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Introduction and Motivation

▶ In the standard likelihood-free posterior

pϵ(θ|sO) =
∫
(θ)f (s|θ)Kϵ(||s − sO ||)ds

▶ In typical likelihood-free settings we sample from the joint
distribution

(xi , θi ) ∼ p(x |θ)p(θ)

, compute summary s = S(x)

▶ In complex models it is often apparent that
Kϵ(||s − sO ||) << Kϵ(||s − sref ||) for any (si , sref ) computed
from any finite sample from p(x |θ)p(θ)

▶ This model misspecification causes issues both for accurate
inference, and for stability of sequential Monte Carlo inference
methods.



Example of misspecification in Individual-Based Model

▶ Model for growth of individual earthworms, used to predict
population dynamics in lab culture

▶ Van der Vaart et al (Ecological Modelling, 2015)



Posterior Predictive Distribution

▶ Aim is to model emergent phenomena from physiological
parameters.

▶ Different experiments (arrows indicate input of food)



Evidence of misspecification
▶ Use regression with samples from p(s, θ) to predict elements of θ

from s (Fearnhead & Prangle, 2012).

▶ Plots shown for different parameters. Red line shows prediction

from observation summary SO



Robust ABC

▶ Early study of robust ABC inference by Ratmann et al (2009),
following ideas in Wilkinson (2008).

▶ Modify standard ABC posterior

pϵ(θ|sO) =
∫

p(θ)f (s|θ)Kϵ(||s − sO ||)ds

▶ by augmenting θ with vector ϵ, with prior p(ϵ).

▶ Assume p(θ, ϵ) = p(θ)p(ϵ) giving

p(θ, ϵ|sO) =
∫

p(θ, ϵ)f (s|θ)Kϵ(||s − sO ||)ds

▶ These ideas extended by many researchers, summarised and
extended in Frazier et al (2020) and Frazier and Drovandi
(2021).



Robust Neural Posterior Estimation
Ward et al, NIPS (2022)

▶ Assume that observable data y arises with error from
unobserved latent x , with some error model p(y |x)

▶ The joint distribution

p(y , x , θ) = p(y |x)p(x |θ)p(θ)

can be equivalently written as p(y)p(x |y)p(θ|x)
▶ giving

p(θ|y) =
∫

p(x |y)p(θ|x)dx

▶ The distribution p(θ|x) can be approximated by neural
posterior estimation (with a normalising flow), trained with
samples from p(y , x , θ), marginal to y

▶ To obtain samples of xi ∼ p(x |y) to approximate the integral
by Monte Carlo, Ward et al used MCMC to sample from
qϕ(x)p(y |x) where qϕ(x) is a normalising flow, with weights ϕ
trained with marginal xi from p(y , x , θ)



Error model

▶ Use a spike and slab model.

▶ Assume x ∈ Rd

▶ Sample x ∼ qϕ(x)

▶ zj ∼ Bernoulli(ρ)

▶

yj |xj , zj ∼

{
N(xj , σ

2), if zj = 0

Cauchy(xj , τ), if zj = 1



Example — SIR model with reporting delays
▶ Model of epidemic spread (‘Susceptible - Infected -

Removed’).
▶ Infer two parameters: infection rate β and recovery rate γ
▶ Simulate observations with misspecification (proportion of

weekend infections reported on Monday)



Dropping Summary statistics

Motivation to discard summary statistics completely in ABC:

▶ Complex models are designed to capture only some features of
data.

▶ Many models of misspecification allow for increased
uncertainty in the value of some summary statistics (e.g.
Ratmann et al,2009; Ward et al, 2022)

▶ Potential advantages of simplicity (and hence wider use) in
the approach.



A criterion for dropping summary statistics

▶ Given n samples xi ∼ p(x , θ) summarise to a d-dimensional
vector s = Sd(x) (similarly for observations sO = Sd(xo)).

▶ Use some method to approximate prior predictive distribution
of summary statistics p(s) from sample.

▶ Assume we require sO to lie within the approximate 95%
Highest Density Region (HDR).

▶ Rank densities p(s) for all points {si , sO} from largest to
smallest, with rank j = 1 . . . n + 1

▶ Accept sO if p(sO) > p(sj) when j = 0·95(n + 1)

▶ Otherwise, drop component 1, . . . , d from Sd(·)
▶ Each time re-rank densities p(s) for all points {si , sO}
▶ Choose to drop the component giving the largest rank

improvement for p(s ′O) with s ′O = Sd−1(xO).

▶ Repeat procedure until p(sO) > p(sj) when j = 0·95(n + 1)



k-NN density estimation

▶ Assume x ∈ Rd

▶ with k = 1 (nearest neighbour) out of n observations

▶ Estimated density at point x , p̂(x) = 1
nV (d)r(x)d

▶ where r(x) is the nearest neighbour distance at point x
(Euclidean)

▶ V (d) is volume of unit ball in d dimensions.



Obtaining approximate prior HDR in ABC framework

▶ Assume we have n simulations from the prior predictive
distribution: θi ∼ π(θ) xi ∼ p(x |θi )

▶ Summarise ith point as si = Sd(xi )

▶ In principle we could compute p̂(si ) =
1

nV (d)r(si )d

▶ Rank p̂(si ) from largest to smallest.

▶ Approximate e.g. 95% highest density region (HDR) given by
points with k-NN density not ranked less than 0·95n.



Choosing summary statistics

▶ Note that p̂(si ) is monotonically increasing with 1
r(si )

.

▶ I.e rank distances r(s) for all points {si , sO} from smallest to
largest, with rank j = 1, . . . , n + 1.

▶ Accept sO if r(sO) < r(sj) when j = 0·95(n + 1).

▶ Otherwise, drop component 1, . . . , d from Sd(·)
▶ Each time re-rank distances r(s) for all points {si , sO}
▶ Choose to drop the component giving the largest rank

improvement for r(s ′O) with s ′O = Sd−1(xO)

▶ Repeat procedure until r(sO) < r(sj) when j = 0·95(n + 1).



Example Application: Modelling Hybridisation in Scottish
Wildcat

▶ Aim: to model history of hybridisation in Scottish wildcat

▶ Data: Single nucleotide polymorphism (SNP) data from
wild-living cats in Scotland.

Howard-McCombe et al (2021) Molecular Ecology.



Digression — how do you carry out PCA on genome data?

▶ SNPs scored as a matrix of 0s and 1s (0 means the same as
reference sample — a cat called Cinnamon)

▶ Apply SVD to scaled matrix and obtain PCs (first two tend to
mirror geography/demographic history).



Dropping Summary Statistics

▶ We summarised data using 22 summary statistics.

▶ 14 summary statistics related to PCA plot (made invariant to
reflection).

▶ 8 summary statistics dropped with approximate HDR method
(95% threshold)

▶ 5 out of 8 dropped summaries related to shape of clusters
within PCA

▶ 8 PCA-related summaries retained — all related to overall
shape of PCA.



Final Model Fit
▶ Prior predictive distribution of summary statistics after

dropping discrepant summaries.

▶ Pairwise plots of successive pairs of PCs from PCA rotation.



Early Model Fit
Unpublished early PCA plots from project (pairwise for first 9 PCs). Red

dot corresponds to observation.



Parameter Estimates



Posterior Predictive Plots

▶ The model captures the broad shape of plots.

▶ The spread of hybridisation is well modelled.

▶ The relationship with domestic cats is well modelled.

▶ The clustering of captive cats is poorly modelled.



Comparison with Whole-Genome Local Ancestry Estimates
▶ Using whole genome data we applied a local ancestry

modelling approach, implemented in Mosaic.

▶ Loosely can be considered a non-parametric method.

▶ Enables sections of genome arising from different populations
to be identified.

▶ Allows timescale of hybridisation to be estimated.

Howard-McCombe et al (2023) Current Biology.



Application to SBI example

Aims:

▶ Model whole-genome data using msprime (Kelleher et al,
2016) and SLiM (Haller and Messer, 2023)

▶ Chose a 45Mb chromosome

▶ Consider more populations

▶ Date divergence times of European populations

▶ Use default SNPE from SBI package (Tejero et al, 2020)



Demographic Model

(Harry Gordon MSc project, in collaboration with Dan Ward, Jo

Howard-McCombe, Dan Lawson.)



Fitting with Sequential Neural Posterior Estimation
(SNPE)

▶ Use SNPE-C (Greenberg et al, 2019)

▶ Idea of (S)NPE is to train a neural network F (ϕ, x) to
approximate conditional density p(θ|x) by qF (ϕ,x)(θ).

▶ Train network with (xi , θi ) p(x |θ)p(θ)
▶ Minimize loss L(ϕ) = −

∑
log qF (ϕ,xj )(θj)

▶ Two NN models compared: Mixture Density Network (MDN)
model and the Masked Autoregressive Flow (MAF)

▶ Higher log-probability with MAF, which was used for
subsequent analyses.



Summary Statistics

▶ 135 summary statistics computed

▶ Measures of genetic diversity and between-population
divergence.

▶ Similar summary statistics to Howard-McCombe et al from
PCA clustering patterns.



Computational Issues

▶ To simulate 45 Mb genome for 112 individuals from 5
populations takes 20 minutes to > 2 hours (simulations
discarded if taking more than 4 hours).

▶ Able to use up to 400 cores on HPC

▶ Limited to training sets from p(x , θ) of ∼ 10000 points for
each round.

▶ Aim is to use sequential NPE to make inference more efficient.

▶ Compromised by presence of misspecification.



Posterior Distributions



Posterior Predictive Distribution



Approaches to Dropping Summary Statistics

▶ 23 Summary statistics were dropped because of high
correlations (r > 0·99)

▶ Use of nearest-neighbour method suggested to drop only 2
summary statistic before reaching a 95% cutoff

▶ A variant of Ward et al (2021) was used (proposed by Dan
Ward) where we assume sO = so + ϵ; train a flow to
approximate p(s) (using samples from the prior predictive);
define a prior over the noise Laplace(0, 1); then infer p(ϵ|SO)
using MCMC.

▶ This removed a further 10 summaries

▶ However, computing HDR from the flow-based estimate of
p(sO) suggests that observations are at > 0·99 quantile, so
further work is needed



Example with Ward’s method



Example of current status
▶ Currently able to carry out 4 rounds of simulation without

substantial divergence
▶ Left plots shows original case; on the right after removing

problematic summary statistics. Example of 2 parameters
shown.



Current Project Aims

▶ Pursue the HDR quantile idea, but using flow-based estimate
of p(si ) and p(sO) rather than nearest-neighbour method.

▶ Examine posterior predictive distributions for further rounds of
SNPE.
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