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The Goal

Our work proposes a method for nonparametric density estimation with sampling that
is suited for high dimensions, a central issue in probabilistic modelling.

Two categories of such models exist:

Analytical expression

Kernel Density Estimation
[Chen, 2017]

Dirichlet Process Mixture Models
[Hjort et al., 2010]

Normalising Flows
[Rezende and Mohamed, 2015]

Non-analytical expression

Variational Auto-Encoders
[Kingma and Welling, 2013]

Generative Adversarial Networks
[Goodfellow et al., 2014]

Diffusion Models
[Song et al., 2021]
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A Bayesian nonparametric model: DPMM

The Dirichlet Process Mixture Model (DPMM) can be interpreted as an infinite
Gaussian mixture model.

f (x , g) =

∫
N (x | θ)g(θ)dθ,

where g is a Dirichlet process prior DP (c,G0) equipped with a base measure G0 as
N (0, τ−1) and precision parameter c > 0.

× Inference is reliant on MCMC, which is esspecially costly for updates to predictive
densities pn to pn+1:

pn(x |x1:n) =
∫
f (x |g) · f (xn|g) · πn−1(g |x1:n−1) dg

pn−1(xn|x1:n−1)
.

→ Need a faster update!
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Predictive Recursion: saving the DPMM predictive density

Newton’s method [Newton et al., 1998] provides a solution to modelling DPMM’s
predictive densities with a recursive approach.

For a mixture density f (x , g) =
∫
k(x | θ)g(θ)dθ, the Predictive Recursion (PR)

estimates the mixing density g by starting with an initial guess g0 and recursively
updating it as:

gi (θ) = (1− αi ) · gi−1(θ) + αi ·
k (xi | θ) gi−1(θ)∫

Θ k (xi | z) gi−1(z)µ(dz)

where

x1, x2 . . . , xi are a sequence of observed data.

k is the mixing kernel.

αi ∈ [0, 1] are deterministic weights such that
∑∞

i=1 αi = ∞, and
∑∞

i=1 α
2
i <∞.

Then, recover the DPMM density as fi (x , g) =
∫
k(x | θ)gi (θ)dθ.
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Predictive Recursion: a long series of works

The PR density estimator is Quasi-Bayesian, as it no longer respects Bayes updates,
and instead targets the DPMM predictive mean.

Ghosh, Tokdar and Martin publish a suite of papers on the PR analysing the
convergence of the stochastic approximation of the mixing density to the true mixture
under various
settings:[Ghosh and Tokdar, 2006, Martin and Ghosh, 2008, Martin and Tokdar, 2009,
Tokdar et al., 2009, Martin, 2012, Ghosal and Van der Vaart, 2017, Martin, 2021].

The PR remains limited in practice to at most 3 dimensional Θ due to the normalising
constant at every step

∫
Θ k (xi | z)gi−1(z)µ(dz) having no elegant solution.
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Predictive Recursion: the PRticle Filter

In [Dixit and Martin, 2023], the PRticle Filter is proposed as a solution to extend the
PR to multiple dimensions. The recursion is adapted to support a sequential
Importance Sampling (IS) approach, reweighting a batch of samples to approximate
the normalising constant. But this is still not well-equipped for high dimensions due to
inherent IS drawbacks...

Figure: Example samples of the PRticle Filter in practice with 6 parameters.

→ Currently, the PR approach is not equipped to handle high dimensions.
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Predictive Recursion: another approach

Go back to the Bayesian predictive density for x ∈ R:

p(n)(x |x1:n) =
∫
f (x |θ) · f (xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1)
.

and multiply both sides of the fraction by the predictive from the previous step p(n−1):

p(n)(x |x1:n) = p(n−1)(x |x1:n−1) ·
∫
f (x |θ) · f (xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1) · p(n−1)(x |x1:n−1)

David Huk, Yuanhe Zhang, Mark Steel and Rito Dutta Quasi-Bayes meets Vines



Predictive Recursion: another approach

Go back to the Bayesian predictive density for x ∈ R:

p(n)(x |x1:n) =
∫
f (x |θ) · f (xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1)
.

and multiply both sides of the fraction by the predictive from the previous step p(n−1):

p(n)(x |x1:n) = p(n−1)(x |x1:n−1) ·
∫
f (x |θ) · f (xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1) · p(n−1)(x |x1:n−1)

David Huk, Yuanhe Zhang, Mark Steel and Rito Dutta Quasi-Bayes meets Vines



Predictive Recursion: Identifying copula updates

In [Hahn et al., 2018], it is revealed that a 1D Bayesian predictive corresponds to a
sequence of copula updates:

p(n)(x |x1:n) = pn−1(x |x1:n−1) ·

Joint density for x, xn︷ ︸︸ ︷∫
f (x |θ) · f (xn|θ) · π(n−1)(θ|x1:n−1) dθ

p(n−1)(xn|x1:n−1)︸ ︷︷ ︸
Marginal for xn

· pn−1(x |x1:n−1)︸ ︷︷ ︸
Marginal for x

p(n)(x |x1:n) = p(n−1)(x |x1:n−1) · c(n) (Pn−1(x),Pn−1(x
n))

where c(n) is the copula for step n, with c(n) → 1 as n → ∞.
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Predictive Recursion: Copula updates

p(n)(x |x1:n) = p(n−1)(x |x1:n−1) · c(n) (Pn−1(x),Pn−1(x
n))

Advantages:

✓ Bayesian predictive updates without any MCMC!

Disadvantages:

× Copula form is not known in general.

× Copula interpretation only holds in 1D.

→ Need an interpertable extensions to high dimensions.
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Quasi-Bayesian Vine: Research question

Can we extend the Recursive Bayesian Predictive to
high-dimensions?

p(n)(x|x1:n) = p(n−1)(x|x1:n−1) · ?(n)
(
x|x1:n

)
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Quasi-Bayesian Vine: A two-stage estimation

By Sklar’s theorem, we can divide a single task into multiple sub-tasks.

Our objective: f̂ (x1, ..., xd ) =
∏d

i=1
ˆfXi
(x i ) · ĉ( ˆFX1

(x1), ..., ˆFXd
(xd ))
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Interjection - Copula recap

In the case of independent data x1, x2 we have that their joint distribution factorises as:

f (x1, x2) = f1(x1) · f2(x2)

Now assume that x1, x2 are not independent. We then have:

f (x1, x2) = f1(x1) · f2(x2) · c(x1, x2)

meaning

c(x1, x2) =
f (x1, x2)

f1(x1) · f2(x2)
The function c is precisely a copula. It provides a notion of dependence, adding what
is missing in the independent case.
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Introduction - Sklar’s Theorem

Theorem (Sklar for predictive densities)

Let P(n) be an d-dimensional predictive distribution function with continuous marginal

distributions P
(n)
1 ,P

(n)
2 , . . . ,P

(n)
d . Then there exists a copula distribution C(n) such

that for all x = (x1, x2, . . . , xd ) ∈ Rd :

P(n)(x1, . . . , xd ) = C(n)(P
(n)
1 (x1), . . . ,P

(n)
d (xd )) (1)

And if a probability density function (pdf) is available:

p(n)(x1, . . . , xd ) = p
(n)
1 (x1) · . . . · p(n)d (xd ) · c(n)(P

(n)
1 (x1), . . . ,P

(n)
d (xd )) (2)

where p
(n)
1 (x1), . . . , p

(n)
d (xd ) are the marginal predictive probability density functions

(pdf), and c(n) : [0, 1]d → R is the copula pdf.
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Strategy: Side-stepping the high dimensional recursion

We use Sklar on the joint predictive density:

p(n)(x1, . . . , xd ) =
d∏

i=1

{
p
(n)
i (xi )

}
· c(n)(P(n)

1 (x1), . . . ,P
(n)
d (xd )).

Doing this for p(n) and p(n−1), we get a recursive relationship:

p(n)

p(n−1)
=

d∏
i=1

{ p
(n)
i

p
(n−1)
i

}
︸ ︷︷ ︸

Independent recursions

·
c(n)
(
P

(n)
1 (x1), . . . ,P

(n)
d (xd )

)
c(n−1)

(
P

(n−1)
1 (x1), . . . ,P

(n−1)
d (xd )

)
︸ ︷︷ ︸

Implicit recursion on copulas

. (3)

→ If we are only interested in the final step p(n), we only need to recurse on
marginals, leaving the recursion on copulas implicit, and fit a single copula at the last
step n.
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Phase 1: marginal densities
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Phase 1: Bayesian Predictive Recursive Algorithm

Consider an approximation of the DPMM called Recursive Bayesian Predictive
(R-BP) proposed in [Hahn et al., 2018]:

pn+1(.) = (1− αn) · pn(.) + αn · cρ(Pn(.),Pn(xn)) · pn(.)

Pn+1(.) = (1− αn) · Pn(.) + αn · Hρ(Pn(.) |Pn(xn)) .

where

pn+1(X ) = p(X |x1:n) be X ’s n + 1th predictive probability density function (pdf)

Pn+1 be the corresponding predictive distribution function (cdf)

cρ be the bivariate Gaussian copula pdf

Hρ(· | ·) be the associated conditional cdf of cρ

(αn)n≥1 be a sequence of weights decreasing in n

ρ is the correlation parameter for Gaussian copula and the only free
(hyper)parameter
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Phase 1: Recursive Bayesian Predictive

pn+1(.) = (1− αn) · pn(.) + αn · cρ(Pn(.),Pn(xn)) · pn(.)

Pn+1(.) = (1− αn) · Pn(.) + αn · Hρ(Pn(.) |Pn(xn)) .

Advantages:

✓ Nonparametric

✓ Quasi-Bayesian

✓ Very fast density evaluation and sampling

✓ Easily parallelisable across dimensions d .

Disadvantages:

× Selecting hyperparameter ρ is not obvious
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Phase 1: Robust training for ρ

The robust estimation of simulation-based models has been studied in
[Pacchiardi and Dutta, 2021, Dellaporta et al., 2022] and for copulas in
[Alquier et al., 2022, Huk et al., 2023].

We estimate ρ via minimizing the Energy score (a proper divergence)

Sβ
E (Pρ, y) = 2 · EX∼Pρ ||X − y ||β2 − EX ,X ′∼Pρ ||X − X ′||β2 .

With
Sβ
E (Pρ, y) = 0 ⇐⇒ ρ = ρ∗.

Due to the analytical form of Pn, we can employ inverse probability sampling.

→ Due to IPS, we only have to recurse on distributions, halving the computational
time compared to a likelihood optimisation on densities and distributions.
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Phase 1: Theory

Theorem (Almost sure convergence [Hahn et al., 2018])

Let pn be the Bayesian predictive density via the R-BP algorithm for Xn given
observations x1, ..., xn, with weight sequence (wn)n≥1 satisfies

∞∑
i=1

wi = ∞, and
∞∑
i=1

w2
i <∞ ,

with correlation parameter ρ ∈ (0, 1). If the true density p∗ of the data generating
process is continuous and the corresponding support can be covered by P0, then

KL(p∗, pn)
P∗−a.s.−→ 0

Lemma (Stochastic Boundedness of R-BP)

For all x ∈ R, the R-BP distribution function P(n)(x) is stochastically bounded with∣∣∣P(∞)(x)− P(n)(x)
∣∣∣ = Op

(
n−1/2

)
.
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Phase 1: Comparison between BPR and DPMM
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Phase 2: copula estimation
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Phase 2: Robust R-vine Copula

R-Vine copula decomposes high dimensional estimation into 2D copula building
blocks. Use Sklar’s theorem on conditional densities

pa|b(xa|xb) = ca,b(Pa(xa),Pb(xb)) · pa(xa)

to decompose all conditional densities of

p(x1, x2, x3) = p1(x1) · p2|1(x2|x1) · p3|2,1(x3|x2, x1)

=
d∏

i=1

{pi (xi )}
d(d−1)/2∏

j=1

cSj
(uSj

, vSj
),

to end up with d · (d − 1)/2 copulas. Now, we only have to estimate bivariate copulas;
much simpler.

→ a divide-and-conquer approach to copulas.
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Phase 2: Robust R-vine Copula

R-Vine copula decomposes high dimensional estimation into 2D copula building
blocks.

Example:

Figure: R-Vine example for 5D data.

cR−vine(u1, u2, u3, u4, u5) =c(u1, u2) · c(u1, u3) · c(u2, u4) · c(u3, u5)
·c1,5|3(u1|3, u5|3) · c2,3|1(u2|1, u3|1) · c1,4|2(u1|2, u4|2)

·c2,5|1,3(u2|1,3, u5|1,3) · c3,4|1,2(u3|1,2, u4|1,2)

·c4,5|1,2,3(u4|1,2,3, u5|1,2,3) .
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Phase 2: Robust R-vine Copula

R-Vine copula decomposes high dimensional estimation into 2D copula building
blocks.

Example:
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Advantages:

✓ Nonparametric with KDE bivariate copulas

✓ Convergence rate independent of dimensions (under assumptions)

✓ Very fast sampling

Disadvantages:

× Selecting hyperparameter for bandwidth of KDE
→ We use a similar Energy score sampling-based approach.
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Phase 2: Theory

Theorem (Convergence of Quasi-Bayesian Vine)

Assuming a correctly identified simplified vine structure for c(∞)(u), and using
univariate R-BP marginal distributions with a simplified vine copula, the copula
estimator error is stochastically bounded ∀ x ∈ Rd with

|c(∞)(x)− c(n)(x)| = Op(n
−r )

where n−r is the convergence rate of the KDE pair-copula.
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Quasi-Bayesian Vine: Final Model

Then, our final model is:

f̂ (x1, ..., xd ) =
d∏

i−1

pin+1(x
i )

︸ ︷︷ ︸
Phase 1

· c rK (P
1(x1), ...,Pn(xn))︸ ︷︷ ︸

Phase 2

,

where each pin+1( · ) is the R-BP density estimator from Phase 1 and c rK ( · ) is the
robust R-vine KDE copula estimator from Phase 2.
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Strategy: in a diagram

Figure: Quasi-Bayesian Vine
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Experiments: UCI density estimation datasets

WINE BREAST PARKIN IONO BOSTON
n/d 89/12 97/14 97/16 175/30 506/13

KDE 13.69 10.45 12.83 32.06 8.34
PRticle Filter 37.04 41.95 50.32 150.96 46.68
DPMM (Diag) 17.46 16.26 22.28 35.30 7.64
DPMM (Full) 32.88 26.67 39.95 86.18 9.45
MAF 39.60 10.13 11.76 140.09 56.01
RQ-NSF 38.34 26.41 31.26 54.49 −2.20
R-BP 13.57 7.45 9.15 21.15 4.56
Rd -BP 13.32 6.12 7.52 19.82 −13.50
AR-BP 13.45 6.18 8.29 17.16 −0.45
ARd -BP 13.22 6.11 7.21 16.48 −14.75
ARnet-BP 14.41 6.87 8.29 15.32 −5.71

QB-Vine 13.76 4.67 4.93 −16.08 −31.04
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QB-Vine for regression and classification

By rewriting the conditional density, we can simplify the marginals to obtain:

p(y |x) =
p(y , x)

p(x)
=

py (y) ·
∏d

i=1

{
pi (xi )

}
· c(y , x1, . . . , xd )∏d

i=1

{
pi (xi )

}
· c(x1, . . . , xd )

=
c(y , x1, . . . , xd ) · py (y)

c(x1, . . . , xd )
.

→ Estimate 2 Vines and d + 1 marginals for the complete conditional model.

For discrete data, we use an approximation by adding small gaussian noise to the class
values, making them continuous. This is needed for the copula to be unique.
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Experiments: UCI regression and classification datasets

Regression Classification
BOSTON CONCR DIAB IONO PARKIN

n/d 506/13 1,030/8 442/10 351/33 195/22

Linear 0.87±0.03 0.99±0.01 1.07±0.01 0.33±0.01 0.38±0.01

GP 0.42±0.08 0.36±0.02 1.06±0.02 0.30±0.02 0.42±0.02

MLP 1.42±1.01 2.01±0.98 3.32±4.05 0.26±0.05 0.31±0.02

R-BP 0.76±0.09 0.87±0.03 1.05±0.03 0.26±0.01 0.37±0.01

Rd -BP 0.40±0.03 0.42±0.00 1.00±0.02 0.34±0.02 0.27±0.03

AR-BP 0.52±0.13 0.42±0.01 1.06±0.02 0.21±0.02 0.29±0.02

ARd -BP 0.37±0.10 0.39±0.01 0.99±0.02 0.20±0.02 0.28±0.03

ARnet-BP 0.45±0.11 −0.03±0.00 1.41±0.07 0.24±0.04 0.26±0.04

QB-Vine −0.81±1.26 0.54±0.34 0.87±0.20 −1.85±1.16 −0.76±0.28
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Experiments: Digits dataset n = 1797, d = 64
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Figure: Density estimation on the Digits data (n = 1797, d = 64) with reduced training sizes for
the QB-Vine against other models fitted on the full training set. The QB-Vine achieves competitive
performance for training sizes as little as n = 50 and outperforms all competitors once n > 200.
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Experiments: Isotropic Gaussian Mixtures

We sample from a mixture of 4 Gaussians with non-trivial covariances.

p(y) =
4∑

k=1

πk · ϕ(y ;µk ,Σk ) ,

where (π1, π2, π3, π4) = (0.2, 0.3, 0.1, 0.4) and

µk
i.i.d.∼ U [−50, 50]d , Σk

i.i.d.∼ Wishart(d , Id ) .

The Gaussians have a varying dimension d and we sample various amounts of
samples n.

We compare against a normalising flow, the RQ-NSF, as a benchmark
off-the-shelf estimator with analytical form and sampling.

David Huk, Yuanhe Zhang, Mark Steel and Rito Dutta Quasi-Bayes meets Vines



Experiments: Isotropic Gaussian Mixtures

We sample from a mixture of 4 Gaussians with non-trivial covariances.

p(y) =
4∑

k=1

πk · ϕ(y ;µk ,Σk ) ,

where (π1, π2, π3, π4) = (0.2, 0.3, 0.1, 0.4) and

µk
i.i.d.∼ U [−50, 50]d , Σk

i.i.d.∼ Wishart(d , Id ) .

The Gaussians have a varying dimension d and we sample various amounts of
samples n.

We compare against a normalising flow, the RQ-NSF, as a benchmark
off-the-shelf estimator with analytical form and sampling.

David Huk, Yuanhe Zhang, Mark Steel and Rito Dutta Quasi-Bayes meets Vines



Experiments: Isotropic Gaussian Mixtures

We sample from a mixture of 4 Gaussians with non-trivial covariances.

p(y) =
4∑

k=1

πk · ϕ(y ;µk ,Σk ) ,

where (π1, π2, π3, π4) = (0.2, 0.3, 0.1, 0.4) and

µk
i.i.d.∼ U [−50, 50]d , Σk

i.i.d.∼ Wishart(d , Id ) .

The Gaussians have a varying dimension d and we sample various amounts of
samples n.

We compare against a normalising flow, the RQ-NSF, as a benchmark
off-the-shelf estimator with analytical form and sampling.

David Huk, Yuanhe Zhang, Mark Steel and Rito Dutta Quasi-Bayes meets Vines



Experiments: Isotropic Gaussian Mixtures

Table: Comparison of LPS for QB-Vine (our method) and RQ-NSF on GMM with 4 clusters for
changing n and d . Results for our QB-Vine method are shown as the top numbers of each row,
and RQ-NSF values as the bottom numbers of each row.

d \ n 50 100 300 500 103

10
3.98±0.23 1.73±0.29 2.15±0.06 0.94±0.31 2.43±0.17

36.47±4.87 17.14±1.51 12.82±0.36 7.10±0.26 7.91±0.11

30
- 17.94±1.06 11.04±0.35 12.87±0.17 9.85±0.40

- 91.09±7.54 50.51±2.20 48.50±0.73 34.98±0.31

50
- - 38.59±4.31 25.82±0.06 26.14±0.01

- - 115.64±3.06 112.16±2.05 71.43±1.65

100
- - - - 78.20±0.23

- - - - 268.88±1.37

David Huk, Yuanhe Zhang, Mark Steel and Rito Dutta Quasi-Bayes meets Vines



QB-Vine: Conclusion & Open Problems

Conclusions:

The QB-Vine is a fast recursive density estimator with analytical
form.

Evades the Curse of Dimensionality for dependency modelling; is very
data-efficient.

Highly parallelisable for marginal density estimation.

Statistically well-founded model that outperforms network-based
methods.

Next step:

Apply to ultra-high dimensional data, e.g. images and compare to
implicit density estimators.
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Phase 1: Comparison between BPR and DPMM
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Phase 1: Evading the order dependence by permutation

In order to reduce the random effect of order in the observed data, we average the
marginal predictive density over 10 permutations, i.e., for i ∈ 1, ..., d ,

p̂in(Xi ) =
1

10

10∑
j=1

pi (Xi |Πj (x
i
1:n)) ,

where Πj (·) is a random permutation among observations. By consequence,

P̂i
n(Xi ) =

1

10

10∑
j=1

P̂i (Xi |Πj (x
i
1:n)) .
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Phase 1: Robust training for ρ

Sampling procedure (wlog here we assume for j th marginal):

1 Get the support for the training data, define e as a distance of extrapolation,

I = [min− e, max + e]

2 Take a grid of T size points in the support I, i.e. {ηt}Tt=1.

3 Evaluate {ηt}Tt=1 via P̂j
n to get the context set, i.e. {(P̂j

n(ηt), ηt)}Tt=1

4 Encode the context set into linear interpolator ψ, i.e.

ψ( · ; {(P̂j
n(ηt), ηt)}Tt=1)

5 Sample noises ϵ from uniform distribution π and apply ψ to get sample from P̂j
n,

i.e.,
ψ(ϵ; {(P̂j

n(ηt), ηt)}Tt=1) ∼ P̂j
n
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Phase 2: Kernel Transformation Bivariate Copula

Suppose {(Ui ,Vi )}ni=1 ∼ C , the kernel transformation copula density estimator of c
with bandwidth hn is

ĉKn (u, v) =

∑n
i=1 Khn (Φ

−1(u)− Φ−1(Ui ))Khn (Φ
−1(v)− Φ−1(Vi ))

nϕ(Φ−1(u))ϕ(Φ−1(v))
.
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Introduction: Gaussian copula

A simple yet quite effective class of copulas are Gaussian copulas.

Consider (x1, x2) ∼ ϕ2(0,Σ) where Σ =

[
1 0.7
0.7 1

]
. Then:

c(x1, x2) =
ϕ2(x1, x2; Σ)

ϕ(x1) · ϕ(x2)

The Gaussian copula is formed by a Gaussian joint and Gaussian marginals.

Figure: Joint plot on observation (left) and CDF (right) scales.
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Introduction: Gaussian copula

Figure: Gaussian copulas with different correlations.
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Sketch proof of Theorem 3

Proof.

From [Fong et al., 2021], suppose M > N, for ∀ ϵ > 0, ∀ j ∈ [d ], we have that

argmin
x∈R

P(|Pj
M(x)− Pj

N(x)| ≥ ϵ) ≤ 2 exp

(
−

ϵ2

2ϵwN+1
3

+ 1
2

∑M
i=N+1 w

2
i

)
.

Then, we set

δ = 2 exp

(
−

ϵ2

2ϵwN+1
3

+ 1
2

∑M
i=N+1 w

2
i

)
≃ O(e−N) ,

as M → ∞. Next, re-arrange to solve the quadratic equation with M → ∞ and we
obtain

ϵ =
−log( δ

2
)
2wN+1

3
+

√[
log( δ

2
)
2wN+1

3

]2
− 2 log( δ

2
)
∑M

i=N+1 w
2
i

2

≃ O(N−0.5) .

The last step follows that
∑∞

i=N+1 wi = O(N−1) from our choice of {wi}i≥1.
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