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Simulation-Based Inference

The basic Bayesian ingredients

Data X = {Xi}n
i=1 realized from P(n)θ0

indexed by θ0 ∈ Θ

Prior Π(⋅)
Model P(n)θ , for each θ ∈ Θ, admits a density p(n)θ

We focus on posterior

π(θ ∣ X) ∝ p(n)θ (X)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

×π(θ)

too costly to evaluate /
but can be readily sampled from ,

↝ Heston model: Stochastic volatility dynamics in finance
↝ Lotka-Volterra model: Predator-prey population dynamics in ecology.
↝ SIR model: Disease spreading dynamics in epidemiology.
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Lotka-Volterra (LV) model with θ = (θ1, θ2, θ3, θ4)
′

t

(X0, Y0)

(X1, Y1)

(X2, Y2)

(X3, Y3)

d Xt

d t
= θ1XtYt

´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
predator being born

− θ2Xt
±

predator dying

d Yt

d t
= θ3Yt

±
prey being born

− θ4XtYt
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
prey dying

Stochastic Markov Jump Process

Despite easy to sample from (using the Gillespie algorithm), the likelihood for this model
is unavailable.
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Approximate Bayesian Computation (ABC)

1 Simulate pair (θj , X̃
θj ) from the joint distribution p(θ, X̃ θ) = π(θ) × p(n)θ (X̃ θ)

2 Picks θj if X̃
θ

j looks “similar" to X

One solution: Accept θj if ∥S(X̃ θj ) −S(X)∥ ≤ ε.

/ Reliance on summary statistics
/ Posterior shapes vary with how the ABC draws are weighted

, Parallel computation feasible
, Not sensitive to initialization
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Adversarial Learning

A good classifier can tell us how “similar” the two datasets are.
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Our Approaches

IID data
▸ In the LV model, each observation is a time series and we observe n iid copies

▸ p(n)θ (X) = ∏n
i=1 pθ(Xi) = p(n)θ0

(X) ×
n

∏
i=1

pθ(Xi)
pθ0(Xi)

▸ ABC via Classification!
Wang, Kaji, and Ročková [2022]. JMLR.

Dependent data
▸ For the LV model, we only observe one time series

▸ p(n)θ (X) has no product form

▸ Bayesian Generative Adversarial Networks (B-GANs)!
Wang and Ročková [2022]. arXiv:2208.12113.
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ABC via Classification1

1Wang, Kaji, and Ročková [2022]. JMLR
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The Classification Trick
Now we have n iid ‘real’ observations, and we simulate m ‘fake’ observations from Pθ

We consider a classification problem as

max
D∈D

[ 1
n

n

∑
i=1

log D(Xi) +
1
m

m

∑
i=1

log(1 −D(X̃ θ
i ))] , (1)

where D ∶ X → (0,1) (1 for ‘real’ and 0 for ‘fake’ data).

When θ is close to θ0, Pθ and Pθ0 are very similar

⇒ Hard to distinguish X̃
θ

from X .
⇒ D̂(X̃ θ

j ) close to 0.5

When θ is far from θ0, Pθ and Pθ0 are very different

⇒ Easy to distinguish X̃
θ

from X .
⇒ D̂(X̃ θ

j ) close to 0
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Estimating KL via Classification

We adopt KL divergence K (pθ0 ,pθ) inside ABC, first proposed by Jiang et al. [2018].

Oracle discriminator to the log loss in Eq. (1) is

DO
θ (X) ∶=

pθ0(X)
pθ0(X)+pθ(X) ⇒

p0
pθ
(X) = DO

θ (X)
1−DO

θ
(X)

replace DO
θ with D̂n,m

KL estimator

K̂ (X , X̃
θ) = 1

n

n
∑
i=1

log
D̂n,m(Xi)

1 − D̂n,m(Xi)

⇒Accept-Reject ABC

Likelihood Ratio estimator
n
∏
i=1

D̂n,m(Xi)
1 − D̂n,m(Xi)

= exp(−nK̂ (X , X̃
θ))

⇒Exponential-Weighted ABC
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Accept and Reject ABC (AR-ABC)

For a pre-determined tolerance level εn > 0, repeat for j = 1, . . . ,N:

1 Simulate θj from π(θ).

2 Simulate X̃
θj = (X̃ θj

1 , . . . , X̃
θj
m )′ through i.i.d sampling from the model Pθj .

3 Construct K̂ (X , X̃
θj ) by training a classifier distinguishing X and X̃

θj .

4 Accept θj when K̂ (X , X̃
θj ) ≤ εn.

π̂AR(θ ∣ X) = ∫ π(θ)p
(n)
θ (X̃

θ
)I(K̂ (X , X̃

θ
) ≤ εn)d X̃

θ

∫ ∫ π(θ)p
(n)
θ (X̃

θ
)I(K̂ (X , X̃

θ
) ≤ εn)d X̃

θ
d θ

, Posterior concentration rate depends on estimation error δn and threshold εn. Consistency is
guaranteed as long as εn → 0

/ The proper choice of εn is still unclear for complex models
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Exponential-Weighted ABC

Motivated by the connection between KL and the likelihood ratio, we propose a scaled exponential
kernel that requires no ad hoc scaling

π̂EK (θ ∣ X) = ∫ π(θ)p
(n)
θ (X̃

θ
)exp ( − nK̂ (X , X̃

θ
))d X̃

θ

∫ ∫ π(θ)p
(n)
θ (X̃

θ
)exp(−nK̂ (X , X̃

θ
))d X̃

θ
d θ

We can rewrite the approximated posterior as

π̂EK (θ ∣ X (n)) ∝ p(n)θ (X)eûθ(X)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Model mis-specification

π(θ), (2)

where ûθ(X) = log ∫ e−n×(K̂(X ,X̃θ)− 1
n ∑

n
i=1 log

pθ0
pθ
(Xi))d X̃

θ
.

Eq.(2) can be characterized as a posterior under a mis-specified likelihood p̃θ.

↝ Concentration around θ∗ (KL projection point)
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Lotka-Volterra: Likelihood is Spiky!
Simulation starts at X0 = 50 and Y0 = 100 and is over 20 time units with intervals of 0.1, resulting in
a series of T = 201 observations each. Fix θ2 = 0.5, θ3 = 1 and only change θ1 and θ4.

Narrow range of likely parameter values
Interaction patterns are very sensitive to parameter changes

MCMC convergence speed is very sensitive to the initialization
12 / 38



ABC Results
True values θ0 = (0.01,0.5,1,0.01). Uniform Prior on [0,0.1] × [0,1] × [0,2] × [0,0.1]
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Conclusions: Part I

, We have developed an ABC approach which obviates the need for summary
statistics.

, We adopt two versions of ABC
▸ Accept-Reject ABC
▸ New! Exponential-Weighted ABC that requires no ad hoc thresholding

Yet limitations?

How to construct a reasonable classifier for dependent data is unclear

The computation costs for training a new classifier after each ABC draw is daunting.
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Even Better!

Adversarial Bayesian Simulation2

2Wang and Ročková [2022]. arXiv:2208.12113.
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Generative Adversarial Networks (GANs)

Generator against Discriminator

https://this-person-does-not-exist.com/
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Generator against Discriminator

3credit to https://developers.google.com/machine-learning/gan/gan_structure 17 / 38
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GANs

“generate a fake human face image”

The two-player min-max game with Generator g and Discriminator d

min
g∈G

max
d∈D

PX (n)∼π(X (n)) log d(X (n)) +PZ∼πZ (Z) log(1 − d(g(Z)))

The generator g learns to approximate the marginal distribution π(X (n)).

Draws from the implicit distribution π(X (n)) are obtained by passing a random noise vector
Z ∈ Z ∈ RdZ through a non-stochastic mapping g ∶ Z → X .
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Conditional GANs (cGANs)
What if we want to generate distribution conditioned on some extra information, like labels for
images (‘cat’, ‘dog’ etc.)?

The generator generates fake images given the labels.
“generate a fake cat image"

The discriminator distinguishes pairs of (real image, label) and (fake image, label).
“how is (real cat image, cat) different from (fake cat image, cat)”
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Generate ‘fake’ θ given X (n)
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cGANs

Consider the two-player min-max game

min
g∈G

max
d∈D

PX (n),θ∼π(X (n),θ) log d(X (n), θ) +PX (n)∼π(X (n)),Z∼πZ (Z) log (1 − d(X (n),g(Z ,X (n))))

(3)
Now X (n) enters both discriminator and generator.

Fix the marginal distribution π(X (n)),

matching the joint distribution ⇔ matching the conditional distribution

With flexible enough D and G, the solution (g∗,d∗) to the minimax game satisfies

πg∗(θ ∣ X (n)) =
π(X (n), θ)
π(X (n))

= π(θ ∣ X (n)) for any X (n) ∈ X

d∗
g (X (n), θ) =

π(X (n), θ)
π(X (n), θ) + πg(X (n), θ)
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g(⋅,X (n)) is a pushforward mapping from πZ to π(θ ∣ X (n))

The observed data X (n)0 is not used in the training process.

g(Z ,X (n))

Z ∼ N(0,1) θ ∣ X (n) ∼ N (∑
n
i=1 Xi
n+1 , 1

n+1)

θ = 1√
n+1

Z + ∑
n
i=1 Xi
n+1

πZ πn(θ ∣ X (n))

Normal location?
Pθ = N(1nθ, In)
π(θ) = N(0,1)

⇒ The approximate posterior is then obtained as

θ ∣ X (n)0 ∼ g(Z ,X (n)0 )
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Wasserstein GANs

However, conditional GANs suffer from training issues.
The gradients of the generator vanish when discriminator is too strong [Arjovsky
et al., 2017].
cGAN does not work well with continuous conditions [Zhou et al., 2022].

Consider the Wasserstein variant

min
g∈G

max
f∈F

PX (n)∼π(X (n)),Z∼πZ
f(g(Z ,X (n)),X (n)) −P(θ,X (n))∼π(θ,X (n))f (θ,X

(n))

where F is the class of functions that are 1-Lipschitz with respect to θ.
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Bayesian Simulation via WGANs (B-GANs)

The generator class G is parametrized with β and the critic class F is parametrized with ω.

Initialize networks fω and gβ.
1 Generate the ABC reference table.

Simulate {X (n)j , θj}T
j=1 where θj ∼ π(θ) and X (n)j ∼ P(n)θj

, and {Zj}T
j=1

iid∼ πZ (⋅)
2 Train the empirical version of Wasserstein loss.

β̂T = arg min
β∶gβ∈G

[ max
ω∶fω∈F

RRRRRRRRRRRR

T
∑
j=1

fω(X (n)j ,gβ(Zj ,X
(n)
j )) −

T
∑
j=1

fω(X (n)j , θj)
RRRRRRRRRRRR
]

3 Simulate posterior.
Generate {Zi}M

i=1
iid∼ πZ (Z), Predict θ̃i = gβ̂T

(Zi ,X
(n)
0 ).

We obtain approximated posterior draws {θ̃1, . . . , θ̃M}.

24 / 38



Convergence in TV: Three Terms
Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with β̂T where F = {f ∶ ∥f ∥∞ ≤ B} for some B > 0. Assume

Π[Bn(θ0; ε)] ≥ e−C2nε2
for some C2 > 2 and ε > 0.

For T ≥ Pmax we have for any C > 0

P(n)θ0
PX (n)0

d2
TV(π(θ ∣ X (n)0 ), πβ̂T

(θ ∣ X (n)0 )) ≤ CT
n (β̂T , ε,C),

where for some C̃ > 0

CT
n (β̂T , ε,C) =

1
C2nε2 +

e(1+C+C2)nε
2

4

⎡⎢⎢⎢⎢⎣
2A1(F , β̂T ) +

BA2(G)√
2
+ 4C̃B

√
log T × Pmax

T

⎤⎥⎥⎥⎥⎦
.

The prior concentration condition ensures we have enough mass around the truth.
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Convergence in TV: Three Terms
Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with β̂T where F = {f ∶ ∥f ∥∞ ≤ B} for some B > 0. Assume

Π[Bn(θ0; ε)] ≥ e−C2nε2
for some C2 > 2 and ε > 0.

For T ≥ Pmax we have for any C > 0

P(n)θ0
PX (n)0

d2
TV(π(θ ∣ X (n)0 ), πβ̂T

(θ ∣ X (n)0 )) ≤ CT
n (β̂T , ε,C),

where for some C̃ > 0

CT
n (β̂T , ε,C) =

1
C2nε2 +

e(1+C+C2)nε
2

4

⎡⎢⎢⎢⎢⎣
2 A1(F , β̂T ) +

BA2(G)√
2
+ 4C̃B

√
log T × Pmax

T

⎤⎥⎥⎥⎥⎦
.

The ability of the critic to express the class of density ratios

A1(F , β̂T ) = inf
ω∶fω∈F

XXXXXXXXXXXX
log

π(θ ∣ X (n))
πgβ̂T

(θ ∣ X (n))
− fω(θ,X (n))

XXXXXXXXXXXX∞
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Convergence in TV: Three Terms
Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with β̂T where F = {f ∶ ∥f ∥∞ ≤ B} for some B > 0. Assume

Π[Bn(θ0; ε)] ≥ e−C2nε2
for some C2 > 2 and ε > 0.

For T ≥ Pmax we have for any C > 0

P(n)θ0
PX (n)0

d2
TV(π(θ ∣ X (n)0 ), πβ̂T

(θ ∣ X (n)0 )) ≤ CT
n (β̂T , ε,C),

where for some C̃ > 0

CT
n (β̂T , ε,C) = 1

C2nε2
+ e(1+C+C2)nε2

4

⎡⎢⎢⎢⎢⎢⎢⎣

2A1(F , β̂T ) +
B A2(G)

√
2

+ 4C̃B

√
log T ×Pmax

T

⎤⎥⎥⎥⎥⎥⎥⎦

.

The ability of the generator to approximate the average true posterior

A2(G) = inf
β∶gβ∈G

⎡⎢⎢⎢⎣
PX (n)

XXXXXXXXXXX
log

πgβ(θ ∣ X (n))
π(θ ∣ X (n))

XXXXXXXXXXX∞

⎤⎥⎥⎥⎦

1/2
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Convergence in TV: Three Terms
Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with β̂T where F = {f ∶ ∥f ∥∞ ≤ B} for some B > 0. Assume

Π[Bn(θ0; ε)] ≥ e−C2nε2
for some C2 > 2 and ε > 0.

For T ≥ Pmax we have for any C > 0

P(n)θ0
PX (n)0

d2
TV(π(θ ∣ X (n)0 ), πβ̂T

(θ ∣ X (n)0 )) ≤ CT
n (β̂T , ε,C),

where for some C̃ > 0

CT
n (β̂T , ε,C) =

1
C2nε2 +

e(1+C+C2)nε
2

4

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2A1(F , β̂T ) +
BA2(G)√

2
+ 4C̃B

¿
ÁÁÁÀ log T × Pmax

T

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Complexity in Pseudo Dim [Bartlett et al., 2017]
Pmax= Pdim(F) ⋁ Pdim(H)

critic class
composition of critic and discriminator
{hω,β(Z ,X) = fω(gβ(Z ,X),X)}
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Toy Example
We observe bi-variate Gaussians X (n) = (X1,X2,X3,X4)′ with Xj ∼ N(µθ,Σθ) parametrized by
θ = (θ1, θ2, θ3, θ4, θ5)′, where

µθ = (θ1, θ2)′ and Σθ = ( s2
1 ρs1s2

ρs1s2 s2
2

)

with s1 = θ2
3,s2 = θ2

4, ρ = tanh(θ5), and n = 4.
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Local Enhancements

Our goal is to find a high-quality approximation to the conditional π(θ ∣ X (n)0 ), which is not
necessarily uniformly over the entire domain X .

The vanilla B-GAN is not trained on the observed data X (n)0 .

Can we do better? Yes!

X (n)0 in proposal⇒ 2-Step Refinement

X (n)0 in training⇒ Adversarial Variational Bayes
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2-Step Refinement
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B-GAN-2S

If we zoom in the area close to θ0, the precision of g(⋅) around X (n)0 can be improved.

A pilot generator gβ̂(Z ,X
(n)
0 ) learned under the original prior π(θ) can be used to

guide the “promising” region for the next round⇒ π̃(θ).
We adjust the “wrong” prior by reweighting with importance weights

r(θ) = π(θ)
π̃(θ)

.

The new B-GAN returns weighted approximated posterior sample pairs
(θ̃1, r̂(θ̃1)), . . . , (θ̃M , r̂(θ̃M)).
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Adversarial Variational Approximation

Implicit distributions are explored within the variational framework to obtain finer and
tighter posterior approximations.

Find a set of parameter β∗ that maximizes the Evidence Lower Bound (ELBO) as

simulation from gβ (Z ,X (n)0 ) implicit ⇒ classification trick log
d∗β(X

(n)
0 ,θ)

1−d∗
β
(X (n)0 ,θ)

⇒ replace d∗
β with d̂β

⇒ train dβ on π (X (n), θ) and πg (X (n), θ)

β∗ = arg maxβ L(β) = arg minβ KL (qβ (θ ∣ X (n)0 ) ∥π (θ ∣ X (n)0 ))

= arg minβ P
θ∼qβ(θ∣X (n)0 ) log

qβ(θ∣X (n)0 )

π(θ∣X (n)0 )

Discriminator learns globally, generator learns locally!
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Toy Example (cont’d)

B-GAN-2S and B-GAN-VB have smaller biases and tighter credible regions.
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Toy Example (cont’d)

We report the Maximum Mean Discrepancies (MMDs) between the approximated posteriors and
the true posterior.
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Lotka-Volterra Revisited
We follow the same setup as before, except that now X (n)0 is a single time-series.
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Conclusions: Part II

We propose a Bayesian GAN sampler

, can be applied to dependent data and/or very few observations
, convergence results in terms in total variation distance is provided

Two types of local performance enhancements are considered

▸ 2-Step Refinement
▸ Adversarial Variational Bayes

Thank you!
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AR-ABC: Posterior Concentration
Our results can be viewed as a special case of Frazier et al. [2018].

Theorem. Under some mild assumptions, as n →∞ and εn = o(1) and Cnδn = o(εn) for some
arbitrarily slowly increasing sequences Mn,Cn > 0,

P(n)0 Π[K (pθ0 ,pθ) > λn ∣ K̂ (X , X̃
θ
) ≤ εn] = o(1),

where
λn = MnCn δn

®
∣K̂−Kn∣

ε−κn +
√

Mnn−1/2ε
−κ/2
n + εn (4)

Using Kaji et al. [2020] we show

∣K̂ (X , X̃
θ
) − 1

n

n

∑
i=1

log
pθ0

pθ
(Xi)∣ = Op(δn).

The rate δn depends on the choice of the discriminator, smoothness of the model, and the
dimension of the data space d .

35 / 38



AR-ABC: Posterior Concentration
Our results can be viewed as a special case of Frazier et al. [2018].

Theorem. Under some mild assumptions, as n →∞ and εn = o(1) and Cnδn = o(εn) for some
arbitrarily slowly increasing sequences Mn,Cn > 0,

P(n)0 Π[K (pθ0 ,pθ) > λn ∣ K̂ (X , X̃
θ
) ≤ εn] = o(1),

where

λn = MnCn δn
®
∣K̂−Kn∣

ε−κn +
√

Mn n−1/2
²
∣Kn−K ∣

ε
−κ/2
n + εn (5)

Estimation error between the empirical KL and true KL.
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AR-ABC: Posterior Concentration
Our results can be viewed as a special case of Frazier et al. [2018].

Theorem. Under some mild assumptions, as n →∞ and εn = o(1) and Cnδn = o(εn) for some
arbitrarily slowly increasing sequences Mn,Cn > 0,

P(n)0 Π[K (pθ0 ,pθ) > λn ∣ K̂ (X , X̃
θ
) ≤ εn] = o(1),

where

λn = MnCn δn
®
∣K̂−Kn∣

ε−κn +
√

Mn n−1/2
²
∣Kn−K ∣

ε
−κ/2
n + εn

®
threshold

. (6)

, Consistency is guaranteed as long as εn → 0

/ The proper choice of εn is unclear for complex models
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Other ABC Methods

(CA) Classification Accuracy [Gutmann et al., 2018]

(W2) 2-Wasserstein distance [Bernton et al., 2019]

(SS) `2-distance between summary statistics and we use the (SA) semi-automatic method
[Fearnhead and Prangle, 2012] if no candidate summary statistics are given

(DNN) approximated posterior mean of the parameters predicted by trained deep neural
network [Jiang et al., 2017]

(MM) Maximum Mean Discrepancy [Park et al., 2016]

(ES) Energy Statistics [Nguyen et al., 2020]

(AL) Auxiliary Likelihood [Drovandi et al., 2011]

For each ABC method, we ran 100,000 samples and accepted the top 1%.
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Lotka-Volterra: A Closer Look
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Patterns in the predator-prey interactions are very sensitive to parameter changes
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B-GAN-VB

We implement the Wasserstein analogue.

The generator function is updated only locally on X (n)0 .

Update the critic function fω globally on {θj ,X
(n)
j }T

j=1

max
ω∶fω∈F

PX (n)∼π(X (n)),Z∼πZ
fω(gβ(Z ,X (n)),X (n))

− P(θ,X (n))∼π(θ,X (n))fω(θ,X
(n)).

Update the generator gβ locally on X (n)0

min
β∶gβ∈G

PZ∼πZ fω(gβ(Z ,X
(n)
0 ),X (n)0 ).
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