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Individuals and cells are heterogenous

Figure 1. Dynamics of viral load and memory T cells in individuals infected with SARS-CoV-2.
The total number of memory cells considers only TCM, TEM, and TEMRA memory subtypes.
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Data shared by Christof Geldmacher
We need methods to deal with this heterogeneity!
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 generative model for individual  
 

● Fixed Effects   
(e.g. mean effect of some drug) 

● Random Effects  
(variability of an effect) 

Population Model  
But observations are noisy

M(ϕi) i
ϕi = θ1 + bi

θ1

bi ∼ pθ2
(b)

ϕ ∼ p(ϕ ∣ θ)

Mixed Effects Modelling
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→ all individuals must be estimated simultaneously



Mixed Effects Modelling

● What is the likelihood of observing    using our model ? → yi = M(ϕ) p(yi ∣ ϕ)
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Mixed Effects Modelling

● What is the likelihood of observing    using our model ? → yi = M(ϕ) p(yi ∣ ϕ)
● How are random effects distributed? → p(ϕ ∣ θ)
● What is the likelihood of observing             ? →  

 

Random effects are unobserved quantities 

# = p(# ∣ θ)

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ
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Current Estimation Methods

5

1. “Estimate“ the missing variables ϕi

2. Find best parameters of the overall model

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ



Current Estimation Methods
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1. “Estimate“ the missing variables ϕi

2. Find best parameters of the overall model

We can do this

- Deterministically → biased

- Stochastically → computationally intensive 

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ



Deterministic Approach 
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Linearisation-based or Laplace methods 

1. For every individual  

A. Estimate mode  of  based on the best current  

B. Use approximation to the integral based on the mode  

2. Compute likelihood for population 

3. Repeat until convergence

i
̂ϕi p(yi ∣ ϕ)p(ϕ ∣ θt) θt

̂ϕi

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ
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6

Linearisation-based or Laplace methods 

1. For every individual  

A. Estimate mode  of  based on the best current  

B. Use approximation to the integral based on the mode  

2. Compute likelihood for population 

3. Repeat until convergence

i
̂ϕi p(yi ∣ ϕ)p(ϕ ∣ θt) θt

̂ϕi

Biased, unreliable and sensitive  

(Pinheiro 1994, Comets & Mentré 2001)

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ



Stochastic Approach
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Stochastic expectation maximisation algorithm (SAEM)

1. Expectation step 

 

 samples must be generated with a MCMC procedure 

Q(θ ∣ θt) = %ϕ∼p(ϕ∣yi,θt)[log p(yi ∣ ϕ) + log p(ϕ ∣ θ)]

ϕ ∼ p(ϕ ∣ yi, θt)

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ
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Stochastic expectation maximisation algorithm (SAEM)

1. Expectation step 

 

 samples must be generated with a MCMC procedure 

Q(θ ∣ θt) = %ϕ∼p(ϕ∣yi,θt)[log p(yi ∣ ϕ) + log p(ϕ ∣ θ)]

ϕ ∼ p(ϕ ∣ yi, θt)
2. Maximisation step 

θt+1 = argmax
θ

Q(θ ∣ θt)

Refinement in every step: Q̂(θ ∣ θt) = (1 − λt)Q̂(θ ∣ θt−1) + λtQ(θ ∣ θt)

p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ



Stochastic Expectation Maximisation Algorithm
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● State of the art method 

● EM provides unbiased estimates 

(Savic et. al. 2010) 

● Computationally demanding  

● Sensitive to initial values 

(local minima) 
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● State of the art method 

● EM provides unbiased estimates 

(Savic et. al. 2010) 

● Computationally demanding  

● Sensitive to initial values 

(local minima) 

Can we be more scalable?



Bayesian Inference

● Posterior distribution 
 

● Computed with methods like 
Markov chain Monte Carlo 
methods (MCMC) 

● Computationally demanding

p(ϕ ∣ y) ∝ p(y ∣ ϕ)p(ϕ)
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● Back to  p(# ∣ θ) = ∏
i

∫ p(yi ∣ ϕ)p(ϕ ∣ θ) dϕ

10

Bayesian Approach for Single Individual

Thanks to Jan Hasenauer & Yannik Schälte
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● Rewrite marginal likelihood  in terms of the 
individual-specific posterior distribution 
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∫
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● Back to  

● Rewrite marginal likelihood  in terms of the 
individual-specific posterior distribution 

p(yi ∣ ϕ)

●  
 
 

● Use Monte-Carlo approximation by sampling from individual-specific posterior

p(# ∣ θ) = ∏
i

∫

10

Bayesian Approach for Single Individual

Thanks to Jan Hasenauer & Yannik Schälte

arg max
θ

p(# ∣ θ) = arg max
θ ∏

i
%ϕ∼p(ϕ∣yi) [ p(ϕ ∣ θ)

p(ϕ) ]
                             ≈ arg max

θ ∏
i

∑ [
p(ϕi, j ∣ θ)

p(ϕi, j) ]
ϕi, j ∼ p(ϕ ∣ yi)

p(yi)p(ϕ ∣ yi)
p(ϕ) p(ϕ ∣ θ) dϕ
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Amortized Inference Phase

Generative Models For
Heterogeneous Populations

5. Performing
uncertainty analysis 

1. Generation of
starting values

4. Minimization of log-likelihood 

2. Sampling from
entity-specific posteriors

Sampling

Prior Distribution

Simulate

Simulations

Simulations

Entity-Specific Posteriors

Real Data
Entity-Specific Posteriors

Choice of population model
with population parameter 

3. Construction of
approximated likelihood

U
p to 1 m

illion sim
ulations,

m
s to seconds per sim

ulation
(parallelization possible)

Few
 hours per training

(utilizing G
PU

s possible)

M
inutes per new

 data set
(am

ortization of the previous
phases' com

putational costs)

ODEs, SDEs, ....

Simulation Phase

Training Phase

Latent
Distribution

Training
Normalizing Flow

Summary statistics

Latent
Distribution

Inverting
Normalizing Flow

Summary statistics

e.g.: mRNA counts, drug
response level, ...
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Neural Density Estimation

● Generative models  
● Known for faithfully constructing e.g. portrait images

12

Training Data Generated Data

Pictures taken from Dinh et. al. 2016



Neural Posterior Estimation
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Conditional normalizing flows
● sample from latent distribution  z ∼ p(z)
● get sample from desired distribution by invertible mappings  fi(z)

x = f0(z) ∘ f1(z) ∘ ⋯ ∘ fn(z)

Neural Posterior Estimation
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Conditional normalizing flows
● sample from latent distribution  z ∼ p(z)
● get sample from desired distribution by invertible mappings  fi(z)

x = f0(z) ∘ f1(z) ∘ ⋯ ∘ fn(z)
● eval density by 

p(x) = p(z) | det Jf−1 |
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Conditional normalizing flows
● sample from latent distribution  z ∼ p(z)
● get sample from desired distribution by invertible mappings  fi(z)

x = f0(z) ∘ f1(z) ∘ ⋯ ∘ fn(z)
● eval density by 

p(x) = p(z) | det Jf−1 |
●  parameterized by 

invertible neural networks
fω

Neural Posterior Estimation

13
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Example of Invertible Neural Networks

● affine coupling layers, split input ,  can be any neural network 
 
 

u = (u1, u2) si, ti
v1 = u1 ⊙ exp(s1(u2)) + t1(u2)
v2 = u2 ⊙ exp(s2(v1)) + t2(v1)

14Example based on Radev et. al. 2020
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Example of Invertible Neural Networks

● affine coupling layers, split input ,  can be any neural network 
 
 

u = (u1, u2) si, ti
v1 = u1 ⊙ exp(s1(u2)) + t1(u2)
v2 = u2 ⊙ exp(s2(v1)) + t2(v1)

● inversion 
 u2 = (v2 − t2(v1)) ⊙ exp(−s2(v1))

u1 = (v1 − t1(u2)) ⊙ exp(−s1(u2))

● Jacobian of the affine transformation is a strictly upper or a lower triangular matrix 
→ easy to compute

14Example based on Radev et. al. 2020
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Minimize KL-divergence between true posterior and approximation  
for all possible data y
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ω
%p(y) [KL (p(ϕ ∣ y)∥pω(ϕ ∣ y))]
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Learning a Normalizing Flow

Minimize KL-divergence between true posterior and approximation 
for all possible data y

arg max
ω ∫ ∫ p(y, ϕ)log pω(ϕ ∣ y) dy dϕ

= arg max
ω ∫ ∫ p(y, ϕ)( ) dy dϕ

≈ arg min
ω

1
M

M

∑
m=1 ( ∥fω(ϕ(m), y(m))∥2

2
2 − log | det Jfω |)

16

log p( fω(ϕ, y)) + log | det Jfω |

We need sample pairs !(ϕ(m), y(m))



Neural Posterior Density Estimation
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● Minimize KL-divergence between true posterior and approximation for all 
possible data  

● Generate samples  from prior and produce simulations 
y

ϕ ysim
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How do we get the individual-specific posterior in a 
scalable way?
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Choices to be made

● Depth of invertible neural networks
● Type of summary networks 
● Duration of training (early stopping)
● Loss function (e.g. Wasserstein instead of KL-divergence)
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Choices to be made

● Depth of invertible neural networks
● Type of summary networks 
● Duration of training (early stopping)
● Loss function (e.g. Wasserstein instead of KL-divergence)

Other types of neural density estimators
● Conditional variational autoencoders (Kingma & Welling, 2022)
● Conditional generative adversarial neural networks (Wang & Ročková 2022)
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Example Application

● living cells show molecular and phenotypic 
differences at the single-cell level 

● mass cytometry can provide snapshots in 
thousands to millions of cells 

● time-lapse microscopy measurements of 
single-cells after transfection with 
synthetic mRNA to assess mRNA lifetime

Data from Fröhlich et. al. 2018
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Amortized Approach to Non-Linear Mixed-Effects

1. Simulate individual cells with generative model from prior 

2. Train neural density estimator with simulations 

3. Infer population parameter from real data

Generative ODE Model
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Inference Results
Neural Density Estimator Population Estimation
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Current Limitations

● Expressivity of the normalizing flow 
(Hagemann et. al. 2023) 

● Misspecification of the model 
(Schmitt et. al. 2022) 

● Non-conservative posteriors 
(Hermans et. al. 2022)

● Robust inference of parameters with 
no variability

Neural Density Estimator Population Estimation



Comparison to MCMC
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Comparison to MCMC
Sampling Time for Single Cell 

MCMC: 30min run time 
BayesFlow: 1s

For ODE Model
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Comparison to MCMC
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MCMC: 30min run time 
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Scalable Method

Thanks to Clemens Peiter for contribution

amortization
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Scalable Method

Thanks to Clemens Peiter for contribution

amortization
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Flexible Method



27

Flexible Method

Basically no additional computational cost!



Easy Uncertainty Analysis
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Conclusion

● Mixed effect models can describe heterogenous populations 

● Scalable inference is computationally challenging 

● Amortized approach by 

● Training a neural posterior density estimator on simulated data 

● Cheap inference  

● Flexible population model, uncertainty analysis, …
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Paper is coming soon :)

Amortized Inference Phase

Generative Models For
Heterogeneous Populations

5. Performing
uncertainty analysis 

1. Generation of
starting values

4. Minimization of log-likelihood 
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