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= Examples:
— econometrics/finance,
— ecology,
— engineering,
— epidemiology,
— weather forcasting,
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= D-dimensional latent states: x;, = | : | € X =RP,
= Joint smoothing distribution: Tt D
T
mr(x1r) = p(xrrlyrr) o [ filxelxi—1) g (yelxe).
t=1

= Assumption: densities f; and g¢; are differentiable (in the
states); densities/gradients can be evaluated pointwise.

= Goal: find efficient MCMC algorithms targetting 7 (x1.7).
= Problem: 7p(x1.77) may be high dimensional (7" or D large).
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Generic Feynman—Kac representation

= More generally' we are interested in a distribution
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representation of mr(x1.77) = p(x1.7|y1.7) is
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2.1 ‘Classical’ MCMC



MCMC methods

= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.
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= ‘Classical’ MCMC methods are agnostic to the state-space
model structure.

= For the moment, write X := x;.7, so that
m(x) = mp(x) x M (x)G(x),

where
- M(x) = T1,_ My(xelxi—1) (‘prior');
- G(x) =TI, Gi(xs_14) (likelihood’).

= Note: x is thus (7'D)-dimensional.
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MCMC methods
= [Marginal sampler] Metropolis—Hastings (MH)? algorithm:

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
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MCMC methods

[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)

m(x)g(X[x)
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3Ceperley and Dewing (1999)
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[Marginal sampler] Metropolis—Hastings (MH)? algorithm:
1. propose X ~ ¢(X|x);

2. accept x with probability a(x,%) =1 AN ———— m(%)a(x]%)
) ~ m(x)q(x[x)’
= Assume ¢(x|x) = [ ¢(X|u,x)q(ulx) du.
[Auxiliary sampler]
1. propose u ~ ¢(ulx) and x ~ ¢(X|u, x);
2. accept X with probability =:h(u)

W(i)Q(uB{)q(xlu’i) — alx. % Q(u|X7X)
N e A '

= Two interpretations of the auxiliary sampler:

1. Standard MH conditional on u, i.e. targetting m(x;u) = m(x)q(ulx).
2. MH with randomised acceptance ratio® (since E[h(u)|x, %] = 1).

» Efficiency of auxiliary sampler < efficiency of marginal sampler.

2Metropolis et al. (1953); Hastings (1970)
3Ceperley and Dewing (1999)

*Andrieu and Vihola (2016)
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A simple MCMC algorithm

= Independent Metropolis—Hastings (IMH)>:

®Hastings (1970)
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Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;xt,I); T = 25, N =31
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= [Marginal sampler] Random-walk Metropolis (RWM)®:
q(x|x) = N(x; x, dI).

= Can sample from ¢(X|x) by sampling
1. u~ N(x, 2I);
2. %~ N(u, $I)
= [Auxiliary sampler] Not integrating out u in the acceptance
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Exploiting gradient information

= [Marginal sampler] Metropolis-adjusted Langevin algorithm
(MALA)7:

q(%|x) = N(%;x + $V log (x), 51).

"Besag (1994)

8Titsias and Papaspiliopoulos (2018)
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Exploiting Gaussian priors (and gradient info)
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Preconditioned
Crank-Nicolson-Langevin (PCNL)? algorithm:
q(X[x) = N(%; (1 - B)m + f[x + 5CVlog G(x)], (1 — #%)C),

where 3 :=2/(2+ ).

°Cotter et al. (2013)
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Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.

9Titsias and Papaspiliopoulos (2018)
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Exploiting Gaussian priors (and gradient info), continued
Assuming M (x) = N(x;m, C)

= [Marginal sampler] Marginal gradient (mGRAD)? algorithm:
q(x|x) =N(x; (I - A)m + Afx + ngog G(x)],B),

where B := A2+ A and A = (C + $I)~!C.
= Can sample from ¢(X|x) by sampling
1. u~N(x+ $Vleg G(x), 3I);
2. x ~N(I-A)m+ Au, 2A).
= [Auxiliary sampler] Not integrating out u in the acceptance
ratio gives the auxiliary gradient (aGRAD)! algorithm.

9Titsias and Papaspiliopoulos (2018)
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Scaling with D
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= Summary: ‘Classical’ MCMC methods can use ‘local’ moves
guided by:
— gradient information (e.g., as in MALA);

— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).

~~ favourable scaling with D (for small, fixed 7).

= Problem: ‘Classical’ MCMC methods do not exploit the
‘decorrelation-over-time' property the state-space model.
~~ suboptimal scaling with T" (for fixed D).
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Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); D = 10, N = 31
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Talk outline

2. Existing methods

2.2 Conditional sequential Monte Carlo (CSMC)



Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.

1 Andrieu et al. (2010)
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Conditional sequential Monte Carlo (CSMC) algorithm

= For the moment: D small.
» CSMC algorithm?!.
— Induces mp-invariant MCMC kernel.
= Sequentially builds proposal in the ‘time’-direction:

— using N + 1 interacting samples (‘particles’),
— avoids curse of dimensionality in T (for fixed D).

" Andrieu et al. (2010)
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Algorithm 1 (CSMC). Given x;.77 € X7T:

1. fort=1,...,T,
1.1 set x¥ = xy,
1.2 [resampling] if t > 1, set a)_; := 0; sample a?* ; =i w.p. W}_, for

n € [N],

1.3 [sampling] isample x} ~ M, (- |x,*7") for n € [N],
1.4 [weighting] for n € [N]o, set w} oc Gy(x, 5", x7).
1.5 for n € [N]o, set W;* := w?/ZZ:o wy;

2. sample [ =i € [N]o w.p. Wi.

3. [ancestral tracing] fort =T —1,...,1, set [; .= ait“.

!
4. return x\. = (xi, .. 7).
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Proposal

space

time
Given reference path xi.7 (current state of MCMC chain):
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Selecting new reference path

1. Sample I ~ W:]’FT.
2. Set [ ::ai”“, fort=T-1,...,1.
3. Return x|, == (x!,...,x}%) (new state of MCMC chain).
21/ 61



= induces mp-invariant MCMC kernel Pesmc(x).7|%1.7).
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= induces mp-invariant MCMC kernel Pesmc(x).7|%1.7).

= T "accept-reject decisions”.
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I
Problem: x|, = (x}',...,x%) & x1.7 = (x),...,x}) coalesce

0
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)
5 @
time

I
Problem: x|, = (x}',...,x%) & x1.7 = (x),...,x}) coalesce

= controlling the ‘acceptance rates’ requires N ~ T' (Andrieu
et al., 2018; Koskela et al., 2020)
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Algorithm 2 (CSMC). Given x;.77 € X7T:

1. fort=1,...,T,
1.1 set x¥ = xy,
1.2 [resampling] if t > 1, set a)_; := 0; sample a?* ; =i w.p. W}_, for

n € [N],

1.3 [sampling] sample x} ~ M, (- |x;*7!) for n € [N],
1.4 [weighting] for n € [N]o, set w} oc Gy(x, 7", x7).
1.5 for n € [N]o, set W;* := w?/ZZ:o wy;

2. sample [ =i € [N]o w.p. Wik.

3. [ancestral tracing] for t =T —1,...,1, set [; .= ait“.

!
4. return x\. = (x1, .. %),
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Algorithm 2 (CSMC). Given x;.77 € X7

1 fort=1,...,T,
1.1 set x?¥ == x;,
1.2 [resampling] if t > 1, set a?_; := 0; sample a} |, =i w.p. W} _,, for

n € [N],

1.3 [sampling] sample x}* ~ M, (- |xi’11) for n € [N],
1.4 [weighting] for n € [N]o, set wt x Gt(x??’ll,x?).
1.5 for n € [N]o, set W} :== wj /Zm o wi;

z _ WO
2. sample i € [N] w.p. —=L— set I == i w.p. 1 A ——Z; otherwise,
1— W 1— Wi
set [ :=0;
3. [ancestral tracing] fort =T —1,...,1, set [; := aif“.
4. return x. = (xU,.. LX),
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Algorithm 2 (CSMC). Given x;.7 € X7T:

1. fort=1,...,T,
1.1 set x¥ == x;,
1.2 [resampling] if ¢ > 1, set a}_; := 0; sample a* ; =i w.p. W/_, for

n € [N],

1.3 [sampling] sample x}* ~ M, (- |xi’11) for n € [N],
1.4 [weighting] for n € [N]y, set w}" x Gt(xi’f,x?).
1.5 for n € [N]o, set W} := w?/ZZZO wy™;

. Wi ) 1-— WIQ )
2. sample i € [N] w.p. m; set lp =i w.p. 1A m otherwise,

set 7 == 0;
3. [backward sampling] for t =T —1,...,1, sample I, =i € [N]y w.p.
Wi Quri (x, %51
YAl WP Qe (%7, Xi?ll )

4. return x| = (x1, ... x0T,
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Backward-sampling extension

e @ '
v
@ ?
time

. [ l
= Forms new lineage x|..» = (x},... X ).
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Backward-sampling extension

time
H / _ 1] lT
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Backward-sampling extension

time

. [ l
= Forms new lineage x/., = (Xlll sy X ).

= Frees us from having to grow N with 7" (Lee et al., 2020).
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Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); D = 10, N = 31
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Scaling with T’
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Breakdown of CSMC as D — oo

space

time
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Breakdown of CSMC as D — oo

time

= all acceptance rates — 0 (Finke and Thiery, 2023);

= even with backward sampling.
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Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31
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Summary of the CSMC algorithm
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Summary of the CSMC algorithm

» Summary: The CSMC algorithm exploits the
‘decorrelation-over-time' property the state-space model.
~~ favourable scaling with 7" (for small, fixed D).

= Problem: The CSMC algorithm cannot use ‘local’ moves.
~+ curse of dimension in D (for fixed T').
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Talk outline

2. Existing methods

2.3 Particle-RWM: An existing combination of MCMC and CSMC



Particle random-walk Metropolis (Particle-RWM)
Finke and Thiery (2023)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x¢, %I), and x}' ~ N(uy, ‘;—tI), for
n € [N],

1d. [weighting] for n € [N]o, set w}’ Qt(x?inal,x?).

2Finke and Thiery (2023); see also Malory (2021)
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= Step lc marginally proposes (for n # 0):
X? ~ N(Xt, (StI)
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Particle random-walk Metropolis (Particle-RWM)
Finke and Thiery (2023)

Algorithm 3 (Particle-RWM). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x¢, %I), and x}' ~ N(uy, ‘;—tI), for
n € [N],

1d. [weighting] for n € [N]o, set w}’ Qt(x?inal,x?).

= Step lc marginally proposes (for n # 0):
X? ~ N(Xt, (StI)

» Reduces to RWM if N =T = 1.
= Dimensionally stable if 5, = O(D~1).12

2Finke and Thiery (2023); see also Malory (2021)
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Particle-RWM (D — o0)

space

time
Given reference path x.7 (current state of MCMC chain):

= Set x{ = x;.
= Sample (ul,x%:N) ~ N(ul;x(l), %I) 5:1 N(x7;u, %I).
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Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):

= Set x{ = x;.
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Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):
= Set X? = xy, a? :— 0.

= Sample (ut’xtﬁv’ ]\]_])n'\’ N(utaxta b} )HN 1 Wy tll N(x} ;U 5 I),
— where W;* Qt(xt:f,xt ).
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Particle-RWM (D — o0)

time

Given reference path x1.7 (current state of MCMC chain):

= Set xV = x, a) ap_y = = 0.
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Particle-RWM (D — o0)

time
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Particle-RWM (D — o0)

time

Given reference path x.7 (current state of MCMC chain):

= Set x) :=x;, a) | = 0.

: : N o0
= Sample (uy, x}™V, afY) ~ N(ugx?, $1) [I02, W7 N(xp; uy, $1),
— where W/* « Qt(x?_’?vx?)-
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Scaling with T’
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Scaling with D
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Extended state-space view of Particle-RWM
Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:
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Corenflos and Sarkka (2023)

Extended target distribution (admits 7p(x1.7) as a marginal!):

T
mp (X7, urr) = T (X H (ug %y, %

X HN g3 g, YT) My(xe|xe—1) G(xXe-1:¢),
t=1

=M (x¢|x¢—15u¢) =G} (x¢t—1:¢)

Equivalent formulation of Particle-RWM:

1. sample uy ~ N(xy, %I), fort=1,...,T;
2. run standard CSMC algorithm but replace
= Mi(x¢|x¢-1) by M{(x¢|x;—1;0);

= Gi(x¢—1:¢) by Gi(x¢-1:4).
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Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’
property of the state-space model and also uses ‘local’ moves.
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Summary of the Particle-RWM algorithm

= Summary: Particle-RWM exploits ‘decorrelation-over-time’
property of the state-space model and also uses ‘local’ moves.
~ favourable scaling in T' & dimensional stability in D.

= Problem: Particle-RWM does not utilise

— gradient information (e.g., as in MALA);
— Gaussian prior information (e.g., as in Crank—Nicholson type
methods and mGRAD/aGRAD).
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Talk outline

3. Particle extensions of MALA and aMALA



Talk outline

3. Particle extensions of MALA and aMALA
3.1 Exploiting filter gradients (gradients w.r.t. log ;)



Particle-MALA and Particle-aMALA

Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [samplmg] sample u; ~ N(x; + th log m(x1:¢), %I), and
~ N(uy, &1), for n € [N]

1d. [welghtmg] set x; = N+1 SN x) and, for n € [N]o,

w? X Qt (XtiEl ) X?)Ft (thf ’ X?, )_(t)‘
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Algorithm 4 (Particle-MALA). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %V, log 7 (x1:¢), %), and
X} ~ N(uy, %I), for n € [N],

1d. [weighting] set x; = ﬁ SN ) and, for n € [N]o,

n a1 _p F al g -
wy X Qt(xt—l Xt t(Xt—l VXY Xp).

= Step lc marginally proposes (for n # 0):
x; ~ N(x; + %th log m¢(x1:4), 6:1).

= Reduces to MALA if N =T = 1.

= Not integrating out the auxiliary variable u; in the weights
(and in the backward kernel) gives the Particle-aMALA.

— ‘random-weight’ version of Particle-MALA;
— reduces to aMALA if N =T = 1.
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Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_u) = N(yt;Xt,I); D = 10, N =31
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approximate marginals, the number of iterations
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= must increase in T' ~~ decreasing line.
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Scaling with D
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Talk outline

3. Particle extensions of MALA and aMALA

3.2 Exploiting smoothing gradients (gradients w.r.t. log 77)



Particle-aMALA+

Algorithm 5 (Particle-aMALA+). Modify CSMC as follows:

lc. [sampling] sample u; ~ N(x; + %Vx,, log 7 (x1.7), %tI),
and x} ~ N(uy, %1), for n € [N],

1d. [weighting] for n € [N]o, set w!" oc G} (x, 152 X, 0 7Y X uy_1.4),

n
A1

3. [backward sampling] (*omitted*)
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and x} ~ N(uy, %1), for n € [N],

1d. [weighting] for n € [N]o, set w!" oc G} (x, 152 X, 0 7Y X uy_1.4),

n
A1

3. [backward sampling] (*omitted*)

= Step lc marginally proposes (for n # 0):
xy ~ N(x; + %vxt log mp(x1.7), 01).

= Using gradients w.r.t. log 77 (x1.7) (rather than log 7 (x1.))
comes at cost of having only 2nd-order Markovianity.

= Again reduces to aMALA if N =T = 1.
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Scaling with T’

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_u) = N(yt;Xt,I); D = 10, N =31
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Scaling with D

Mi(x¢|xe—1) = N(x¢;%¢-1,I), Ge(x¢—1:¢) = N(y¢; x¢,I); T =25, N =31
10.0 =
= = = IMH

= = = RWM
—— MALA

= = = aMALA
aGRAD
— CSMC

Dx (Average ESJD)

— ParticleeRWM
— ParticleeMALA

= = = Particle-aMALA
rroris ParticleeaMALA+

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

Average ESJD) = -1 Ti Df eV — 2014)2 — |nformally, to stably
TD Zut=124d=1\"t,d t,d

approximate marginals, the number of iterations
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 41 /61



Scaling with D

Mt(Xt|Xt_1) = N(Xt;Xt_hI), Gt(xt_l;t) = N(yt;Xt,I); T = 25, N =31

10.0 =

N IMH
3 RWM
MALA
1.0 ~
; aMALA
] aGRAD
CSMC

Particle-RWM

Dx (Average ESJD)

0.1~ Particle-MALA
Particle-aMALA
*rerrt Particle-aMALA+

1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100

State dimension, D

1d 2
(Average ESJD) TD th Zd L@y = x?’d) — Informally, to stably
approximate marglnals the number of |terat|ons
= must grow linearly in D ~ horizontal line;
= can grow sublinearly in D ~ increasing line;
= must grow superlinearly in D ~~ decreasing line. 41 /61



Talk outline

4. Particle extensions of mGRAD and aGRAD



Talk outline

4. Particle extensions of mGRAD and aGRAD
4.1 Exploiting conditionally Gaussian prior dynamics



Conditionally Gaussian prior dynamics

= For the moment, assume that

My (x¢]x¢—1) = N(x¢; my(x4-1), Cy).
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Particle-mGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(xt_l), Ct)

Algorithm 6 (Particle-mGRAD). Modify CSMC as follows:
lc. [sampling] sample u; ~ N(x; + % Vy, log Gy (x—1:¢), & 1)
and X7 ~ M/(-[x;"}";u,), for n € [N],

1d. [weighting] (*omitted*)
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Assuming Mt(xt\xt_l) = N(xt;mt(xt_l), Ct)

Algorithm 6 (Particle-mGRAD). I\/Iodify CSMC as follows:

lc. [sampling] sample ut ~ N(x¢ + %V, log Gy (x¢—1:¢), %T)
and x7 ~ M/(-[x;"7 5 wy), for n 6 [N],

1d. [weighting] (*omitted*)

= Here,
J\"ft/(xt|xt—1; ut) X N(Xt; mt(xt—1)7 Ct) N(ut; Xt, %I)a

is the ‘fully-adapted auxiliary-particle filter’ proposal for
the pseudo observation uy:
» Step lc marginally proposes (for n # 0):

xy ~ N((I—- At)mt(xfi‘f) + Aylx: + &fo log G¢(x¢—1:¢)], By),

where B, = 2% A? + Ay and Ay = (C; + %I)~!Cy.
= Reduces to mGRAD iftN=T=1.
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Particle-aGRAD

Assuming Mt(xt\xt_l) = N(Xt, mt(Xt_1)7 Ct(xt_l))

= Not integrating out the auxiliary variable u; in the
weights/backward kernel of Particle-mGRAD gives the
Particle-aGRAD algorithm:
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Assuming Mt(xt\xt_l) = N(Xt, mt(Xt_1)7 Ct(xt_l))

= Not integrating out the auxiliary variable u; in the
weights/backward kernel of Particle-mGRAD gives the
Particle-aGRAD algorithm:
— ‘random-weight' version of Particle-mGRAD;
— implementable even if C; = C¢(x:—1) depends on x;_1;
— reduces to aGRAD if N =T = 1.
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Scaling with T’

Mt(Xt|Xt_1) = N(xt;xt_l,I), Gt(xt_u) = N(yt;Xt,I); D = 10, N =31
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Scaling with D
Mt(Xt|Xt_1) = N(xt;xt_l,I), Gt(xt_u) = N(yt;Xt,I); T = 25, N =31
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Talk outline

4. Particle extensions of mGRAD and aGRAD

4.2 Exploiting unconditionally Gaussian prior dynamics



Gaussian prior dynamics

= Now assume my(x;—1) = Fyx;—1 + by, i.e.

My (x¢|xt—1) = N(x¢; Fyxi—1 + by, Cy).
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Twisted Particle-aGRAD

Assuming My (x¢|x¢—1) = N(x¢; Fix¢—1 + by, Cy)

Algorithm 7 (Twisted Particle-aGRAD). For ¢t € [T], sample
u; ~ N(x; + %th log G¢(x¢—1:¢), %I). Then, run the CSMC al-
gorithm with the following modifications.

lc. [sampling] x}* ~ M/(- \xﬁgl;ut:T), for n € [N],
1d. [weighting] (*omitted*)
3. [backward sampling] (*omitted*)
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gorithm with the following modifications.

lc. [sampling] x}' ~ M/( - \xﬁgl;ut:T), for n € [N],
1d. [weighting] (*omitted*)
3. [backward sampling] (*omitted*)

= Here,

]\ﬂ(xt’Xt—li, ut:T)

“ /
XxXT—t

is the ‘fully-twisted particle filter’ proposal for the pseudo
observations u;.7:
= Reduces to aGRAD if N =T =1. 48/ 61

T
H N(Xs; Foxs_1 + bs; Cs) N(us; Xs, %I) dxt+1:T,

s=t




Scaling with T’
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Scaling with D
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Talk outline

4. Particle extensions of mGRAD and aGRAD

4.3 Interpolation between CSMC and Particle-MALA/aMALA



Intuition
= Assume Mt(Xt‘thl) = N(Xt; my, Ct)
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where (with A, = (C; + 21)71C,),

a; = (I — At)mt + At[Xt + %th log Gt(Xt,];t)},
B, = %A} + Ay,
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Intuition

= Assume Mt(Xt‘thl) = N(xt;mt,Ct).

= Recall: Particle-mGRAD /Particle-aGRAD marginally propose:

xy ~ N(as, By), formn #0,
where (with A, = (C; + 21)71C,),
a; = (I — At)mt + At[Xt + %th log Gt(xtfl:t)}a
B, = %A} + Ay,

= If prior is highly informative (all eigenvalues of C; small)
then A; ~ 0 and CSMC proposal
——
N(at, Bt) ~ N(mt, Cf)
= If prior is highly uninformative (all eigenvalues of C; large)
then A; ~ T and
N(ay, By) = N(x; + %th log 7 (x1:¢), 6:1).

(marginal) Particle-MALA /Particle-aMALA proposal
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Scaling with prior informativeness

Mt(Xt|Xt_1) = N(Xt;Xt_h /\I), Gt(xt—lrt) = N(yt;Xt7I); T=D= 10, N =31
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Convergence to CSMC for highly informative priors

Al M,;(-|x¢—1) = N(my, C;), with G; bounded and C; invertible.
A2 3 Cy,C1 > 0 such that HV]Oth(Xt)HQ < Cy+ ClHXtHQ.

Proposition 1. For some D, T, N > 1, assume A1-A2, and

assume that there exists a sequence (A;)g>1 in (0,00) with
maxye () max eigenval(Cy ) < Ay — 0 as k — oo. Then for any

e > 0, there exists a sequence (Frj)i>1 of subsets of XT with
limy_ o 7TT7]€(FT7;€) =1 such that

sup || Pparticle-mGRAD,k (- |X1.7) o
TRk Pesme (- [xar) v € OO

sup | Pparticle-aGRAD & ( * [X1:7) o
XTEEE - Peyic (- [xar) ey € OAY T,
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Convergence to Particle-MALA for uninformative priors

A3 maxgep) [y xf’th(xt) dx; < 0o, where ;4 is the dth
component of x;.

Proposition 2. For some D, T, N > 1, assume A1-A3, and
assume that there exists a sequence (A;)g>1 in (0,00) with
min, (7 min eigenval(Cy ) > Ay — oo as k — oo. Then for any
€ > 0, there exists a sequence (Fr)g>1 of subsets of X1 with
limg 00 WT,k(FT,k) =1 such that

sup || Prarticle-mGRAD, & ( - [X1:7)
x1.7E€EFT K

— Pranicle maLa k(- [x1.7) v € OO, 797,

sup || Prarticle-aGRAD k(- |X1:7)

rEP —(1—e)/4
MATEITE P iceaMALAE (- [%X17) [y € O()\k( &)/ ).
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Talk outline

5. Numerical illustration



Multivariate stochastic volatility model

= Potential function/observation density:

Gt(xt—lzt) = gt(Yt’Xt) = N(Yt§ 0, diag(exp Xt))-
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Multivariate stochastic volatility model
= Potential function/observation density:
Gt(xt—lzt) = gt(Yt’Xt) = N(Yt% 0, diag(exp Xt))-
= Mutation kernel/transition density:
Mi(xt|x¢—1) = fr(xe|xi—1) = N(x¢; 0.9x—1, TH),

where, with p = 0.25,

L p P
H=|"

‘. p

p p 1
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Multivariate stochastic volatility model
= Potential function/observation density:
Gt(xt—lzt) = gt(Yt’Xt) = N(Yt% 0, diag(exp Xt))-
= Mutation kernel/transition density:
Mi(xt|x¢—1) = fr(xe|xi—1) = N(x¢; 0.9x—1, TH),

where, with p = 0.25,

L p P
H=|"

: . - p

p...pl

= The prior variance 7 > 0 controls ‘prior informativeness’.
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Multivariate stochastic volatility model, continued
T =128, D = 30, N = 31; ; tuned to achieve 75 % acceptance rate

Unnormalised ‘ Per second l
1600 7
1
0.8 A
1200 A
0.6
78} —— ParticleeRWM
[9p]
= - - Particle-aMALA
& 800
g 800 0.4 — Particle- MALA
o}
= Particle-aMALA+
400 4 0.2
0 T T 0.0 T T |
0.1 0.5 1 2 0.1 0.5 1 2

Prior variance, 7

Proposed methods which do not require (conditionally or unconditionally)

Gaussian dynamics compared with Particle-RWM as a baseline. 56 / 61
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Proposed methods which require only conditionally Gaussian dynamics, i.e.,
M (x¢|x¢—1) = N(x¢; me(xe—1), C(x¢—1)) (Particle-mGRAD algorithm also
needs C;(x;—1) = C;). ‘(x = 0)' indicates no gradient usage. 57/ 6



Multivariate stochastic volatility model, continued
T =128, D = 30, N = 31; ; tuned to achieve 75 % acceptance rate
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Proposed methods which require unconditionally Gaussian dynamics i.e.,
My (x¢|x¢—1) = N(x¢; Fex¢e—1 + by, Cy), compared with aGRAD (which also
makes this assumption) as baseline. ‘(x = 0)’ indicates no gradient usage. 58/ !




Talk outline

6. Summary



Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.
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Summary

= We have proposed MCMC methods for state-inference in
high-dimensional state-space models.

= From ‘classical’ MCMC (e.g., MALA or mGRAD) our
methods borrow the ability to make local moves guided by
gradient or Gaussian-prior information:
~» favourable scaling with the state dimension, D.

= From CSMC, our methods borrow the ability to exploit the
‘decorrelation-over-time' model property:
~» favourable scaling with the time horizon, T.

= All our methods can be implemented in O(NT') operations
per iteration (for fixed D).

= All our methods are exact (they leave mp(x1.7) invariant).
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Summary, continued

The methods mentioned in this work (new methods are in italic).

Method Special case

ifN=T=1
csmct IMH
Particle-RWM RWM
Particle-aMALA aMALA
Particle-MALA MALA
Particle-aMALA+ aMALA
Particle-aGRAD aGRAD
Particle-mGRAD mGRAD
Particle-aGRAD+ aGRAD
Twisted Particle-aGRAD(+) aGRAD
Particle-PCNL & more! PCNL

T In our taxonomy, CSMC could be called ‘Particle-IMH". How-
ever, the latter already refers to a different algorithm in An-
drieu et al. (2010).

t auxiliary, smoothing-gradient (‘+') and twisted versions.

= ForT'=1and N =1, our methods reduce to well known
‘classical’ MCMC algorithms.
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T In our taxonomy, CSMC could be called ‘Particle-IMH". How-
ever, the latter already refers to a different algorithm in An-
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t auxiliary, smoothing-gradient (‘+') and twisted versions.
= ForT'=1and N =1, our methods reduce to well known
‘classical’ MCMC algorithms.

= ForT'=1 and N > 1, our methods are novel ‘multi-proposal’
variants of these ‘classical’ MCMC algorithms.
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Summary, continued

The methods mentioned in this work (new methods are in italic).

Method Special case

ifN=T=1
csmct IMH
Particle-RWM RWM
Particle-aMALA aMALA
Particle-MALA MALA
Particle-aMALA+ aMALA
Particle-aGRAD aGRAD
Particle-mGRAD mGRAD
Particle-aGRAD+ aGRAD
Twisted Particle-aGRAD(+) aGRAD
Particle-PCNL & more! PCNL

T In our taxonomy, CSMC could be called ‘Particle-IMH". How-
ever, the latter already refers to a different algorithm in An-
drieu et al. (2010).

t auxiliary, smoothing-gradient (‘+') and twisted versions.

= ForT'=1and N =1, our methods reduce to well known
‘classical’ MCMC algorithms.

= ForT'=1 and N > 1, our methods are novel ‘multi-proposal’
variants of these ‘classical’ MCMC algorithms.

= More details: https://arxiv.org/pdf/2401.14868
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