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@ Background
e Continuous-time Monte Carlo
@ The Zig-zag sampler (ZZ)
@ Bayesian hierarchical models

© The Gibbs Zig-zag sampler (GZZ)
e Construction
@ Theoretical properties

© Application to posterior sampling problems
e Random effect model
e Logistic regression with Spike-and-Slab Prior
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@ ¢ some 7-integrable real valued function (aka “observable”).

@ number of dimensions, d, of integration domain “large”
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Computation of expectations

Ecrlp(C)] = / H(O)m(dC)

Rd
with
@ probability measure m known up to a normalization constant.
@ ¢ some 7-integrable real valued function (aka “observable”).

@ number of dimensions, d, of integration domain “large”

Monte Carlo approximations

@ Markov chain Monte Carlo:
Ecnrnlp(Ql = Z ©(Ck)

with (Cx)ren C R ergodic Markov chain with unique invariant measure 7.

@ Continuous time Monte Carlo: .
1
Ecnrlo©~ 7 [ o(CO)
0

with (¢(t))e>0 C R ergodic stochastic (Markov-)process with unique invariant
measure 7.




An (incomplete) map of the Monte Carlo world

ﬂetropolis-Hastings (MH) algorithms f Approximate MCMC

Random walk Ergodlc SDE dlSCI’etIZHtIOI’IS BAOAB-Langevin Adaptive-Langevin
Metropolis MH-corrected discretizations uncorrected SDFE discretizations
MALA Stochastic gradient Langevin dynamics
Gibbs algorithms
Data augmentation ( Hamiltonian Piecewise deterministic MC \

k MCMC Monte-CarloJ

Rejection-free piecewise deterministic MC

Zig-Zag process Bouncy-particle process

S /




Zig-zag process: construction

e the process is defined on the augmented space R? x {—1,1},
and is continuous in time, i.e.,

(C(t)7 e(t))tZO C Rd X {_L 1}da (1)
we refer to
o ¢(t) as the position vector of the process
o O(t) as the velocity vector of the process
@ signs of components of the velocity vector are flipped at random
event times sampled from a non-homogenous Poisson process
e the process evolves linearly as C = 0 between event times.

Trace of ¢(t) = (¢1(t), ¢=2(t)), t > 0.
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and is continuous in time, i.e.,

(C(t)7 e(t))tZO C Rd X {_L 1}da (1)
we refer to
o ¢(t) as the position vector of the process
o O(t) as the velocity vector of the process
@ signs of components of the velocity vector are flipped at random
event times sampled from a non-homogenous Poisson process
e the process evolves linearly as C = 0 between event times.
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Trace of ¢(t) = (¢1(t), ¢=2(t)), t > 0.




Zig-zag process: algorithm

Algorithm

Input T(O),C(O),B(O).
For k=1,2,3,...

@ Compute bouncing time:

e Draw 71,...,74 such that

P(r; > t) = exp{—/ot ma(s) ds}.

o iy = argmin;{7;}.
@ Evolve position:
(Tk+1a CIH_I) ~— (Tk =+ Tig, gk + okTio)a
6"t +— ok
@ Bounce: 0, ! « —0,*.
Output (Tk,Ck,Gk)

k=0,1,2,..." Example trajectory
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Zig-zag process: algorithm

Algorithm

Input 7 ¢© 90,
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Algorithm
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@ Compute bouncing time:
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e ip = argmin;{7;}.
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e Probability measure: 7(d¢) o e=U(©d¢, U “Potential function”

Theorem [Bierkens et al., 2016]
If mi(s) = A (C(t* + 5), 0(t* + 5)) with

Xi(¢,0) = {8:0,U ()Y + l(,«) :

>0 refreshment rate

then

1 T
TIBEOT/O ©(¢(t))dt = E¢r[p(C)], almost surely

for all ¢ € L?(m).




Zig-zag process: ergodic properties

e Probability measure: 7(d¢) o e=U(©d¢, U “Potential function”

Theorem [Bierkens et al., 2016]
If mi(s) = A (C(t* + 5), 0(t* + 5)) with
NGO ={60.UQOY +  wQ
——

>0 refreshment rate
then

1 T
Jim 7 [ olC0)t = Eerlp(O), amost suely (2

for all ¢ € L?(m).

= For finite T > 0, the trajectory average % fOT ©(¢(t))dt may be used
as a Monte-Carlo estimate of E¢r[p(()].
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o the Zig-Zag process is a non-reversible stochastic process
= non-diffusive (kinetic-like) dynamics
= better mixing



Zig-zag process: nice properties ©

o the Zig-Zag process is a non-reversible stochastic process
= non-diffusive (kinetic-like) dynamics
= better mixing
e can be modified so as to allow (data) sub-sampling without the
introduction of any systematic bias:
o Potential function: U((¢) %Z?Zl Ui(¢),
o Unbiased Estimator: U”(¢), J ~ Uniform({1,...,n}).
e Example:

Bayesian Posterior with i.i.d observations

U7(¢) = —logpo(¢)  —nlog f(X;|¢), j=1,...,n.
—~— ——

Prior density Likelihood of j-th observation




Zig-zag process: not so nice properties... @

@ Standard implementation via Poisson-thinning requires upper
bounds M;(t),i =1,...,d satisfying

{0,0,U(C+00))}" < M(t), Yt>0

and all ¢,0 € R? x {—1,1}4.



Zig-zag process: not so nice properties... @

@ Standard implementation via Poisson-thinning requires upper
bounds M;(t),i =1,...,d satisfying

{0,0,U(C+00))}" < M(t), Yt>0

and all ¢,0 € R? x {—1,1}4.
@ Standard implementation employing sub-sampling requires upper
bounds M;(t),i = 1,...,d satisfying

max {0,007 (C+66)} " < My(t), ¥t>0
Je 77

and all ,0 € R? x {~1,1}4.



Zig-zag process: not so nice porperties... @

@ Bounds are problem-specific and often difficult to construct.

@ If bounds are not tight, computational efficiency decreases dramatically:

@ Sub-sampling may result in an increased refreshment rate.
= diffusive/quasi-reversible sampling dynamics:

We address
- points 2 and 3 in the specific context of sub-sampling with sparse data in
[1] Efficient posterior sampling for high-dimensional imbalanced logistic
regression, Biometrika, 2020.
- points 1 and 2 in the specific context of Bayesian hierarchical models in

[2] Posterior computation with the Gibbs zig-zag sampler, Bayesian Analysis,
2022.



Bayesian hierarchical models

Bayesian posterior with hierarchical prior

iid

Xi,..., Xn~ f(x]&), {la~p(€la), a~ pu(a) ,
_,_/ —— —— ——"
Observations Likelihood Prior on of £ given « hyper-prior

o ¢ € RP model parameters

@ a € R" hyper parameters

e Examples: Horseshoe prior, Spike-and-slab prior

Inference requires sampling of the joint posterior distribution:

m(d€ da) o exp{ U%¢, ) i }d{da.

where U%¢,a) = —logpo(¢ | @) — log pp () and
U?(§) = —log f(X; | £).



© The Gibbs Zig-zag sampler (GZZ)
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The Gibbs Zig-Zag sampler: idea

Potential function: U(¢,a) = UY(€, ) + > i1 U7 (&).

Combine

e updates of the component « via a Markov kernel Q{(«,¢&),do’}
which preserves

m(da | €) oc exp{~U’(, a)} da.
Updates don’t depend on likelihood/data [Cheap]
with
e updates of the component £ via a ZZ process which preserves
m(d€ | a) occ exp{-U(§, a)} d¢,

Requires bounds for {0;9¢,U (¢ + 0t,a)} " [Easier]
so that the resulting process is a PDMP preserving 7 (d¢ da)
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Algorithm

Input 7@, ¢© @ 9©
For £ =1,2,3,...

@ Compute event time:
o Draw (independently)

e 79 ~ Exponential(n),
e T1,...,7q such that

T+t
P(ri > t) :exp{/Tk ’ mi(s)ds}.

e io = argmin;{7}.
@ Evolve Zig-Zag: £"! « ¢F 4 7, 0%,
OF Y OF TFHL  TF 1y .
@ If ip =0 then:
aF N Qf(gr ok, - ).
Else:
Ty
aFtl — ok,

Output (Tk,ﬁk,ak,ek)kzo 1 C

A GZZ process is obtained from the skeleton points {(£", 0%, a®, T%)}ren as
Et)=€"+60"t —T%), a(t)=a", 6()=6" forTF<t<T



GZ7: Ergodic properties

Proposition

The GZZ process has

#(déda, 0) = 27Pr(dé da),

as an invariant measure.

Easy to show because

Lazz, = Lz + 1 LGibbs -
—— —~— ———
Generator of GZZ Generator of ZZ-part  Generator of MC-part

And thus

/»CGZZSD dr = /ﬁzz%9 dr + n/ﬁeibbsgo d7 =0+0.

for any test function ¢.



Assumption 1: (on Q and v; (i =1,...,p))

(A) The Markov transition kernel Q possesses a smooth density, and for any
(&, @) € Q¢ X Qg, its associated probability measure has full support on Qq, i.e.,

Q{(6,), A} = /A ¢{(€, 0), o} Ao,

with ¢ € C* [(2¢ X Qa) X Qa, (0,00)] and ¢{(§, ), -} > 0 for all
(&, @) € Q¢ x Qo and all measurable sets A C Qq.

(B) The refreshment rates are bounded away from zero, i.e., there exists v > 0 such
that
'Yi(f,a) Z 0l Vi= ]-a""p) V(E,O&) € R” x R".
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Theorem (Uniqueness of invariant measure)

If Assumption 1 is satisfied, then the GZZ process is ergodic with unique invariant
measure 7. In particular, the process is path-wise ergodic in the sense that

tlim &t = E(e.a,0~7{9(&, a,0)} almost surely
—00

for any real-valued 7-integrable test function ¢.
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(A) The Markov transition kernel Q possesses a smooth density, and for any
(&, @) € Q¢ X Qg, its associated probability measure has full support on Qq, i.e.,

Q{(6,), A} = /A ¢{(€, 0), o} Ao,

with ¢ € C* [(2¢ X Qa) X Qa, (0,00)] and ¢{(§, ), -} > 0 for all
(&, @) € Q¢ x Qo and all measurable sets A C Qq.

(B) The refreshment rates are bounded away from zero, i.e., there exists v > 0 such
that
'Yi(f,a) Z 0l Vi= ]-a""p) V(&,O&) € R” x R".

Theorem (Uniqueness of invariant measure)

If Assumption 1 is satisfied, then the GZZ process is ergodic with unique invariant
measure 7. In particular, the process is path-wise ergodic in the sense that

tlim &t = E(e.a,0~7{9(&, a,0)} almost surely
—00

for any real-valued 7-integrable test function ¢.

Proof follows in large parts: Bierkens, Roberts, Zitt, (2019).



Central limit theorem

Let
(1) Q{(§7a)a } = ﬂ-(' | §7a)a
(ii) 0 < infeerr acrr 7i(§; @) < SUPgepp qerr Vi(6s @) < 00,
(iii) certain growth conditions on U (see Assumption 2 in [Sachs et al., 2022]),

hold.
Then, there is a?p > 0 so that

Vit [_/0 ©(&(s), x(s))ds — Eg ayuniw(& )} i—v:o}N(O’Ui)'




@ Application to posterior sampling problems



Random effect model
Fori=1,..., n ,and j=1,..., K let
—— -

Subject index group index
Predictor € RP
=N

. 1 D
Yij ~ Bernoulli (1—1—6—_% 5 'l,L'ij =m + Uj I Xij ﬂ 5
Response Random effects Fixed effect

with hierarchical prior specified by

m ~ Normal(0,¢™ "), wv; N Normal(0,¢™ ') (j=1,...,K),

B - Normal(0,6%) (I=1,...,p), ¢~ Ga(ag,by), o ~I1G(as,bs),
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Fori=1,..., n ,and j=1,..., K let
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Subject index group index
Predictor € RP
=N

. 1 D
Yij ~ Bernoulli (1—1—6—_% 5 '¢'ij =m + Uj I Xij ﬂ 5
Response Random effects Fixed effect

with hierarchical prior specified by

m ~ Normal(0,¢™ "), wv; N Normal(0,¢™ ') (j=1,...,K),
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Logistic regression with Spike-and-Slab Prior

Forj=1,...,n,

. 1
S/j ~ Bernoulli (:[—‘,—e—_XJB> 5

Response

with hierarchical prior specified by
B: "% % 6(-) + (1 — ;) Normal(0, v77),
Yi £ Bernoulli(r), 7 ~C%(0,1) (i=1,...,p),
v ~1G(ay,b,), 7 ~ Beta(ar,br).

Predictors

“spike”

|

“slab”

o




Logistic regression with Spike-and-Slab Prior

Forj=1,...,n,
1
Y, ~B i { —————= X; RP.
j ernou 1(1+6—Xjﬂ>’ i €

Response Predictors

with hierarchical prior specified by

Bi " 4, 5(-) + (1 — ;) Normal(0, v72), il lab”
Yi ~ Bernoulli(7), 7 ~C7(0,1) (i=1,...,p), \
v ~1G(ay,by), m~ Beta(ar,br). 0

Variable decomposition in GZZ: £ =0, a= (Y1, sV, Tly--vy Tps Uy T)s




Logistic regression with Spike-and-Slab Prior

Forj=1,...,n,

. 1 ®
Y7 ~ Bernoulli (:[—‘,—e—_XJB> 5 X] (S RP.
Response Predictors
with hierarchical prior specified by
Bi ind 7 6(-) + (1 — ;) Normal(0, vr} ), il slab?
Yi ~ Bernoulli(7), 7 ~C7(0,1) (i=1,...,p),
v ~1G(ay,by), m~ Beta(ar,br). 0

Variable decomposition in GZZ: (=0, a=(y,...
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@ With the GZZ-sampler we propose a new type of PDMP which
e combines elements of traditional MCMC with PDMP-sampling in a
Gibbs-like construction
o simplifies construction of (tight) upper bounds: “if you can’t find a
bound, just use a MH-update instead”
o allows to take advantage of both worlds: versatility of MCMC +
error-free subsampling with PDMP
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@ We show (under rather restrictive conditions) that the GZZ
sampler satisfies certain theoretical properties: unique ergodicity
+ central limit theorem



@ With the GZZ-sampler we propose a new type of PDMP which

e combines elements of traditional MCMC with PDMP-sampling in a
Gibbs-like construction

o simplifies construction of (tight) upper bounds: “if you can’t find a
bound, just use a MH-update instead”

o allows to take advantage of both worlds: versatility of MCMC +
error-free subsampling with PDMP

@ We show (under rather restrictive conditions) that the GZZ
sampler satisfies certain theoretical properties: unique ergodicity
+ central limit theorem

@ We demonstrate in numerical experiemnts efficiency gains over
highly tuned HMC sampling.
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Supplementary slides

gorithm: zig-zag with Poisson thinning

Input 7 ¢© 9©)
For k=1,2,3,...

@ Compute event time:

e Draw 74,...,7q such that

P(r; > t) = exp {—/Ot M;(s) ds} .

o ig = argmin{r;;i=1,...,d}.
@ Evolve position:
(T*, ¢*+Y) = (T 4 1y, C* + %73y).
@ Bounce: with probability p = %OL;:
0,1« —0,,",

otherwise:
k+1 k
01'0 + = 0,50

Output (Tkv Ck70k)k=o 1,2,..°




Supplementary slides

Assumption 2 (On potential function U and excess switching rates ;).

(4)

(B)

(€

There exist continuous functions g; : Q¢ — [0,00) (i = 1,2), satisfying g;(§) — 0 as
|€] — oo and a constant ¢ > 0 so that the inequalities

max{1, |[HesseU (€, o) |} [VeU(€; )|
IVeU (€, a)l U(§a)
hold for all « € Qo and € € Q¢ with |€| > c. Here Hess¢U and VU denote the Hes-

sian and gradient of the function £ — U (¢, ), respectively, and |-| and |-|| denote the
Euclidean norm and the Frobenius norm, respectively.

<q1(§) and < 9(8), O

The excess switching rates ~y; (i = 1,...,p) are bounded from above, that is, there exists
~ > 0 so that
sup (€, 0) < 7. ®
(€,0)€Qe xQa
Let 6 > 0 and a > 0 be such that 0 < 76 < a < 1 with 7 as specified in Assumption 2.
Define the function

»
V(£ a,0) =exp [aU(s,a) + Z¢{0iag,v(§,a)}]
i=1
where ¢(s) = sign(s)log(1 + 8|s|)/2. There exist a choice of a and 6, and a constants
r > 0 and ¢ > 0 such that the inequality

. % exp{-U(¢,@)}da+r < /ﬂa exp{-U(¢, @) }da 3)

holds for all (€, ) € Qe X Qo with |(€, )| > ¢, and all § € {—1,1}P.
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Theorem 1. If Assumption 1 is satisfied, then the GZZ process is ergodic with unique invariant
measure T. In particular, the process is path-wise ergodic in the sense that

tl_l’rg) Pt = E(g,a,0)~7{0(€,,0)} almost surely

for any real-valued Tr-integrable test function .

Theorem 2. Assumption 2(C) is satisfied if Assumption 1 and Assumption 2(B), hold, and the
potential function U can be decomposed as U(£, o) = U1(€) + b(€, o) + Ua(cx), where b is
such that the absolute values of b and its derivatives are bounded, that is, there exists b > 0

such that B B
Ib(£7a)| <b and |a§ib(£7a)| <b

forall (§,a) € Qe x Qq,andi=1,...,p.
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Adaptive Langevin Dynamics

Computational cost scales linearly in N

Gradient of log posterior -

N
Vlog () = Vlog prob(8) + Z V log prob(8 | z;,y;),
j=1

Unbiased estimator via sub-sampling: For large N

Vlog(6) = Vlog prob(#) + NV log prob(0 | z;,ys) ~ Vlegn(8) +¢, ¢~ N(0,0°L,)
with J ~ Uniform({1,...,N}).

Adaptive Langevin equation

do = 6dt,
dv = Viegm(0)dt + VhodW — £wvdt,

de = % (1o~ p) dt.
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Computational cost scales linearly in N

Gradient of log posterior -

N
Vlog () = Vlog prob(8) + Z V log prob(8 | z;,y;),
j=1

Unbiased estimator via sub-sampling: For large N

Vlog(6) = Vlog prob(#) + NV log prob(0 | z;,ys) ~ Vlegn(8) +¢, ¢~ N(0,0°L,)
with J ~ Uniform({1,...,N}).

Adaptive Langevin equation

d6 = 9 dt,
Auxil
R 7 Vlogw 0)dt + VhodW — Evdt,

Momentum € R”
d¢ = (\v\ —p) dt.
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N
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Adaptive Langevin Dynamics

Computational cost scales linearly in N

Gradient of log posterior -

Vlogm(0) = Vlog prob(f) +

N
Z V log prob(6’ \ Zj, yj),
j=1

Unbiased estimator via sub-sampling:

For large N

Vlog(6) = Vlog prob(#) + NV log prob(0 | z;,ys) ~ Vlegn(8) +¢, ¢~ N(0,0°L,)

with J ~ Uniform({1,...,N}).

Adaptive Langevin equation

do = 0 dt,

Adaptive Friction

\

Auxiliary
Momentum € R? \(i@ V log 7(0) dt + VhodW = ’v dt,
d§ = (\’v\ — p) dt.

/I

Coupling parameter > 0

Frgodic with invariant measure:

m(0,v,&) W(H)e_%|”|2e_

£ (6—ho?)?
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Parameter-dependent sampling efliciency Change of variable: v := ho?/2

Theorem

Let —log m satisfy a Poincare inequality. There exist C, A such that, for any v,~v > 0, there is
Av~ > 0 for which

Vt >0, Vo€ L*(n), etbadL , /godw < Ce ™7 || — /godw
L2 ()

L2(m)

— 1
with the lower bound A, . > Amin (71/, : V, 7) :
A N 4



Parameter-dependent sampling efliciency Change of variable: v := ho?/2

Theorem

Let —log m satisfy a Poincare inequality. There exist C, A such that, for any v,~v > 0, there is
Av~ > 0 for which

Vt >0, Vo e L*(n), etbadL , /godw < Ce ™7 || — /godw
L2 ()

L2(m)

— 1
with the lower bound A, > Amin (71/, : V, 7) :
A N 4

Collorary (Central Limit Theorem for Adaptive Langevin Dynamics)

Consider ¢ € L*(n). Then

\/1_5(%/0 p(0(s),v(s),&(s))ds — *ms@) = » N (0,07, (),

t—-+00

where the asymptotic variance is bounded as

20
0<02,(0) < 3Nl




totic variance

A B
107 4

° 100 E 100 E
o 3
& 10-1
81071 5 ]
g 1071 4
-:L_‘) 1072 4 ]
2 ]
Q
£ 1073 4 1072 4
> —— QiXPp E
%] ]
< —— @ixP§

10_4 3 —— ixPq?

—— @ixPp? 10—3 E
10_5 4 —— @:xpE? ]
107! 10° 10! 1073 1072 107! 10° 10!

£ Y



Spectral gap

Generator: Laqgr, = 7Lo + €£Lnu,
Galerkin subspace: 1y, ;(v,§) = hip(v)y(§), 0< 1,k <L —1,
A B C
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