
3

Hyperactive Learning for Machine-Learned  
Interatomic Potentials

E(R) = ∑
l

μlBl(R)
Width of credibility 

band ∝ σE(R)

En
er
g

R

Machine Learning for Quantum Molecular  
Dynamics (Electronic Friction)

Sampling Graph Partitions and Redistricting 
maps to quantify Gerrymandering

Dynamics with Memory (e.g., Generalized  
Langevin Equation) 

Coarse-graining

Time-correlated noiseMemory-kernel

Adaptive Langevin Dynamics 

=

0 B @
1

x
1
,1

··
·

x
1
,p

. . .
. . .

. . .
1

x
n
,1

··
·

x
n
,p

1 C A

|
{z

}
=
:
X

“D
es
ig
n
m
at
ri
x” Ergodic with invariant measure:

Convergence rates: 



Posterior Computation with the Gibbs Zig-Zag

Sampler

Joint work with Deborshee Sen, Jianfeng Lu, David Dunson

Matthias Sachs

University of Birmingham

Algorithms and Computationally Intensive Inference Seminar,

University of Warwick

June 21, 2024



Outline

1 Background

Continuous-time Monte Carlo

The Zig-zag sampler (ZZ)

Bayesian hierarchical models

2 The Gibbs Zig-zag sampler (GZZ)

Construction

Theoretical properties

3 Application to posterior sampling problems

Random e↵ect model

Logistic regression with Spike-and-Slab Prior



Outline

1 Background

Continuous-time Monte Carlo

The Zig-zag sampler (ZZ)

Bayesian hierarchical models

2 The Gibbs Zig-zag sampler (GZZ)

Construction

Theoretical properties

3 Application to posterior sampling problems

Random e↵ect model

Logistic regression with Spike-and-Slab Prior



Computation of expectations

E⇣⇠⇡['(⇣)] =

Z

Rd
'(⇣)⇡(d⇣)

with

probability measure ⇡ known up to a normalization constant.

' some ⇡-integrable real valued function (aka “observable”).

number of dimensions, d, of integration domain “large”

Monte Carlo approximations

Markov chain Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
N

N�1X

k=0

'(⇣k)

with (⇣k)k2N ⇢ Rd ergodic Markov chain with unique invariant measure ⇡.

Continuous time Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
T

Z T

0

'(⇣(t))dt

with (⇣(t))t�0 ⇢ Rd ergodic stochastic (Markov-)process with unique invariant
measure ⇡.



Computation of expectations

E⇣⇠⇡['(⇣)] =

Z

Rd
'(⇣)⇡(d⇣)

with

probability measure ⇡ known up to a normalization constant.

' some ⇡-integrable real valued function (aka “observable”).

number of dimensions, d, of integration domain “large”

Monte Carlo approximations

Markov chain Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
N

N�1X

k=0

'(⇣k)

with (⇣k)k2N ⇢ Rd ergodic Markov chain with unique invariant measure ⇡.

Continuous time Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
T

Z T

0

'(⇣(t))dt

with (⇣(t))t�0 ⇢ Rd ergodic stochastic (Markov-)process with unique invariant
measure ⇡.



Computation of expectations

E⇣⇠⇡['(⇣)] =

Z

Rd
'(⇣)⇡(d⇣)

with

probability measure ⇡ known up to a normalization constant.

' some ⇡-integrable real valued function (aka “observable”).

number of dimensions, d, of integration domain “large”

Monte Carlo approximations

Markov chain Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
N

N�1X

k=0

'(⇣k)

with (⇣k)k2N ⇢ Rd ergodic Markov chain with unique invariant measure ⇡.

Continuous time Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
T

Z T

0

'(⇣(t))dt

with (⇣(t))t�0 ⇢ Rd ergodic stochastic (Markov-)process with unique invariant
measure ⇡.



Computation of expectations

E⇣⇠⇡['(⇣)] =

Z

Rd
'(⇣)⇡(d⇣)

with

probability measure ⇡ known up to a normalization constant.

' some ⇡-integrable real valued function (aka “observable”).

number of dimensions, d, of integration domain “large”

Monte Carlo approximations

Markov chain Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
N

N�1X

k=0

'(⇣k)

with (⇣k)k2N ⇢ Rd ergodic Markov chain with unique invariant measure ⇡.

Continuous time Monte Carlo:

E⇣⇠⇡['(⇣)] ⇡
1
T

Z T

0

'(⇣(t))dt

with (⇣(t))t�0 ⇢ Rd ergodic stochastic (Markov-)process with unique invariant
measure ⇡.



An (incomplete) map of the Monte Carlo world

Metropolis-Hastings (MH) algorithms

Gibbs algorithms

MH-corrected discretizations

Piecewise deterministic MC

Rejection-free piecewise deterministic MC

MALA

Approximate MCMC

Hamiltonian  
Monte-Carlo

Random walk  
Metropolis

Ergodic SDE discretizations
uncorrected SDE discretizations

Zig-Zag process Bouncy-particle process

Data augmentation  
MCMC

BAOAB-Langevin

Stochastic gradient Langevin dynamics

Adaptive-Langevin



Zig-zag process: construction

the process is defined on the augmented space Rd ⇥ {�1, 1}d,
and is continuous in time, i.e.,

(⇣(t),✓(t))t�0 ⇢ Rd ⇥ {�1, 1}d, (1)

we refer to

⇣(t) as the position vector of the process

✓(t) as the velocity vector of the process

signs of components of the velocity vector are flipped at random

event times sampled from a non-homogenous Poisson process

the process evolves linearly as ⇣̇ = ✓ between event times.

Trace of ⇣(t) = (⇣1(t), ⇣2(t)), t � 0.



Zig-zag process: construction

the process is defined on the augmented space Rd ⇥ {�1, 1}d,
and is continuous in time, i.e.,

(⇣(t),✓(t))t�0 ⇢ Rd ⇥ {�1, 1}d, (1)

we refer to

⇣(t) as the position vector of the process

✓(t) as the velocity vector of the process

signs of components of the velocity vector are flipped at random

event times sampled from a non-homogenous Poisson process

the process evolves linearly as ⇣̇ = ✓ between event times.

Trace of ⇣(t) = (⇣1(t), ⇣2(t)), t � 0.



Zig-zag process: algorithm

Algorithm

Input T (0), ⇣(0),✓(0)
.

For k = 1, 2, 3, . . .

1 Compute bouncing time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
mi(s) ds

�
.

i0 = argmini{⌧i}.
2 Evolve position:

(T k+1, ⇣k+1
) (T k

+ ⌧i0 , ⇣
k
+ ✓k⌧i0),

✓k+1  ✓k
.

3 Bounce: ✓i0
k+1  �✓i0

k
.

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

.
Example trajectory



Zig-zag process: algorithm

Algorithm

Input T (0), ⇣(0),✓(0)
.

For k = 1, 2, 3, . . .

1 Compute bouncing time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
mi(s) ds

�
.

i0 = argmini{⌧i}.
2 Evolve position:

(T k+1, ⇣k+1
) (T k

+ ⌧i0 , ⇣
k
+ ✓k⌧i0),

✓k+1  ✓k
.

3 Bounce: ✓i0
k+1  �✓i0

k
.

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

.
Example trajectory



Zig-zag process: algorithm

Algorithm

Input T (0), ⇣(0),✓(0)
.

For k = 1, 2, 3, . . .

1 Compute bouncing time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
mi(s) ds

�
.

i0 = argmini{⌧i}.
2 Evolve position:

(T k+1, ⇣k+1
) (T k

+ ⌧i0 , ⇣
k
+ ✓k⌧i0),

✓k+1  ✓k
.

3 Bounce: ✓i0
k+1  �✓i0

k
.

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

.
Example trajectory



Zig-zag process: algorithm

Algorithm

Input T (0), ⇣(0),✓(0)
.

For k = 1, 2, 3, . . .

1 Compute bouncing time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
mi(s) ds

�
.

i0 = argmini{⌧i}.
2 Evolve position:

(T k+1, ⇣k+1
) (T k

+ ⌧i0 , ⇣
k
+ ✓k⌧i0),

✓k+1  ✓k
.

3 Bounce: ✓i0
k+1  �✓i0

k
.

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

.
Example trajectory



Zig-zag process: algorithm

Algorithm

Input T (0), ⇣(0),✓(0)
.

For k = 1, 2, 3, . . .

1 Compute bouncing time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
mi(s) ds

�
.

i0 = argmini{⌧i}.
2 Evolve position:

(T k+1, ⇣k+1
) (T k

+ ⌧i0 , ⇣
k
+ ✓k⌧i0),

✓k+1  ✓k
.

3 Bounce: ✓i0
k+1  �✓i0

k
.

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

. Example trajectory



Zig-zag process: algorithm

Algorithm

Input T (0), ⇣(0),✓(0)
.

For k = 1, 2, 3, . . .

1 Compute bouncing time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
mi(s) ds

�
.

i0 = argmini{⌧i}.
2 Evolve position:

(T k+1, ⇣k+1
) (T k

+ ⌧i0 , ⇣
k
+ ✓k⌧i0),

✓k+1  ✓k
.

3 Bounce: ✓i0
k+1  �✓i0

k
.

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

. Example trajectory



Zig-zag process: ergodic properties

Probability measure: ⇡(d⇣) / e�U(⇣)
d⇣, U “Potential function”

Theorem [Bierkens et al., 2016]

If mi(s) = �i
�
⇣(tk + s),✓(tk + s)

�
with

�i(⇣, ✓) =
�
✓i@⇣iU(⇣)

 +
+ �i(⇣)| {z }

�0 refreshment rate

,

then

lim
T!1

1

T

Z T

0

'(⇣(t))dt = E⇣⇠⇡['(⇣)], almost surely (2)

for all ' 2 L2
(⇡).

) For finite T > 0, the trajectory average
1

T

R T
0

'(⇣(t))dt may be used

as a Monte-Carlo estimate of E⇣⇠⇡['(⇣)].



Zig-zag process: ergodic properties

Probability measure: ⇡(d⇣) / e�U(⇣)
d⇣, U “Potential function”

Theorem [Bierkens et al., 2016]

If mi(s) = �i
�
⇣(tk + s),✓(tk + s)

�
with

�i(⇣, ✓) =
�
✓i@⇣iU(⇣)

 +
+ �i(⇣)| {z }

�0 refreshment rate

,

then

lim
T!1

1

T

Z T

0

'(⇣(t))dt = E⇣⇠⇡['(⇣)], almost surely (2)

for all ' 2 L2
(⇡).

) For finite T > 0, the trajectory average
1

T

R T
0

'(⇣(t))dt may be used

as a Monte-Carlo estimate of E⇣⇠⇡['(⇣)].



Zig-zag process: ergodic properties

Probability measure: ⇡(d⇣) / e�U(⇣)
d⇣, U “Potential function”

Theorem [Bierkens et al., 2016]

If mi(s) = �i
�
⇣(tk + s),✓(tk + s)

�
with

�i(⇣, ✓) =
�
✓i@⇣iU(⇣)

 +
+ �i(⇣)| {z }

�0 refreshment rate

,

then

lim
T!1

1

T

Z T

0

'(⇣(t))dt = E⇣⇠⇡['(⇣)], almost surely (2)

for all ' 2 L2
(⇡).

) For finite T > 0, the trajectory average
1

T

R T
0

'(⇣(t))dt may be used

as a Monte-Carlo estimate of E⇣⇠⇡['(⇣)].



Zig-zag process: nice properties �

the Zig-Zag process is a non-reversible stochastic process

) non-di↵usive (kinetic-like) dynamics

) better mixing

can be modified so as to allow (data) sub-sampling without the

introduction of any systematic bias:

Potential function: U(⇣) = 1
n

Pn
j=1 U j

(⇣),

Unbiased Estimator: UJ
(⇣), J ⇠ Uniform({1, . . . , n}).

Example:

Bayesian Posterior with i.i.d observations

U j
(⇣) = � log p0(⇣)| {z }

Prior density

�n log f(Xj | ⇣)
| {z }

Likelihood of j-th observation

, j = 1, . . . , n.



Zig-zag process: nice properties �

the Zig-Zag process is a non-reversible stochastic process

) non-di↵usive (kinetic-like) dynamics

) better mixing

can be modified so as to allow (data) sub-sampling without the

introduction of any systematic bias:

Potential function: U(⇣) = 1
n

Pn
j=1 U j

(⇣),

Unbiased Estimator: UJ
(⇣), J ⇠ Uniform({1, . . . , n}).

Example:

Bayesian Posterior with i.i.d observations

U j
(⇣) = � log p0(⇣)| {z }

Prior density

�n log f(Xj | ⇣)
| {z }

Likelihood of j-th observation

, j = 1, . . . , n.



Zig-zag process: not so nice properties... �

1 Standard implementation via Poisson-thinning requires upper

bounds Mi(t), i = 1, . . . , d satisfying

�
✓i@⇣iU(⇣ + ✓t)

 + Mi(t), 8 t � 0

and all ⇣, ✓ 2 Rd ⇥ {�1, 1}d.
2 Standard implementation employing sub-sampling requires upper

bounds Mi(t), i = 1, . . . , d satisfying

max
j2{1,...,n}

�
✓i@⇣iU

j
(⇣ + ✓t)

 + Mi(t), 8 t � 0

and all ⇣, ✓ 2 Rd ⇥ {�1, 1}d.



Zig-zag process: not so nice properties... �

1 Standard implementation via Poisson-thinning requires upper

bounds Mi(t), i = 1, . . . , d satisfying

�
✓i@⇣iU(⇣ + ✓t)

 + Mi(t), 8 t � 0

and all ⇣, ✓ 2 Rd ⇥ {�1, 1}d.
2 Standard implementation employing sub-sampling requires upper

bounds Mi(t), i = 1, . . . , d satisfying

max
j2{1,...,n}

�
✓i@⇣iU

j
(⇣ + ✓t)

 + Mi(t), 8 t � 0

and all ⇣, ✓ 2 Rd ⇥ {�1, 1}d.



Zig-zag process: not so nice porperties... �

1 Bounds are problem-specific and often di�cult to construct.

2 If bounds are not tight, computational e�ciency decreases dramatically:

v.s.

ballistics dynamics diffusive dynamics

tight bounds loose bounds

v.s.

3 Sub-sampling may result in an increased refreshment rate.
) di↵usive/quasi-reversible sampling dynamics:

v.s.

ballistics dynamics diffusive dynamics

tight bounds loose bounds

v.s.

We address

- points 2 and 3 in the specific context of sub-sampling with sparse data in

[1] E�cient posterior sampling for high-dimensional imbalanced logistic

regression, Biometrika, 2020.

- points 1 and 2 in the specific context of Bayesian hierarchical models in

[2] Posterior computation with the Gibbs zig-zag sampler, Bayesian Analysis,

2022.



Bayesian hierarchical models

Bayesian posterior with hierarchical prior

X1, . . . , Xn| {z }
Observations

iid⇠ f(x | ⇠)| {z }
Likelihood

, ⇠ | ↵ ⇠ p0(⇠ | ↵)| {z }
Prior on of ⇠ given ↵

, ↵ ⇠ ph(↵)| {z }
hyper-prior

,

⇠ 2 Rp
model parameters

↵ 2 Rr
hyper parameters

Examples: Horseshoe prior, Spike-and-slab prior

Inference requires sampling of the joint posterior distribution:

⇡(d⇠ d↵) / exp

n
� U0

(⇠, ↵)�
nX

j=1

U j
(⇠)

o
d⇠d↵.

where U0
(⇠, ↵) = � log p0(⇠ | ↵)� log ph(↵) and

U j
(⇠) = � log f(Xj | ⇠).



Outline

1 Background

Continuous-time Monte Carlo

The Zig-zag sampler (ZZ)

Bayesian hierarchical models

2 The Gibbs Zig-zag sampler (GZZ)

Construction

Theoretical properties

3 Application to posterior sampling problems

Random e↵ect model

Logistic regression with Spike-and-Slab Prior



The Gibbs Zig-Zag sampler: idea

Potential function: U(⇠, ↵) = U0
(⇠, ↵) +

Pn
j=1

U j
(⇠).

Combine

updates of the component ↵ via a Markov kernel Q{(↵, ⇠), d↵0}
which preserves

⇡(d↵ | ⇠) / exp{�U0
(⇠, ↵)} d↵.

Updates don’t depend on likelihood/data [Cheap]

with

updates of the component ⇠ via a ZZ process which preserves

⇡(d⇠ | ↵) / exp{�U(⇠, ↵)} d⇠,

Requires bounds for
�
✓i@⇠iU(⇠ + ✓t, ↵)

 +
[Easier]

so that the resulting process is a PDMP preserving ⇡(d⇠ d↵)



The Gibbs Zig-Zag sampler: idea

Potential function: U(⇠, ↵) = U0
(⇠, ↵) +

Pn
j=1

U j
(⇠).

Combine

updates of the component ↵ via a Markov kernel Q{(↵, ⇠), d↵0}
which preserves

⇡(d↵ | ⇠) / exp{�U0
(⇠, ↵)} d↵.

Updates don’t depend on likelihood/data [Cheap]

with

updates of the component ⇠ via a ZZ process which preserves

⇡(d⇠ | ↵) / exp{�U(⇠, ↵)} d⇠,

Requires bounds for
�
✓i@⇠iU(⇠ + ✓t, ↵)

 +
[Easier]

so that the resulting process is a PDMP preserving ⇡(d⇠ d↵)



The Gibbs Zig-Zag sampler: idea

Potential function: U(⇠, ↵) = U0
(⇠, ↵) +

Pn
j=1

U j
(⇠).

Combine

updates of the component ↵ via a Markov kernel Q{(↵, ⇠), d↵0}
which preserves

⇡(d↵ | ⇠) / exp{�U0
(⇠, ↵)} d↵.

Updates don’t depend on likelihood/data [Cheap]

with

updates of the component ⇠ via a ZZ process which preserves

⇡(d⇠ | ↵) / exp{�U(⇠, ↵)} d⇠,

Requires bounds for
�
✓i@⇠iU(⇠ + ✓t, ↵)

 +
[Easier]

so that the resulting process is a PDMP preserving ⇡(d⇠ d↵)



The Gibbs Zig-Zag sampler: idea

Potential function: U(⇠, ↵) = U0
(⇠, ↵) +

Pn
j=1

U j
(⇠).

Combine

updates of the component ↵ via a Markov kernel Q{(↵, ⇠), d↵0}
which preserves

⇡(d↵ | ⇠) / exp{�U0
(⇠, ↵)} d↵.

Updates don’t depend on likelihood/data [Cheap]

with

updates of the component ⇠ via a ZZ process which preserves

⇡(d⇠ | ↵) / exp{�U(⇠, ↵)} d⇠,

Requires bounds for
�
✓i@⇠iU(⇠ + ✓t, ↵)

 +
[Easier]

so that the resulting process is a PDMP preserving ⇡(d⇠ d↵)



GZZ: construction

GZZ process:

�
↵(t)|{z}

MC-part

, ⇠(t),✓(t)| {z }
ZZ-part

�
t�0
⇢ Rr ⇥ Rp ⇥ {�1, 1}p.

(↵(t))t�0 is resampled according to Q{(↵(tk), ⇠(tk), · ), k 2 N at

random times (tk)k2N given by a Poisson arrival process with

constant rate ⌘. (↵(t))t�0 is constant between these arrival times.

(⇠(t),✓(t))t�0 is evolved as a ZZ-process with rate functions

mi(t) = [✓i@⇠iU{⇠(t),↵(t)}]++�i{⇠(t),↵(t)}| {z }
�0

(i = 1, . . . , p; t � 0);



GZZ: construction

GZZ process:

�
↵(t)|{z}

MC-part

, ⇠(t),✓(t)| {z }
ZZ-part

�
t�0
⇢ Rr ⇥ Rp ⇥ {�1, 1}p.

(↵(t))t�0 is resampled according to Q{(↵(tk), ⇠(tk), · ), k 2 N at

random times (tk)k2N given by a Poisson arrival process with

constant rate ⌘. (↵(t))t�0 is constant between these arrival times.

(⇠(t),✓(t))t�0 is evolved as a ZZ-process with rate functions

mi(t) = [✓i@⇠iU{⇠(t),↵(t)}]++�i{⇠(t),↵(t)}| {z }
�0

(i = 1, . . . , p; t � 0);



GZZ: construction

GZZ process:

�
↵(t)|{z}

MC-part

, ⇠(t),✓(t)| {z }
ZZ-part

�
t�0
⇢ Rr ⇥ Rp ⇥ {�1, 1}p.

(↵(t))t�0 is resampled according to Q{(↵(tk), ⇠(tk), · ), k 2 N at

random times (tk)k2N given by a Poisson arrival process with

constant rate ⌘. (↵(t))t�0 is constant between these arrival times.

(⇠(t),✓(t))t�0 is evolved as a ZZ-process with rate functions

mi(t) = [✓i@⇠iU{⇠(t),↵(t)}]++�i{⇠(t),↵(t)}| {z }
�0

(i = 1, . . . , p; t � 0);



GZZ: construction

GZZ process:

�
↵(t)|{z}

MC-part

, ⇠(t),✓(t)| {z }
ZZ-part

�
t�0
⇢ Rr ⇥ Rp ⇥ {�1, 1}p.

(↵(t))t�0 is resampled according to Q{(↵(tk), ⇠(tk), · ), k 2 N at

random times (tk)k2N given by a Poisson arrival process with

constant rate ⌘. (↵(t))t�0 is constant between these arrival times.

(⇠(t),✓(t))t�0 is evolved as a ZZ-process with rate functions

mi(t) = [✓i@⇠iU{⇠(t),↵(t)}]++�i{⇠(t),↵(t)}| {z }
�0

(i = 1, . . . , p; t � 0);



Algorithm

Input T (0), ⇠(0),↵(0),✓(0).
For k = 1, 2, 3, . . .

1 Compute event time:

Draw (independently)

⌧0 ⇠ Exponential(⌘),
⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

(
�
Z Tk+t

Tk
mi(s) ds

)
.

i0 = argmini{⌧i}.
2 Evolve Zig-Zag: ⇠k+1  ⇠k + ⌧i0 ✓

k,
✓k+1  ✓k, T k+1  T k + ⌧i0 .

3 If i0 = 0 then:

↵k+1 ⇠ Q{(⇠k+1,↵k), · }.
Else:

✓k+1
i0
 �✓k

i0 .

↵k+1  ↵k.

Output
�
T k, ⇠k,↵k,✓k

�
k=0,1,2,...

.

A GZZ process is obtained from the skeleton points {(⇠k,✓k,↵k, T k)}k2N as

⇠(t) = ⇠k + ✓k(t� T k), ↵(t) = ↵k, ✓(t) = ✓k, for T k  t < T k+1.



GZZ: Ergodic properties

Proposition

The GZZ process has

e⇡(d⇠ d↵, ✓) = 2
�p⇡(d⇠ d↵),

as an invariant measure.

Easy to show because

LGZZ| {z }
Generator of GZZ

= LZZ|{z}
Generator of ZZ-part

+ ⌘ LGibbs| {z }
Generator of MC-part

.

And thus

Z
LGZZ' de⇡ =

Z
LZZ' de⇡ + ⌘

Z
LGibbs' de⇡ = 0 + 0.

for any test function '.



Assumption 1: (on Q and �i (i = 1, . . . , p))

(A) The Markov transition kernel Q possesses a smooth density, and for any
(⇠,↵) 2 ⌦⇠ ⇥⌦↵, its associated probability measure has full support on ⌦↵, i.e.,

Q{(⇠,↵), A} =

Z

A

q{(⇠,↵),↵0} d↵0,

with q 2 C1 [(⌦⇠ ⇥ ⌦↵)⇥ ⌦↵, (0,1)] and q{(⇠,↵), ·} > 0 for all
(⇠,↵) 2 ⌦⇠ ⇥ ⌦↵ and all measurable sets A ⇢ ⌦↵.

(B) The refreshment rates are bounded away from zero, i.e., there exists � > 0 such
that

�i(⇠,↵) � � 8 i = 1, . . . , p, 8 (⇠,↵) 2 Rp ⇥ Rr.

Theorem (Uniqueness of invariant measure)

If Assumption 1 is satisfied, then the GZZ process is ergodic with unique invariant
measure e⇡. In particular, the process is path-wise ergodic in the sense that

lim
t!1

b't = E(⇠,↵,✓)⇠e⇡{'(⇠,↵, ✓)} almost surely

for any real-valued e⇡-integrable test function '.

Proof follows in large parts: Bierkens, Roberts, Zitt, (2019).



Assumption 1: (on Q and �i (i = 1, . . . , p))

(A) The Markov transition kernel Q possesses a smooth density, and for any
(⇠,↵) 2 ⌦⇠ ⇥⌦↵, its associated probability measure has full support on ⌦↵, i.e.,

Q{(⇠,↵), A} =

Z

A

q{(⇠,↵),↵0} d↵0,

with q 2 C1 [(⌦⇠ ⇥ ⌦↵)⇥ ⌦↵, (0,1)] and q{(⇠,↵), ·} > 0 for all
(⇠,↵) 2 ⌦⇠ ⇥ ⌦↵ and all measurable sets A ⇢ ⌦↵.

(B) The refreshment rates are bounded away from zero, i.e., there exists � > 0 such
that

�i(⇠,↵) � � 8 i = 1, . . . , p, 8 (⇠,↵) 2 Rp ⇥ Rr.

Theorem (Uniqueness of invariant measure)

If Assumption 1 is satisfied, then the GZZ process is ergodic with unique invariant
measure e⇡. In particular, the process is path-wise ergodic in the sense that

lim
t!1

b't = E(⇠,↵,✓)⇠e⇡{'(⇠,↵, ✓)} almost surely

for any real-valued e⇡-integrable test function '.

Proof follows in large parts: Bierkens, Roberts, Zitt, (2019).



Assumption 1: (on Q and �i (i = 1, . . . , p))

(A) The Markov transition kernel Q possesses a smooth density, and for any
(⇠,↵) 2 ⌦⇠ ⇥⌦↵, its associated probability measure has full support on ⌦↵, i.e.,

Q{(⇠,↵), A} =

Z

A

q{(⇠,↵),↵0} d↵0,

with q 2 C1 [(⌦⇠ ⇥ ⌦↵)⇥ ⌦↵, (0,1)] and q{(⇠,↵), ·} > 0 for all
(⇠,↵) 2 ⌦⇠ ⇥ ⌦↵ and all measurable sets A ⇢ ⌦↵.

(B) The refreshment rates are bounded away from zero, i.e., there exists � > 0 such
that

�i(⇠,↵) � � 8 i = 1, . . . , p, 8 (⇠,↵) 2 Rp ⇥ Rr.

Theorem (Uniqueness of invariant measure)

If Assumption 1 is satisfied, then the GZZ process is ergodic with unique invariant
measure e⇡. In particular, the process is path-wise ergodic in the sense that

lim
t!1

b't = E(⇠,↵,✓)⇠e⇡{'(⇠,↵, ✓)} almost surely

for any real-valued e⇡-integrable test function '.

Proof follows in large parts: Bierkens, Roberts, Zitt, (2019).



Central limit theorem

Let

(i) Q {(⇠, ↵), ·} = ⇡(· | ⇠, ↵),

(ii) 0 < inf⇠2Rp,↵2Rr �i(⇠, ↵)  sup⇠2Rp,↵2Rr �i(⇠, ↵) <1,

(iii) certain growth conditions on U (see Assumption 2 in [Sachs et al., 2022]),

hold.

Then, there is �2
' > 0 so that

p
t


1

t

Z t

0

'(⇠(s),↵(s))ds� E(⇠,↵)⇠⇡{'(⇠, ↵)}
�

law���!
t!1

N (0, �2

').



Outline

1 Background

Continuous-time Monte Carlo

The Zig-zag sampler (ZZ)

Bayesian hierarchical models

2 The Gibbs Zig-zag sampler (GZZ)

Construction

Theoretical properties

3 Application to posterior sampling problems

Random e↵ect model

Logistic regression with Spike-and-Slab Prior



Random e↵ect model

For i = 1, . . . , n|{z}
Subject index

, and j = 1, . . . , K|{z}
group index

let

Yij|{z}
Response

⇠ Bernoulli

✓
1

1 + e� ij

◆
,  ij = m+ �j| {z }

Random e↵ects

+

Predictor 2 Rp

z}|{
XT

ij �| {z }
Fixed e↵ect

,

with hierarchical prior specified by

m ⇠ Normal(0,��1), �j
iid⇠ Normal(0,��1) (j = 1, . . . ,K),

�l
iid⇠ Normal(0,�2) (l = 1, . . . , p), � ⇠ Ga(a�, b�), �2 ⇠ IG(a�, b�),

Variable decomposition in GZZ: ⇠ = (m, �1 . . . , �K ,�1, . . . ,�p), ↵ = (�,�2).

Results



Random e↵ect model

For i = 1, . . . , n|{z}
Subject index

, and j = 1, . . . , K|{z}
group index

let

Yij|{z}
Response

⇠ Bernoulli

✓
1

1 + e� ij

◆
,  ij = m+ �j| {z }

Random e↵ects

+

Predictor 2 Rp

z}|{
XT

ij �| {z }
Fixed e↵ect

,

with hierarchical prior specified by

m ⇠ Normal(0,��1), �j
iid⇠ Normal(0,��1) (j = 1, . . . ,K),

�l
iid⇠ Normal(0,�2) (l = 1, . . . , p), � ⇠ Ga(a�, b�), �2 ⇠ IG(a�, b�),

Variable decomposition in GZZ: ⇠ = (m, �1 . . . , �K ,�1, . . . ,�p), ↵ = (�,�2).

Results



Random e↵ect model

For i = 1, . . . , n|{z}
Subject index

, and j = 1, . . . , K|{z}
group index

let

Yij|{z}
Response

⇠ Bernoulli

✓
1

1 + e� ij

◆
,  ij = m+ �j| {z }

Random e↵ects

+

Predictor 2 Rp

z}|{
XT

ij �| {z }
Fixed e↵ect

,

with hierarchical prior specified by

m ⇠ Normal(0,��1), �j
iid⇠ Normal(0,��1) (j = 1, . . . ,K),

�l
iid⇠ Normal(0,�2) (l = 1, . . . , p), � ⇠ Ga(a�, b�), �2 ⇠ IG(a�, b�),

Variable decomposition in GZZ: ⇠ = (m, �1 . . . , �K ,�1, . . . ,�p), ↵ = (�,�2).

Results

/ ⌘�1

⌘



Logistic regression with Spike-and-Slab Prior

For j = 1, . . . , n,

Yj|{z}
Response

⇠ Bernoulli

✓
1

1 + e�Xj�

◆
, Xj|{z}

Predictors

2 Rp.

with hierarchical prior specified by

�i
ind⇠ �i �(·) + (1� �i)Normal(0, ⌫⌧2i ),

�i
iid⇠ Bernoulli(⇡), ⌧i ⇠ C+(0, 1) (i = 1, . . . , p),

⌫ ⇠ IG(a⌫ , b⌫), ⇡ ⇠ Beta(a⇡, b⇡).

Variable decomposition in GZZ: ⇠ = �, ↵ = (�1, . . . , �p, ⌧1, . . . , ⌧p, ⌫,⇡).

Results



Logistic regression with Spike-and-Slab Prior

For j = 1, . . . , n,

Yj|{z}
Response

⇠ Bernoulli

✓
1

1 + e�Xj�

◆
, Xj|{z}

Predictors

2 Rp.

with hierarchical prior specified by

�i
ind⇠ �i �(·) + (1� �i)Normal(0, ⌫⌧2i ),

�i
iid⇠ Bernoulli(⇡), ⌧i ⇠ C+(0, 1) (i = 1, . . . , p),

⌫ ⇠ IG(a⌫ , b⌫), ⇡ ⇠ Beta(a⇡, b⇡).

Variable decomposition in GZZ: ⇠ = �, ↵ = (�1, . . . , �p, ⌧1, . . . , ⌧p, ⌫,⇡).

Results



Logistic regression with Spike-and-Slab Prior

For j = 1, . . . , n,

Yj|{z}
Response

⇠ Bernoulli

✓
1

1 + e�Xj�

◆
, Xj|{z}

Predictors

2 Rp.

with hierarchical prior specified by

�i
ind⇠ �i �(·) + (1� �i)Normal(0, ⌫⌧2i ),

�i
iid⇠ Bernoulli(⇡), ⌧i ⇠ C+(0, 1) (i = 1, . . . , p),

⌫ ⇠ IG(a⌫ , b⌫), ⇡ ⇠ Beta(a⇡, b⇡).

Variable decomposition in GZZ: ⇠ = �, ↵ = (�1, . . . , �p, ⌧1, . . . , ⌧p, ⌫,⇡).

Results



Summary

1 With the GZZ-sampler we propose a new type of PDMP which

combines elements of traditional MCMC with PDMP-sampling in a

Gibbs-like construction

simplifies construction of (tight) upper bounds: “if you can’t find a

bound, just use a MH-update instead”

allows to take advantage of both worlds: versatility of MCMC +

error-free subsampling with PDMP

2 We show (under rather restrictive conditions) that the GZZ

sampler satisfies certain theoretical properties: unique ergodicity

+ central limit theorem

3 We demonstrate in numerical experiemnts e�ciency gains over

highly tuned HMC sampling.



Summary

1 With the GZZ-sampler we propose a new type of PDMP which

combines elements of traditional MCMC with PDMP-sampling in a

Gibbs-like construction

simplifies construction of (tight) upper bounds: “if you can’t find a

bound, just use a MH-update instead”

allows to take advantage of both worlds: versatility of MCMC +

error-free subsampling with PDMP

2 We show (under rather restrictive conditions) that the GZZ

sampler satisfies certain theoretical properties: unique ergodicity

+ central limit theorem

3 We demonstrate in numerical experiemnts e�ciency gains over

highly tuned HMC sampling.



Summary

1 With the GZZ-sampler we propose a new type of PDMP which

combines elements of traditional MCMC with PDMP-sampling in a

Gibbs-like construction

simplifies construction of (tight) upper bounds: “if you can’t find a

bound, just use a MH-update instead”

allows to take advantage of both worlds: versatility of MCMC +

error-free subsampling with PDMP

2 We show (under rather restrictive conditions) that the GZZ

sampler satisfies certain theoretical properties: unique ergodicity

+ central limit theorem

3 We demonstrate in numerical experiemnts e�ciency gains over

highly tuned HMC sampling.



References

[1] D. Sen, M. Sachs, J. Lu, and D. B. Dunson, E�cient posterior sampling for
high-dimensional imbalanced logistic regression, Biometrika, 2020.

[2] J. Bierkens, P. Fearnhead, and G. Roberts, The zig-zag process and
super-e�cient sampling for Bayesian analysis of big data 1, Ann. Stat., 2019.

[3] J. Bierkens, G. Roberts, P. Zitt, Ergodicity of the zigzag process, Ann. Appl.
Probab., 2019

[4] M. Sachs, D. Sen, J. Lu, and D. B. Dunson, Posterior computation with the
Gibbs zig-zag sampler, Bayesian Analysis, 2022.



Supplementary slides

Algorithm: zig-zag with Poisson thinning

Input T (0), ⇣(0),✓(0).
For k = 1, 2, 3, . . .

1 Compute event time:

Draw ⌧1, . . . , ⌧d such that

P(⌧i � t) = exp

⇢
�
Z t

0
Mi(s) ds

�
.

i0 = argmin{⌧i ; i = 1, . . . , d}.
2 Evolve position:

(T k+1, ⇣k+1) = (T k + ⌧i0 , ⇣
k + ✓k⌧i0).

3 Bounce: with probability p =
mi(⌧i0 )

Mi(⌧i0 ) :

✓i0
k+1  �✓i0

k,
otherwise:

✓i0
k+1  ✓i0

k

Output
�
T k, ⇣k,✓k

�
k=0,1,2,...

.



Supplementary slides



Supplementary slides



 Adaptive Langevin Dynamics 
4



 Adaptive Langevin Dynamics 
4

Gradient of log posterior



 Adaptive Langevin Dynamics 
4

Gradient of log posterior Computational cost scales linearly in   N



 Adaptive Langevin Dynamics 
4

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



For large N

 Adaptive Langevin Dynamics 
4

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



For large N

 Adaptive Langevin Dynamics 
4

Adaptive Langevin equation

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



For large N

 Adaptive Langevin Dynamics 
4

Adaptive Langevin equation

Auxiliary  
Momentum ∈ ℝp

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



For large N

 Adaptive Langevin Dynamics 
4

Adaptive Langevin equation Adaptive Friction

Auxiliary  
Momentum ∈ ℝp

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



For large N

 Adaptive Langevin Dynamics 
4

Adaptive Langevin equation Adaptive Friction

Coupling parameter > 0

Auxiliary  
Momentum ∈ ℝp

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



For large N

 Adaptive Langevin Dynamics 
4

Adaptive Langevin equation Adaptive Friction

Coupling parameter > 0

Auxiliary  
Momentum ∈ ℝp

=

0 B @
1

x
1
,1

··
·

x
1
,p

. . .
. . .

. . .
1

x
n
,1

··
·

x
n
,p

1 C A

|
{z

}
=
:
X

“D
es
ig
n
m
at
ri
x”

Ergodic with invariant measure:

Gradient of log posterior

Unbiased estimator via sub-sampling:

Computational cost scales linearly in   N



5

Parameter-dependent sampling efficiency  γ := hσ2/2Change of variable:



5

Parameter-dependent sampling efficiency  γ := hσ2/2Change of variable:



5

Parameter-dependent sampling efficiency  γ := hσ2/2Change of variable:



Asymptotic variance

U(q) =
b

a

�
q2 � a

�2
+ cq (1)



Spectral gap

Generator: LAdL = �LO + "LNH,

Galerkin subspace:  k,l(v, ⇠) = hk(v)hl(⇠), 0  l, k  L� 1,


	Background
	Continuous-time Monte Carlo
	The Zig-zag sampler (ZZ)
	Bayesian hierarchical models

	The Gibbs Zig-zag sampler (GZZ)
	Construction
	Theoretical properties

	Application to posterior sampling problems
	Random effect model
	Logistic regression with Spike-and-Slab Prior


