

Adversarial Bayesian Simulation

Yuexi Wang

joint work with Veronika Ročková

Booth School of Business University of Chicago

November 24, 2022

Simulation-Based Inference

The basic Bayesian ingredients

- Data $\boldsymbol{X} = \{X_i\}_{i=1}^n$ realized from $P_{\theta_0}^{(n)}$ indexed by $\theta_0 \in \Theta$
- Prior $\Pi(\cdot)$
- Model $P_{\theta}^{(n)}$, for each $\theta \in \Theta$, admits a density $p_{\theta}^{(n)}$

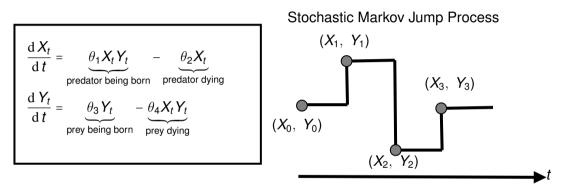
We focus on posterior

$$\pi(\theta \mid \mathbf{X}) \propto \underbrace{p_{\theta}^{(n)}(\mathbf{X}) \times \pi(\theta)}_{\text{too costly to evaluate } \odot}$$

but can be readily sampled from \Im

- ->> Heston model: Stochastic volatility dynamics in finance
- Solution of the second seco
- ~> SIR model: Disease spreading dynamics in epidemiology.

Lotka-Volterra (LV) model with $\theta = (\theta_1, \theta_2, \theta_3, \theta_4)'$



Despite easy to sample from (using the Gillespie algorithm), the likelihood for this model is unavailable.

Approximate Bayesian Computation (ABC)

- © Reliance on summary statistics
- Posterior shapes vary with how the ABC draws are weighted
- © Parallel computation feasible
- Solution Not sensitive to initialization

Adversarial Learning

A good classifier can tell us how "similar" the two datasets are.

Our Approaches

IID data

▶ In the LV model, each observation is a time series and we observe *n* iid copies

$$\blacktriangleright \ \boldsymbol{p}_{\theta}^{(n)}(\boldsymbol{X}) = \prod_{i=1}^{n} \boldsymbol{p}_{\theta}(X_i) = \boldsymbol{p}_{\theta_0}^{(n)}(\boldsymbol{X}) \times \prod_{i=1}^{n} \frac{\boldsymbol{p}_{\theta}(X_i)}{\boldsymbol{p}_{\theta_0}(X_i)}$$

ABC via Classification!
 Wang, Kaji, and Ročková [2022]. JMLR.

Dependent data

- For the LV model, we only observe one time series
- $p_{\theta}^{(n)}(\mathbf{X})$ has no product form
- Bayesian Generative Adversarial Networks (B-GANs)!
 Wang and Ročková [2022]. arXiv:2208.12113.

ABC via Classification¹

¹Wang, Kaji, and Ročková [2022]. JMLR

The Classification Trick

Now we have *n* iid 'real' observations, and we simulate *m* 'fake' observations from P_{θ}

We consider a classification problem as

$$\max_{D\in\mathcal{D}}\left[\frac{1}{n}\sum_{i=1}^{n}\log D(X_i) + \frac{1}{m}\sum_{i=1}^{m}\log(1-D(\widetilde{X}_i^{\theta}))\right],\tag{1}$$

where $D: \mathcal{X} \to (0, 1)$ (1 for 'real' and 0 for 'fake' data).

• When
$$\theta$$
 is **close** to θ_0 , P_{θ} and P_{θ_0} are very similar
 \Rightarrow Hard to distinguish $\widetilde{\boldsymbol{X}}^{\theta}$ from \boldsymbol{X} .
 $\Rightarrow \hat{D}(\widetilde{X}_j^{\theta})$ **close to 0.5**

• When θ is **far** from θ_0 , P_{θ} and P_{θ_0} are very different \Rightarrow Easy to distinguish \widetilde{X}^{θ} from X.

 $\Rightarrow \hat{D}(\widetilde{X}_{j}^{\theta})$ close to 0

Estimating KL via Classification

We adopt KL divergence $K(p_{\theta_0}, p_{\theta})$ inside ABC, first proposed by Jiang et al. [2018].

Oracle discriminator to the log loss in Eq. (1) is

$$D_{\theta}^{O}(X) := \frac{p_{\theta_{0}}(X)}{p_{\theta_{0}}(X) + p_{\theta}(X)} \Rightarrow \frac{p_{0}}{p_{\theta}}(X) = \frac{D_{\theta}^{O}(X)}{1 - D_{\theta}^{O}(X)}$$
replace D_{θ}^{O} with $\hat{D}_{n,m}$
KL estimator
$$\hat{K}\left(\boldsymbol{X}, \tilde{\boldsymbol{X}}^{\theta}\right) = \frac{1}{n} \sum_{i=1}^{n} \log \frac{\hat{D}_{n,m}(X_{i})}{1 - \hat{D}_{n,m}(X_{i})}$$

$$\Rightarrow \text{Accept-Reject ABC}$$
Likelihood Ratio estimator
$$\prod_{i=1}^{n} \frac{\hat{D}_{n,m}(X_{i})}{1 - \hat{D}_{n,m}(X_{i})} = \exp\left(-n\hat{K}\left(\boldsymbol{X}, \tilde{\boldsymbol{X}}^{\theta}\right)\right)$$

$$\Rightarrow \text{Exponential-Weighted ABC}$$

Accept and Reject ABC (AR-ABC)

For a pre-determined tolerance level $\epsilon_n > 0$, repeat for j = 1, ..., N:

- **()** Simulate θ_j from $\pi(\theta)$.
- Simulate $\widetilde{\mathbf{X}}^{\theta_j} = (\widetilde{X}_1^{\theta_j}, \dots, \widetilde{X}_m^{\theta_j})'$ through i.i.d sampling from the model P_{θ_j} .
- Sonstruct $\hat{K}(X, \tilde{X}^{\theta_j})$ by training a classifier distinguishing X and \tilde{X}^{θ_j} .
- **a** Accept θ_j when $\hat{K}(\boldsymbol{X}, \boldsymbol{\widetilde{X}}^{\theta_j}) \leq \epsilon_n$.

$$\hat{\pi}^{AR}(\theta \mid \boldsymbol{X}) = \frac{\int \pi(\theta) \boldsymbol{p}_{\theta}^{(n)}(\widetilde{\boldsymbol{X}}^{\theta}) \mathbb{I}(\hat{\boldsymbol{K}}(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^{\theta}) \leq \epsilon_{n}) \mathrm{d}\,\widetilde{\boldsymbol{X}}^{\theta}}{\int \int \pi(\theta) \boldsymbol{p}_{\theta}^{(n)}(\widetilde{\boldsymbol{X}}^{\theta}) \mathbb{I}(\hat{\boldsymbol{K}}(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^{\theta}) \leq \epsilon_{n}) \mathrm{d}\,\widetilde{\boldsymbol{X}}^{\theta} \mathrm{d}\,\theta}$$

- Solution Posterior concentration rate depends on estimation error δ_n and threshold ϵ_n . Consistency is guaranteed as long as $\epsilon_n \rightarrow 0$
- \odot The proper choice of ϵ_n is still unclear for complex models

Exponential-Weighted ABC

Motivated by the connection between KL and the likelihood ratio, we propose a scaled exponential kernel that requires no ad hoc scaling

$$\hat{\pi}^{EK}(\theta \mid \boldsymbol{X}) = \frac{\int \pi(\theta) \boldsymbol{p}_{\theta}^{(n)}(\widetilde{\boldsymbol{X}}^{\theta}) \exp\left(-n\hat{\boldsymbol{K}}(\boldsymbol{X},\widetilde{\boldsymbol{X}}^{\theta})\right) \mathrm{d}\,\widetilde{\boldsymbol{X}}^{\theta}}{\int \int \pi(\theta) \boldsymbol{p}_{\theta}^{(n)}(\widetilde{\boldsymbol{X}}^{\theta}) \exp\left(-n\hat{\boldsymbol{K}}(\boldsymbol{X},\widetilde{\boldsymbol{X}}^{\theta})\right) \mathrm{d}\,\widetilde{\boldsymbol{X}}^{\theta} \mathrm{d}\,\theta}$$

We can rewrite the approximated posterior as

$$\hat{\pi}^{EK}(\theta \,|\, \boldsymbol{X}^{(n)}) \propto \underbrace{\boldsymbol{p}_{\theta}^{(n)}(\boldsymbol{X}) \mathrm{e}^{\hat{u}_{\theta}(\boldsymbol{X})}}_{\boldsymbol{\mu}} \ \pi(\theta),$$

Model mis-specification

where $\hat{u}_{\theta}(\boldsymbol{X}) = \log \int e^{-n \times \left(\hat{\kappa}(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^{\theta}) - \frac{1}{n} \sum_{i=1}^{n} \log \frac{p_{\theta_{0}}}{p_{\theta}}(X_{i})\right)} \mathrm{d} \, \widetilde{\boldsymbol{X}}^{\theta}.$

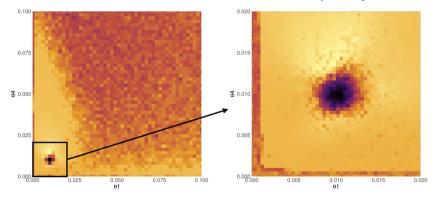
Eq.(2) can be characterized as a posterior under a mis-specified likelihood \tilde{p}_{θ} .

 \sim Concentration around θ^* (KL projection point)

(2)

Lotka-Volterra: Likelihood is Spiky!

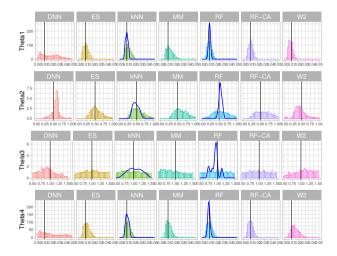
Simulation starts at $X_0 = 50$ and $Y_0 = 100$ and is over 20 time units with intervals of 0.1, resulting in a series of T = 201 observations each. Fix $\theta_2 = 0.5$, $\theta_3 = 1$ and only change θ_1 and θ_4 .



- Narrow range of likely parameter values
 - Interaction patterns are very sensitive to parameter changes
- MCMC convergence speed is very sensitive to the initialization

ABC Results

True values $\theta_0 = (0.01, 0.5, 1, 0.01)$. Uniform Prior on $[0, 0.1] \times [0, 1] \times [0, 2] \times [0, 0.1]$



Conclusions: Part I

- ③ We have developed an ABC approach which obviates the need for summary statistics.
- © We adopt two versions of ABC
 - Accept-Reject ABC
 - ▶ New! Exponential-Weighted ABC that requires no ad hoc thresholding

Yet limitations?

- How to construct a reasonable classifier for dependent data is unclear
- The computation costs for training a new classifier after each ABC draw is daunting.

Even Better!

Adversarial Bayesian Simulation²

²Wang and Ročková [2022]. arXiv:2208.12113.

Generative Adversarial Networks (GANs)

Generator against Discriminator

https://this-person-does-not-exist.com/

Generator against Discriminator

When training begins, the generator produces obviously fake data, and the discriminator quickly learns to tell that it's fake:

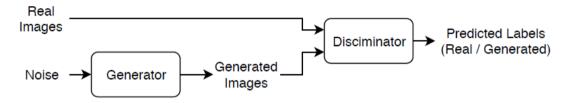
As training progresses, the generator gets closer to producing output that can fool the discriminator:

Finally, if generator training goes well, the discriminator gets worse at telling the difference between real and fake. It starts to classify fake data as real, and its accuracy decreases.

 $^{3} \mbox{credit to } \mbox{https://developers.google.com/machine-learning/gan/gan_structure}$

GANs

"generate a fake human face image"



The two-player min-max game with Generator g and Discriminator d

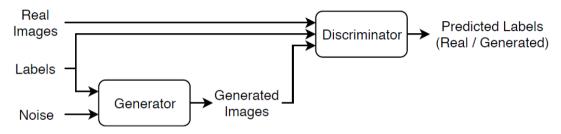
$$\min_{g \in \mathcal{G}} \max_{d \in \mathcal{D}} P_{X^{(n)} \sim \pi(X^{(n)})} \log d(X^{(n)}) + P_{Z \sim \pi_{Z}(Z)} \log(1 - d(g(Z)))$$

The generator g learns to approximate the **marginal** distribution $\pi(X^{(n)})$.

Draws from the implicit distribution $\pi(X^{(n)})$ are obtained by passing a random noise vector $Z \in \mathbb{Z} \in \mathbb{R}^{d_z}$ through a non-stochastic mapping $g : \mathbb{Z} \to \mathcal{X}$.

Conditional GANs (cGANs)

What if we want to generate distribution conditioned on some extra information, like labels for images ('cat', 'dog' etc.)?



- The generator generates fake images given the labels. "generate a fake cat image"
- The discriminator distinguishes pairs of (real image, label) and (fake image, label). "how is (real cat image, cat) different from (fake cat image, cat)"

Generate 'fake' θ given $X^{(n)}$

Input		$\{\text{image}_i, \text{label}_i\}_{i=1}^T$	$\{ heta_i, X^{(n)}_{ heta_i}\}_{i=1}^T$
Generator		$\mathbf{fake_image}_i \text{ given } \mathbf{label}_i$	$\widehat{ heta}_i = gig(Z_i, X^{(n)}_{ heta_i}ig)$
Discriminator	"1"	$(\mathrm{image}_i, \mathrm{label}_i)$	$\qquad \qquad $
	"0"	$(ext{fake}_{ ext{image}_i}, ext{label}_i)$	$\left(\widehat{ heta}_{i}, X^{(n)}_{ heta_{i}} ight)$

cGANs

Consider the two-player min-max game

 $\min_{g \in \mathcal{G}} \max_{d \in \mathcal{D}} P_{X^{(n)}, \theta \sim \pi(X^{(n)}, \theta)} \log d(X^{(n)}, \theta) + P_{X^{(n)} \sim \pi(X^{(n)}), Z \sim \pi_{Z}(Z)} \log \left(1 - d(X^{(n)}, g(Z, X^{(n)}))\right)$ (3)

Now $X^{(n)}$ enters both discriminator and generator.

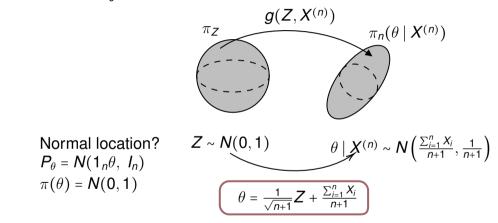
• Fix the marginal distribution $\pi(X^{(n)})$,

matching the joint distribution \Leftrightarrow matching the conditional distribution

• With flexible enough \mathcal{D} and \mathcal{G} , the solution (g^*, d^*) to the minimax game satisfies

$$\pi_{g^*}(\theta \mid X^{(n)}) = \frac{\pi(X^{(n)}, \theta)}{\pi(X^{(n)})} = \pi(\theta \mid X^{(n)}) \text{ for any } X^{(n)} \in \mathcal{X}$$
$$d_g^*(X^{(n)}, \theta) = \frac{\pi(X^{(n)}, \theta)}{\pi(X^{(n)}, \theta) + \pi_g(X^{(n)}, \theta)}$$

 $g(\cdot, X^{(n)})$ is a pushforward mapping from π_Z to $\pi(\theta \mid X^{(n)})$ The observed data $X_0^{(n)}$ is **not used** in the training process.



 \Rightarrow The approximate posterior is then obtained as

 $\theta \mid X_0^{(n)} \sim g(Z, X_0^{(n)})$

Wasserstein GANs

However, conditional GANs suffer from training issues.

- The gradients of the generator vanish when discriminator is too strong [Arjovsky et al., 2017].
- cGAN does not work well with continuous conditions [Zhou et al., 2022].

Consider the Wasserstein variant

$$\min_{g \in \mathcal{G}} \max_{f \in \mathcal{F}} P_{X^{(n)} \sim \pi(X^{(n)}), Z \sim \pi_Z} f(g(Z, X^{(n)}), X^{(n)}) - P_{(\theta, X^{(n)}) \sim \pi(\theta, X^{(n)})} f(\theta, X^{(n)})$$

where \mathcal{F} is the class of functions that are 1-Lipschitz with respect to θ .

Bayesian Simulation via WGANs (B-GANs)

The generator class \mathcal{G} is parametrized with β and the critic class \mathcal{F} is parametrized with ω .

Initialize networks f_{ω} and g_{β} .

- Generate the ABC reference table. Simulate $\{X_j^{(n)}, \theta_j\}_{j=1}^T$ where $\theta_j \sim \pi(\theta)$ and $X_j^{(n)} \sim P_{\theta_i}^{(n)}$, and $\{Z_j\}_{j=1}^T \stackrel{\text{iid}}{\sim} \pi_Z(\cdot)$
- Train the empirical version of Wasserstein loss.

$$\hat{\beta}_{T} = \arg\min_{\beta: g_{\beta} \in \mathcal{G}} \left[\max_{\omega: f_{\omega} \in \mathcal{F}} \left| \sum_{j=1}^{T} f_{\omega} (X_{j}^{(n)}, g_{\beta}(Z_{j}, X_{j}^{(n)})) - \sum_{j=1}^{T} f_{\omega}(X_{j}^{(n)}, \theta_{j}) \right| \right]$$

Simulate posterior.

Generate $\{Z_i\}_{i=1}^M \stackrel{\text{iid}}{\sim} \pi_Z(Z)$, Predict $\tilde{\theta}_i = g_{\widehat{\beta}_T}(Z_i, X_0^{(n)})$.

We obtain approximated posterior draws $\{\tilde{\theta}_1, \ldots, \tilde{\theta}_M\}$.

Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with $\widehat{\beta}_T$ where $\mathcal{F} = \{f : ||f||_{\infty} \leq B\}$ for some B > 0. Assume

 $\Pi[B_n(\theta_0;\epsilon)] \ge e^{-C_2 n\epsilon^2} \text{ for some } C_2 > 2 \text{ and } \epsilon > 0.$

For $T \ge P_{max}$ we have for any C > 0

$$\mathcal{P}_{\theta_0}^{(n)} \mathbb{P}_{X_0^{(n)}} d^2_{\mathsf{TV}} \Big(\pi(\theta \mid X_0^{(n)}), \pi_{\widehat{\beta}_{\mathcal{T}}}(\theta \mid X_0^{(n)}) \Big) \le C_n^{\mathcal{T}}(\widehat{\beta}_{\mathcal{T}}, \epsilon, C),$$

where for some $\tilde{C} > 0$ $C_n^T(\widehat{\beta_T}, \epsilon, C) = \frac{1}{C^2 n \epsilon^2} + \frac{e^{(1+C+C_2)n\epsilon^2}}{4} \left[2\mathcal{A}_1(\mathcal{F}, \widehat{\beta}_T) + \frac{B\mathcal{A}_2(\mathcal{G})}{\sqrt{2}} + 4\tilde{C}B\sqrt{\frac{\log T \times P_{\max}}{T}} \right].$

The prior concentration condition ensures we have enough mass around the truth.

Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with $\widehat{\beta}_T$ where $\mathcal{F} = \{f : ||f||_{\infty} \leq B\}$ for some B > 0. Assume $\prod[B_n(\theta_0; \epsilon)] \geq e^{-C_2 n\epsilon^2}$ for some $C_2 > 2$ and $\epsilon > 0$.

For $T \ge P_{max}$ we have for any C > 0

$$\boldsymbol{P}_{\theta_{0}}^{(n)} \mathbb{P}_{\boldsymbol{X}_{0}^{(n)}} \boldsymbol{d}_{\mathsf{TV}}^{2} \Big(\pi(\theta \mid \boldsymbol{X}_{0}^{(n)}), \pi_{\widehat{\boldsymbol{\beta}}_{\mathcal{T}}}(\theta \mid \boldsymbol{X}_{0}^{(n)}) \Big) \leq \boldsymbol{C}_{n}^{\mathcal{T}}(\widehat{\boldsymbol{\beta}}_{\mathcal{T}}, \boldsymbol{\epsilon}, \boldsymbol{C}),$$

where for some
$$\widetilde{C} > 0$$

$$C_n^T(\widehat{\beta_T}, \epsilon, C) = \frac{1}{C^2 n \epsilon^2} + \frac{e^{(1+C+C_2)n\epsilon^2}}{4} \left[2 \frac{\mathcal{A}_1(\mathcal{F}, \widehat{\beta}_T)}{\sqrt{2}} + \frac{B\mathcal{A}_2(\mathcal{G})}{\sqrt{2}} + 4\widetilde{C}B\sqrt{\frac{\log T \times P_{\max}}{T}} \right]$$

The ability of the critic to express the class of density ratios

$$\mathcal{A}_{1}(\mathcal{F},\widehat{\boldsymbol{\beta}}_{T}) = \inf_{\omega: f_{\omega} \in \mathcal{F}} \left\| \log \frac{\pi(\theta \mid \boldsymbol{X}^{(n)})}{\pi_{g_{\widehat{\boldsymbol{\beta}}_{T}}}(\theta \mid \boldsymbol{X}^{(n)})} - f_{\omega}(\theta, \boldsymbol{X}^{(n)}) \right\|_{\infty}$$

Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with $\widehat{\beta}_T$ where $\mathcal{F} = \{f : ||f||_{\infty} \leq B\}$ for some B > 0. Assume $\prod[B_n(\theta_0; \epsilon)] \geq e^{-C_2 n\epsilon^2}$ for some $C_2 > 2$ and $\epsilon > 0$.

For $T \ge P_{max}$ we have for any C > 0

$$\mathcal{P}_{\theta_0}^{(n)} \mathbb{P}_{X_0^{(n)}} d^2_{\mathsf{TV}} \Big(\pi(\theta \mid X_0^{(n)}), \pi_{\widehat{\beta}_{\mathcal{T}}}(\theta \mid X_0^{(n)}) \Big) \leq C_n^{\mathcal{T}}(\widehat{\beta}_{\mathcal{T}}, \epsilon, C),$$

where for some
$$\tilde{C} > 0$$

$$C_n^T(\widehat{\beta_T}, \epsilon, C) = \frac{1}{C^2 n \epsilon^2} + \frac{e^{(1+C+C_2)n \epsilon^2}}{4} \left[2\mathcal{A}_1(\mathcal{F}, \widehat{\beta}_T) + \frac{B\mathcal{A}_2(\mathcal{G})}{\sqrt{2}} + 4\tilde{C}B\sqrt{\frac{\log T \times P_{\max}}{T}} \right].$$

The ability of the generator to approximate the average true posterior

$$\mathcal{A}_{2}(\mathcal{G}) = \inf_{\beta: g_{\beta} \in \mathcal{G}} \left[\mathcal{P}_{X^{(n)}} \left\| \log \frac{\pi_{g_{\beta}}(\theta \mid X^{(n)})}{\pi(\theta \mid X^{(n)})} \right\|_{\infty} \right]^{1/2}$$

Our result is built on oracle inequalities established in Liang [2021].

Theorem. Denote the solution with $\widehat{\beta}_T$ where $\mathcal{F} = \{f : ||f||_{\infty} \le B\}$ for some B > 0. Assume $\prod[B_n(\theta_0; \epsilon)] \ge e^{-C_2 n\epsilon^2}$ for some $C_2 > 2$ and $\epsilon > 0$.

For $T \ge P_{max}$ we have for any C > 0

$$\mathcal{P}_{\theta_0}^{(n)} \mathbb{P}_{\mathsf{X}_0^{(n)}} d^2_{\mathsf{TV}} \Big(\pi(\theta \mid \mathsf{X}_0^{(n)}), \pi_{\widehat{\beta}_{\mathsf{T}}}(\theta \mid \mathsf{X}_0^{(n)}) \Big) \leq C_n^{\mathsf{T}}(\widehat{\beta}_{\mathsf{T}}, \epsilon, C),$$

where for some $\tilde{C} > 0$

$$C_n^T(\widehat{\beta_T},\epsilon,C) = \frac{1}{C^2 n \epsilon^2} + \frac{e^{(1+C+C_2)n\epsilon^2}}{4} \left[2\mathcal{A}_1(\mathcal{F},\widehat{\beta}_T) + \frac{B\mathcal{A}_2(\mathcal{G})}{\sqrt{2}} + 4\tilde{C}B\sqrt{\frac{\log T \times P_{\max}}{T}} \right].$$

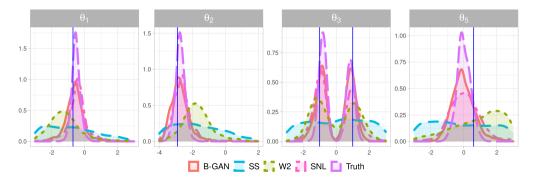
Complexity in Pseudo Dim [Bartlett et al., 2017] $\begin{array}{c}
P_{\text{max}} = \text{Pdim}(\mathcal{F}) \lor \text{Pdim}(\mathcal{H}) \\
\text{critic class} \\
 \begin{array}{c}
P_{\text{max}} = \text{Pdim}(\mathcal{F}) \lor \text{Pdim}(\mathcal{H}) \\
\text{composition of critic and discriminator} \\
 \left\{h_{\omega,\beta}(Z,X) = f_{\omega}(g_{\beta}(Z,X),X)\right\}
\end{array}$

Toy Example

We observe bi-variate Gaussians $X^{(n)} = (X_1, X_2, X_3, X_4)'$ with $X_j \sim \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$ parametrized by $\theta = (\theta_1, \theta_2, \theta_3, \theta_4, \theta_5)'$, where

$$\mu_{\theta} = (\theta_1, \theta_2)' \text{ and } \Sigma_{\theta} = \begin{pmatrix} s_1^2 & \rho s_1 s_2 \\ \rho s_1 s_2 & s_2^2 \end{pmatrix}$$

with $s_1 = \theta_3^2$, $s_2 = \theta_4^2$, $\rho = \tanh(\theta_5)$, and n = 4.



Local Enhancements

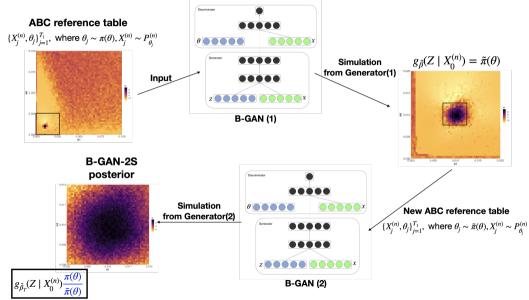
Our goal is to find a high-quality approximation to the conditional $\pi(\theta | X_0^{(n)})$, which is not necessarily uniformly over the entire domain \mathcal{X} .

The vanilla B-GAN is not trained on the observed data $X_0^{(n)}$.

Can we do better? Yes!

- $X_0^{(n)}$ in proposal \Rightarrow 2-Step Refinement
- $X_0^{(n)}$ in training \Rightarrow Adversarial Variational Bayes

2-Step Refinement



B-GAN-2S

If we **zoom in** the area close to θ_0 , the precision of $g(\cdot)$ around $X_0^{(n)}$ can be improved.

- A pilot generator $g_{\hat{\beta}}(Z, X_0^{(n)})$ learned under the original prior $\pi(\theta)$ can be used to guide the "promising" region for the next round $\Rightarrow \tilde{\pi}(\theta)$.
- We adjust the "wrong" prior by reweighting with importance weights

$$r(heta) = rac{\pi(heta)}{ ilde{\pi}(heta)}.$$

• The new B-GAN returns weighted approximated posterior sample pairs $(\tilde{\theta}_1, \hat{r}(\tilde{\theta}_1)), \dots, (\tilde{\theta}_M, \hat{r}(\tilde{\theta}_M)).$

Adversarial Variational Approximation

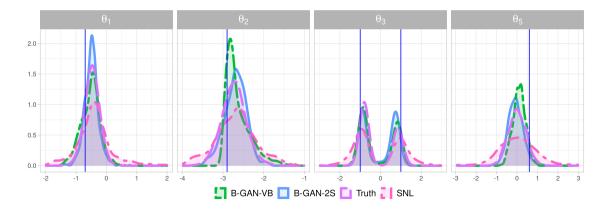
Implicit distributions are explored within the variational framework to obtain finer and tighter posterior approximations.

Find a set of parameter β^* that maximizes the Evidence Lower Bound (ELBO) as $\beta^* = \arg \max_{\beta} \mathcal{L}(\beta) = \arg \min_{\beta} \mathcal{K}L\left(q_{\beta}\left(\theta \mid X_{0}^{(n)}\right) \| \pi\left(\theta \mid X_{0}^{(n)}\right)\right)$ $= \arg \min_{\beta} \mathcal{P}_{\theta \sim q_{\beta}\left(\theta \mid X_{0}^{(n)}\right)} \log \frac{q_{\beta}\left(\theta \mid X_{0}^{(n)}\right)}{\pi\left(\theta \mid X_{0}^{(n)}\right)}$ implicit \Rightarrow classification trick log $\frac{d_{\beta}^{*}(X_{0}^{(n)},\theta)}{1-d^{*}(X_{0}^{(n)},\theta)}$ simulation from $g_{\beta}(Z, X_{0}^{(n)})$ \Rightarrow replace d^*_{β} with $\widehat{d_{\beta}}$ \Rightarrow train d_{β} on $\pi(X^{(n)}, \theta)$ and $\pi_{\alpha}(X^{(n)}, \theta)$

Discriminator learns globally, generator learns locally!

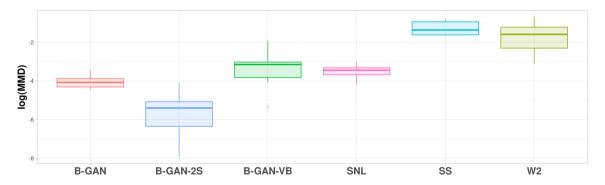
Toy Example (cont'd)

B-GAN-2S and B-GAN-VB have smaller biases and tighter credible regions.



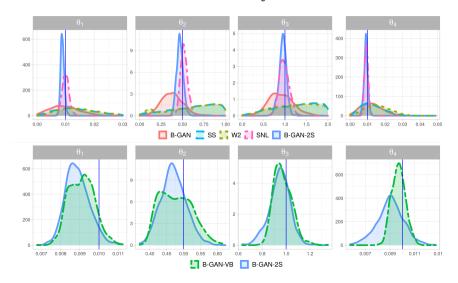
Toy Example (cont'd)

We report the Maximum Mean Discrepancies (MMDs) between the approximated posteriors and the true posterior.



Lotka-Volterra Revisited

We follow the same setup as before, except that now $X_0^{(n)}$ is a single time-series.



Conclusions: Part II

• We propose a Bayesian GAN sampler

- © can be applied to dependent data and/or very few observations
- © convergence results in terms in total variation distance is provided
- Two types of local performance enhancements are considered
 - 2-Step Refinement
 - Adversarial Variational Bayes

Thank you!

AR-ABC: Posterior Concentration

Our results can be viewed as a special case of Frazier et al. [2018].

Theorem. Under some mild assumptions, as $n \to \infty$ and $\epsilon_n = o(1)$ and $C_n \delta_n = o(\epsilon_n)$ for some arbitrarily slowly increasing sequences M_n , $C_n > 0$,

$$P_0^{(n)}\Pi[K(p_{\theta_0},p_{\theta}) > \lambda_n \,|\, \hat{K}(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^{\theta}) \leq \epsilon_n] = o(1),$$

where

$$\lambda_{n} = M_{n}C_{n} \underbrace{\delta_{n}}_{\left|\hat{\kappa}-\kappa_{n}\right|} \epsilon_{n}^{-\kappa} + \sqrt{M_{n}}n^{-1/2}\epsilon_{n}^{-\kappa/2} + \epsilon_{n}$$

Using Kaji et al. [2020] we show

$$\left|\widehat{\mathcal{K}}(\boldsymbol{X},\widetilde{\boldsymbol{X}}^{\theta}) - \frac{1}{n}\sum_{i=1}^{n}\log\frac{p_{\theta_{0}}}{p_{\theta}}(X_{i})\right| = O_{p}(\delta_{n}).$$

The rate δ_n depends on the choice of the discriminator, smoothness of the model, and the dimension of the data space *d*.

(4)

AR-ABC: Posterior Concentration

Our results can be viewed as a special case of Frazier et al. [2018].

Theorem. Under some mild assumptions, as $n \to \infty$ and $\epsilon_n = o(1)$ and $C_n \delta_n = o(\epsilon_n)$ for some arbitrarily slowly increasing sequences M_n , $C_n > 0$,

$$P_0^{(n)}\Pi[K(p_{\theta_0},p_{\theta}) > \lambda_n \,|\, \hat{K}(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^{\theta}) \leq \epsilon_n] = o(1),$$

where

$$\lambda_{n} = M_{n}C_{n} \underbrace{\delta_{n}}_{\left|\hat{\kappa}-\kappa_{n}\right|} \epsilon_{n}^{-\kappa} + \sqrt{M_{n}} \underbrace{n^{-1/2}}_{\left|\kappa_{n}-\kappa\right|} \epsilon_{n}^{-\kappa/2} + \epsilon_{n}$$
(5)

Estimation error between the empirical KL and true KL.

AR-ABC: Posterior Concentration

Our results can be viewed as a special case of Frazier et al. [2018].

Theorem. Under some mild assumptions, as $n \to \infty$ and $\epsilon_n = o(1)$ and $C_n \delta_n = o(\epsilon_n)$ for some arbitrarily slowly increasing sequences M_n , $C_n > 0$,

$$P_0^{(n)}\Pi[K(p_{\theta_0},p_{\theta}) > \lambda_n | \hat{K}(\boldsymbol{X}, \widetilde{\boldsymbol{X}}^{\theta}) \le \epsilon_n] = o(1),$$

where

$$\lambda_n = M_n C_n \underbrace{\delta_n}_{|\hat{K} - K_n|} \epsilon_n^{-\kappa} + \sqrt{M_n} \underbrace{n^{-1/2}}_{|K_n - K|} \epsilon_n^{-\kappa/2} + \underbrace{\epsilon_n}_{\text{threshold}}.$$

 \bigcirc Consistency is guaranteed as long as $\epsilon_n \rightarrow 0$

 \odot The proper choice of ϵ_n is unclear for complex models

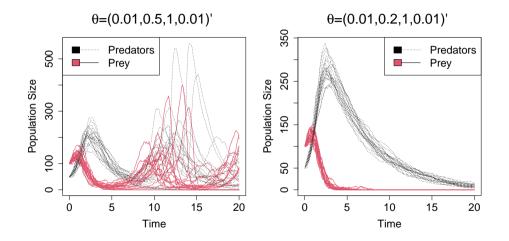
(6)

Other ABC Methods

- (CA) Classification Accuracy [Gutmann et al., 2018]
- (W2) 2-Wasserstein distance [Bernton et al., 2019]
- (SS) ℓ_2 -distance between summary statistics and we use the (SA) semi-automatic method [Fearnhead and Prangle, 2012] if no candidate summary statistics are given
- (DNN) approximated posterior mean of the parameters predicted by trained deep neural network [Jiang et al., 2017]
- (MM) Maximum Mean Discrepancy [Park et al., 2016]
- (ES) Energy Statistics [Nguyen et al., 2020]
- (AL) Auxiliary Likelihood [Drovandi et al., 2011]

For each ABC method, we ran 100,000 samples and accepted the top 1%.

Lotka-Volterra: A Closer Look



• Patterns in the predator-prey interactions are very sensitive to parameter changes

B-GAN-VB

We implement the Wasserstein analogue.

The generator function is updated only locally on $X_0^{(n)}$.

• Update the critic function f_{ω} globally on $\{\theta_j, X_i^{(n)}\}_{i=1}^T$

$$\max_{\omega: f_{\omega} \in \mathcal{F}} \mathbb{P}_{X^{(n)} \sim \pi(X^{(n)}), Z \sim \pi_{Z}} f_{\omega}(g_{\beta}(Z, X^{(n)}), X^{(n)}) - \mathbb{P}_{(\theta, X^{(n)}) \sim \pi(\theta, X^{(n)})} f_{\omega}(\theta, X^{(n)}).$$

• Update the generator g_β locally on $X_0^{(n)}$

$$\min_{\beta:g_{\beta}\in\mathcal{G}}\mathbb{P}_{Z\sim\pi_{Z}}f_{\omega}(g_{\beta}(Z,X_{0}^{(n)}),X_{0}^{(n)}).$$