods are exact (they leave mp(x1.7) invariant).

59 / 61

Summary, continued

The methods mentioned in this work (new methods are in italic).

Method Special case

ifN=T=1
csmct IMH
Particle-RWM RWM
Particle-aMALA aMALA
Particle-MALA MALA
Particle-aMALA+ aMALA
Particle-aGRAD aGRAD
Particle-mGRAD mGRAD
Particle-aGRAD+ aGRAD
Twisted Particle-aGRAD(+) aGRAD
Particle-PCNL & more! PCNL

T In our taxonomy, CSMC could be called ‘Particle-IMH". How-
ever, the latter already refers to a different algorithm in An-
drieu et al. (2010).

t auxiliary, smoothing-gradient (‘+') and twisted versions.

= ForT'=1and N =1, our methods reduce to well known
‘classical’ MCMC algorithms.

60 / 61

https://arxiv.org/pdf/2401.14868

Summary, continued

The methods mentioned in this work (new methods are in italic).

Method Special case

ifN=T=1
csmct IMH
Particle-RWM RWM
Particle-aMALA aMALA
Particle-MALA MALA
Particle-aMALA+ aMALA
Particle-aGRAD aGRAD
Particle-mGRAD mGRAD
Particle-aGRAD+ aGRAD
Twisted Particle-aGRAD(+) aGRAD
Particle-PCNL & more! PCNL

T In our taxonomy, CSMC could be called ‘Particle-IMH". How-
ever, the latter already refers to a different algorithm in An-
drieu et al. (2010).

t auxiliary, smoothing-gradient (‘+') and twisted versions.
= ForT'=1and N =1, our methods reduce to well known
‘classical’ MCMC algorithms.

= ForT'=1 and N > 1, our methods are novel ‘multi-proposal’
variants of these ‘classical’ MCMC algorithms.

60 / 61

https://arxiv.org/pdf/2401.14868

Summary, continued

The methods mentioned in this work (new methods are in italic).

Method Special case

ifN=T=1
csmct IMH
Particle-RWM RWM
Particle-aMALA aMALA
Particle-MALA MALA
Particle-aMALA+ aMALA
Particle-aGRAD aGRAD
Particle-mGRAD mGRAD
Particle-aGRAD+ aGRAD
Twisted Particle-aGRAD(+) aGRAD
Particle-PCNL & more! PCNL

T In our taxonomy, CSMC could be called ‘Particle-IMH". How-
ever, the latter already refers to a different algorithm in An-
drieu et al. (2010).

t auxiliary, smoothing-gradient (‘+') and twisted versions.

= ForT'=1and N =1, our methods reduce to well known
‘classical’ MCMC algorithms.

= ForT'=1 and N > 1, our methods are novel ‘multi-proposal’
variants of these ‘classical’ MCMC algorithms.

= More details: https://arxiv.org/pdf/2401.14868

60 / 61

https://arxiv.org/pdf/2401.14868

Literature |

Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 72(3):269-342. With discussion.

Andrieu, C., Lee, A, and Vihola, M. (2018). Uniform ergodicity of the iterated conditional SMC and geometric
ergodicity of particle Gibbs samplers. Bernoulli, 24(2):842-872.

Andrieu, C. and Vihola, M. (2016). Establishing some order amongst exact approximations of MCMCs. Annals of
Applied Probability, 26(5):2661-2696.

Besag, J. E. (1994). Contribution to the discussion on ‘Representations of knowledge in complex systems’ by
Grenander, U and Miller, M. I.. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
56(4):549-581.

Ceperley, D. M. and Dewing, M. (1999). The penalty method for random walks with uncertain energies. The
Journal of Chemical Physics, 110(20):9812-9820.

Corenflos, A. and Sarkka, S. (2023). Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in
latent dynamical systems. arXiv preprint arXiv:2303.00301.

Cotter, S. L., Roberts, G. O., Stuart, A. M., and White, D. (2013). MCMC methods for functions: Modifying old
algorithms to make them faster. Statistical Science, 28(3):424-446.

Finke, A. and Thiery, A. H. (2023). Conditional sequential Monte Carlo in high dimensions. The Annals of
Statistics, 51(2):437-463.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika,
57(1):97-109.

Koskela, J., Jenkins, P. A., Johansen, A. M., and Spano, D. (2020). Asymptotic genealogies of interacting particle
systems with an application to sequential Monte Carlo. The Annals of Statistics, 48(1):560-583.

Lee, A., Singh, S. S., and Vihola, M. (2020). Coupled conditional backward sampling particle filter. Annals of
Statistics, 48(5):3066—-3089.

Malory, S. (2021). Bayesian inference for stochastic processes. PhD thesis, Lancaster University.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953). Equation of state
calculations by fast computing machines. Journal of Chemical Physics, 21(6):1087-1092.

Titsias, M. K. and Papaspiliopoulos, O. (2018). Auxiliary gradient-based sampling algorithms. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80(4):749-767.

61/ 61

	State-space models/Feynman–Kac representation
	Existing methods
	`Classical' MCMC
	Conditional sequential Monte Carlo (CSMC)
	Particle-RWM: An existing combination of MCMC and CSMC

	Particle extensions of MALA and aMALA
	Exploiting filter gradients (gradients w.r.t. t)
	Exploiting smoothing gradients (gradients w.r.t. T)

	Particle extensions of mGRAD and aGRAD
	Exploiting conditionally Gaussian prior dynamics
	Exploiting unconditionally Gaussian prior dynamics
	Interpolation between CSMC and Particle-MALA/aMALA

	Numerical illustration
	Summary
	References

