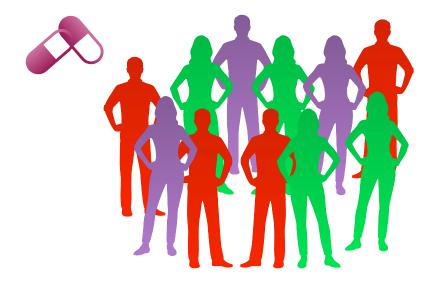


Amortized Simulation-Based Inference For Non-Linear Mixed-Effects Models

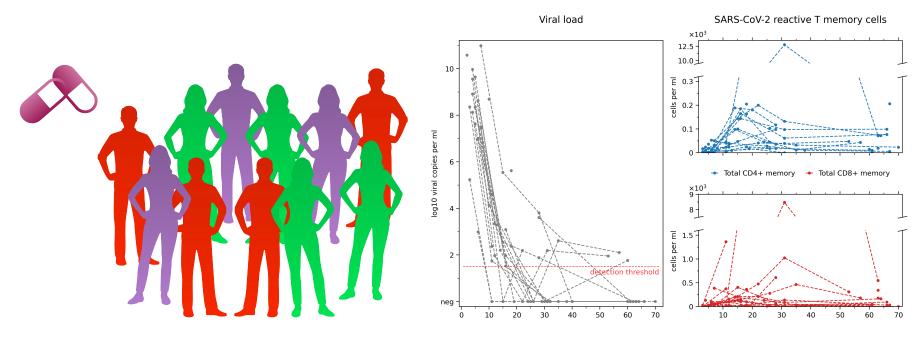
Jonas Arruda & Yannik Schälte - 29th June 2023

One World ABC Seminar

Biology is heterogeneous

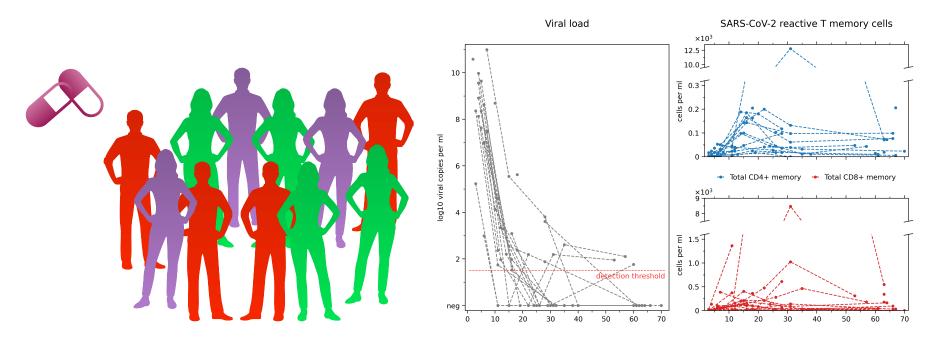


Biology is heterogeneous



We need methods to deal with this heterogeneity!

Biology is heterogeneous



How to describe hete Wegneed methods to ideas with this heterogeneity!

 $M(\phi_i)$ generative model for individual i $\phi_i = \theta_1 + b_i$

- Fixed Effects θ₁
 (e.g. mean effect of some drug)
- Random Effects $b_i \sim p_{\theta_2}(b)$ (variability of an effect)

Population Model $\phi \sim p(\phi \mid \theta)$ But observations are noisy

 $M(\phi_i)$ generative model for individual i $\phi_i = \theta_1 + b_i$

- Fixed Effects θ_1 (e.g. mean effect of some drug)
- Random Effects $b_i \sim p_{\theta_2}(b)$ (variability of an effect)

Population Model $\phi \sim p(\phi \mid \theta)$ But observations are noisy

 \rightarrow all individuals must be estimated simultaneously

• What is the likelihood of observing $y_i = \bigcap_{i=1}^{n} using our model M(\phi)? \rightarrow p(y_i \mid \phi)$

- What is the likelihood of observing $y_i = \bigwedge^{\bullet} using our model M(\phi)? \rightarrow p(y_i \mid \phi)$
- How are random effects distributed? $\rightarrow p(\phi \mid \theta)$

- What is the likelihood of observing $y_i = \bigwedge using our model M(\phi)? \rightarrow p(y_i \mid \phi)$
- How are random effects distributed? $\rightarrow p(\phi \mid \theta)$
- What is the likelihood of observing $\mathscr{D} = \bigoplus (\mathscr{D} \mid \theta)$

Random effects are unobserved quantities

$$p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) \, d\phi$$

Current Estimation Methods $p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) d\phi$

1. "Estimate" the missing variables ϕ_i

2. Find best parameters of the overall model

Current Estimation Methods $p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) d\phi$

1. "Estimate" the missing variables ϕ_i

2. Find best parameters of the overall model

We can do this

- Deterministically \rightarrow biased
- Stochastically \rightarrow computationally intensive

Deterministic Approach

$$p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) \, d\phi$$

Linearisation-based or Laplace methods

1. For every individual i

A. Estimate mode $\hat{\phi}_i$ of $p(y_i \mid \phi) p(\phi \mid \theta_t)$ based on the best current θ_t

B. Use approximation to the integral based on the mode $\hat{\phi}_i$

- 2. Compute likelihood for population
- 3. Repeat until convergence

Deterministic Approach

$$p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) \, d\phi$$

Linearisation-based or Laplace methods

1. For every individual i

A. Estimate mode $\hat{\phi}_i$ of $p(y_i \mid \phi)p(\phi \mid \theta_t)$ based on the best current θ_t

B. Use approximation to the integral based on the mode $\hat{\phi}_i$

- 2. Compute likelihood for population
- 3. Repeat until convergence

Biased, **unreliable** and sensitive

(Pinheiro 1994, Comets & Mentré 2001)

Stochastic Approach

$$p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) \, d\phi$$

Stochastic expectation maximisation algorithm (SAEM)

1. Expectation step

 $Q(\theta \mid \theta_t) = \mathbb{E}_{\phi \sim p(\phi \mid y_i, \theta_t)}[\log p(y_i \mid \phi) + \log p(\phi \mid \theta)]$

 $\phi \sim p(\phi \mid y_i, \theta_t)$ samples must be generated with a MCMC procedure

Stochastic Approach

$$p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) \, d\phi$$

Stochastic expectation maximisation algorithm (SAEM)

1. Expectation step

$$Q(\theta \mid \theta_t) = \mathbb{E}_{\phi \sim p(\phi \mid y_i, \theta_t)}[\log p(y_i \mid \phi) + \log p(\phi \mid \theta)]$$

 $\phi \sim p(\phi \mid y_{i}, \theta_{t})$ samples must be generated with a MCMC procedure

2. Maximisation step

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} Q(\theta \mid \theta_t)$$

Stochastic Approach

$$p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) \, d\phi$$

Stochastic expectation maximisation algorithm (SAEM)

1. Expectation step

$$Q(\theta \mid \theta_t) = \mathbb{E}_{\phi \sim p(\phi \mid y_i, \theta_t)}[\log p(y_i \mid \phi) + \log p(\phi \mid \theta)]$$

 $\phi \sim p(\phi \mid y_{i}, \theta_{t})$ samples must be generated with a MCMC procedure

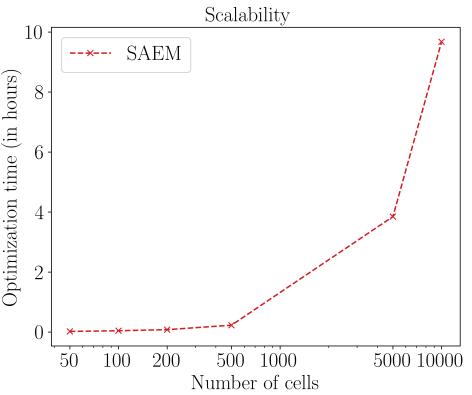
2. Maximisation step

$$\theta_{t+1} = \underset{\theta}{\operatorname{argmax}} Q(\theta \mid \theta_t)$$

Refinement in every step: $\hat{Q}(\theta \mid \theta_t) = (1 - \lambda_t)\hat{Q}(\theta \mid \theta_{t-1}) + \lambda_t Q(\theta \mid \theta_t)$

Stochastic Expectation Maximisation Algorithm

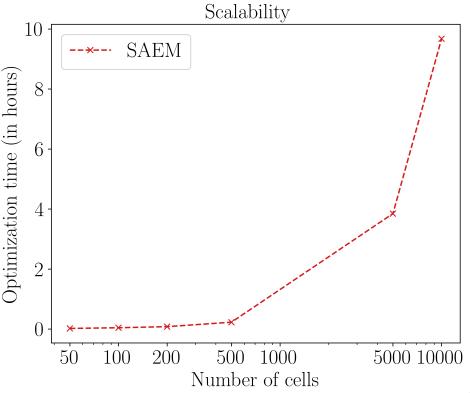
- State of the art method
- EM provides unbiased estimates (Savic et. al. 2010)
- Computationally demanding
- Sensitive to initial values (local minima)



Stochastic Expectation Maximisation Algorithm

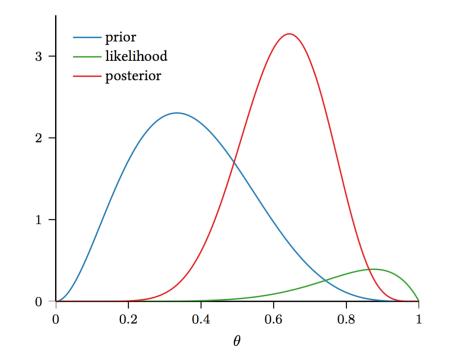
- State of the art method
- EM provides unbiased estimates (Savic et. al. 2010)
- Computationally demanding
- Sensitive to initial values (local minima)

Can we be more scalable?



Bayesian Inference

- Posterior distribution $p(\phi \mid y) \propto p(y \mid \phi)p(\phi)$
- Computed with methods like Markov chain Monte Carlo methods (MCMC)
- Computationally demanding



• Back to $p(\mathcal{D} \mid \theta) = \prod_{i} \int p(y_i \mid \phi) p(\phi \mid \theta) d\phi$

• Back to $p(\mathcal{D} \mid \theta) = \prod_{i} \int \frac{p(y_i)p(\phi \mid y_i)}{p(\phi)} p(\phi \mid \theta) d\phi$

• Rewrite marginal likelihood $p(y_i \mid \phi)$ in terms of the individual-specific posterior distribution

Bayesian Approach for Single Individual

• Back to
$$p(\mathcal{D} \mid \theta) = \prod_{i} \int \frac{p(y_i)p(\phi \mid y_i)}{p(\phi)} p(\phi \mid \theta) d\phi$$

• Rewrite marginal likelihood $p(y_i | \phi)$ in terms of the individual-specific posterior distribution

•
$$\arg\max_{\theta} p(\mathcal{D} \mid \theta) = \arg\max_{\theta} \prod_{i} \mathbb{E}_{\phi \sim p(\phi \mid y_i)} \left[\frac{p(\phi \mid \theta)}{p(\phi)} \right]$$

Bayesian Approach for Single Individual

• Back to
$$p(\mathcal{D} \mid \theta) = \prod_{i} \int \frac{p(y_i)p(\phi \mid y_i)}{p(\phi)} p(\phi \mid \theta) d\phi$$

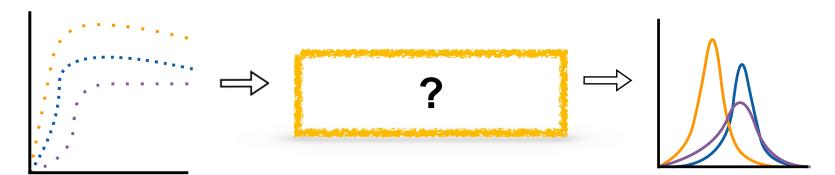
• Rewrite marginal likelihood $p(y_i \mid \phi)$ in terms of the individual-specific posterior distribution

$$\arg\max_{\theta} p(\mathcal{D} \mid \theta) = \arg\max_{\theta} \prod_{i} \mathbb{E}_{\phi \sim p(\phi \mid y_i)} \left[\frac{p(\phi \mid \theta)}{p(\phi)} \right]$$
$$\approx \arg\max_{\theta} \prod_{i} \sum_{\phi_{i,i} \sim p(\phi \mid y_i)} \left[\frac{p(\phi_{i,j} \mid \theta)}{p(\phi_{i,j})} \right]$$

• Use Monte-Carlo approximation by sampling from individual-specific posterior

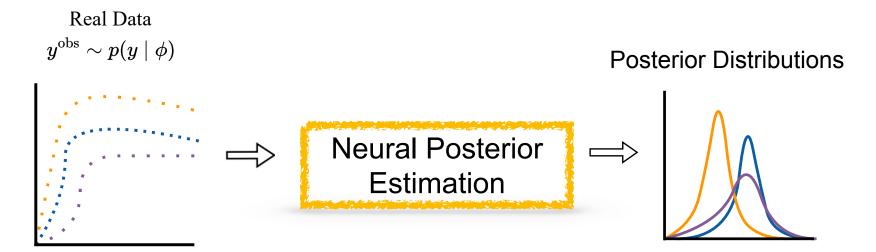
How do we get the individual-specific posterior in a scalable way? Inference Phase

Real Data $y^{
m obs} \sim p(y \mid \phi)$



Posterior Distributions

How do we get the individual-specific posterior in a scalable way? Inference Phase



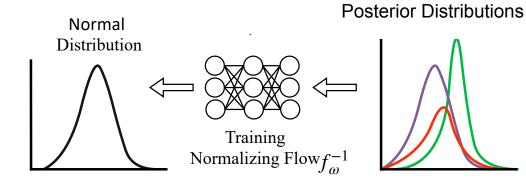
Neural Density Estimation

- Generative models
- Known for faithfully constructing e.g. portrait images

Training Data

Generated Data

Training Phase

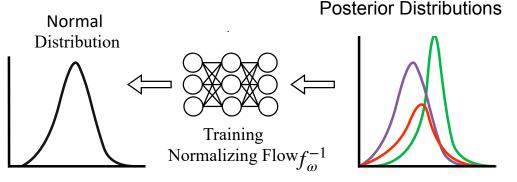


Amortized Inference Phase BayesFlow by Radev et. al. 2020

Conditional normalizing flows

- sample from Exemples the set ion $z \sim p(z)$
- get sample from desired distribution by invertible mappings $f_i(z)$

$$x = f_0(z) \circ f_1(z) \circ \cdots \circ f_n(z)$$

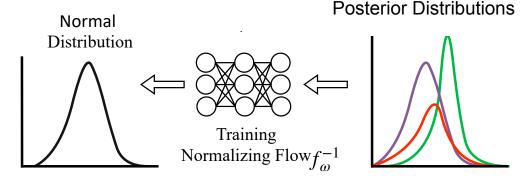


Conditional normalizing flows

- sample from Exemples the set ion $z \sim p(z)$
- get sample from desired distribution by invertible mappings $f_i(z)$

$$x = f_0(z) \circ f_1(z) \circ \cdots \circ f_n(z)$$

• eval density by $p(x) = p(z) |\det J_{f^{-1}}|$

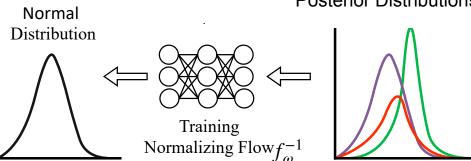


Conditional normalizing flows

- sample from Eteining Photon $z \sim p(z)$
- get sample from desired distribution by invertible mappings $f_i(z)$

$$x = f_0(z) \circ f_1(z) \circ \cdots \circ f_n(z)$$

- eval density by $p(x) = p(z) |\det J_{f^{-1}}|$
- f_{ω} parameterized by invertible neural networks

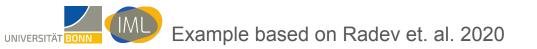


Amortized Inference Phase BayesFlow by Radev et. al. 2020

Posterior Distributions

Example of Invertible Neural Networks

- affine coupling layers, split input $u = (u_1, u_2)$, s_i , t_i can be any neural network
 - $v_1 = u_1 \odot \exp(s_1(u_2)) + t_1(u_2)$
 - $v_2 = u_2 \odot \exp(s_2(v_1)) + t_2(v_1)$



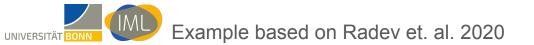
Example of Invertible Neural Networks

• affine coupling layers, split input $u = (u_1, u_2)$, s_i , t_i can be any neural network

 $v_1 = u_1 \odot \exp(s_1(u_2)) + t_1(u_2)$ $v_2 = u_2 \odot \exp(s_2(v_1)) + t_2(v_1)$

• inversion

$$u_{2} = (v_{2} - t_{2}(v_{1})) \odot \exp(-s_{2}(v_{1}))$$
$$u_{1} = (v_{1} - t_{1}(u_{2})) \odot \exp(-s_{1}(u_{2}))$$



Example of Invertible Neural Networks

• affine coupling layers, split input $u = (u_1, u_2)$, s_i , t_i can be any neural network

 $v_1 = u_1 \odot \exp(s_1(u_2)) + t_1(u_2)$ $v_2 = u_2 \odot \exp(s_2(v_1)) + t_2(v_1)$

• inversion

$$u_{2} = (v_{2} - t_{2}(v_{1})) \odot \exp(-s_{2}(v_{1}))$$

$$u_{1} = (v_{1} - t_{1}(u_{2})) \odot \exp(-s_{1}(u_{2}))$$

• Jacobian of the affine transformation is a strictly upper or a lower triangular matrix \rightarrow easy to compute

Example based on Radev et. al. 2020

Learning a Normalizing Flow

Minimize **KL-divergence** between true posterior and approximation for all possible data y

 $\underset{\omega}{\arg\min} \mathbb{E}_{p(y)} \left[\text{KL} \left(p(\phi \mid y) \| p_{\omega}(\phi \mid y) \right) \right]$

Learning a Normalizing Flow

Minimize **KL-divergence** between true posterior and approximation for all possible data y

$$\arg \min_{\omega} \mathbb{E}_{p(y)} \left[\text{KL} \left(p(\phi \mid y) \| p_{\omega}(\phi \mid y) \right) \right]$$

=
$$\arg \min_{\omega} \mathbb{E}_{p(y)} \left[\mathbb{E}_{p(\phi \mid y)} \left[\log p(\phi \mid y) - \log p_{\omega}(\phi \mid y) \right] \right]$$

Learning a Normalizing Flow

Minimize **KL-divergence** between true posterior and approximation for all possible data *y*

$$\arg\min_{\omega} \mathbb{E}_{p(y)} \left[\text{KL} \left(p(\phi \mid y) \| p_{\omega}(\phi \mid y) \right) \right]$$

=
$$\arg\min_{\omega} \mathbb{E}_{p(y)} \left[\mathbb{E}_{p(\phi \mid y)} \left[\log p(\phi \mid y) - \log p_{\omega}(\phi \mid y) \right] \right]$$

=
$$\arg\max_{\omega} \mathbb{E}_{p(y)} \left[\mathbb{E}_{p(\phi \mid y)} \left[\log p_{\omega}(\phi \mid y) \right] \right]$$

Minimize **KL-divergence** between true posterior and approximation for all possible data y

$$\arg\min_{\omega} \mathbb{E}_{p(y)} \left[\text{KL} \left(p(\phi \mid y) \| p_{\omega}(\phi \mid y) \right) \right]$$

=
$$\arg\min_{\omega} \mathbb{E}_{p(y)} \left[\mathbb{E}_{p(\phi \mid y)} \left[\log p(\phi \mid y) - \log p_{\omega}(\phi \mid y) \right] \right]$$

=
$$\arg\max_{\omega} \mathbb{E}_{p(y)} \left[\mathbb{E}_{p(\phi \mid y)} \left[\log p_{\omega}(\phi \mid y) \right] \right]$$

=
$$\arg\max_{\omega} \iint p(y, \phi) \log p_{\omega}(\phi \mid y) \, dy \, d\phi$$

Minimize **KL-divergence** between true posterior and approximation for all possible data y

 $\underset{\omega}{\arg \max} \iint p(y,\phi) \log p_{\omega}(\phi \mid y) \, dy \, d\phi$

Minimize **KL-divergence** between true posterior and approximation for all possible data y

$$\arg \max_{\omega} \iint p(y,\phi) \log p_{\omega}(\phi \mid y) \, dy \, d\phi$$
$$= \arg \max_{\omega} \iint p(y,\phi) (\log p(f_{\omega}(\phi, y)) + \log |\det J_{f_{\omega}}|) \, dy \, d\phi$$

Minimize **KL-divergence** between true posterior and approximation for all possible data y

$$\arg \max_{\omega} \iint p(y,\phi) \log p_{\omega}(\phi \mid y) \, dy \, d\phi$$

=
$$\arg \max_{\omega} \iint p(y,\phi) (\log p(f_{\omega}(\phi, y)) + \log \mid \det J_{f_{\omega}} \mid) \, dy \, d\phi$$

$$\approx \arg \min_{\omega} \frac{1}{M} \sum_{m=1}^{M} \left(\frac{\|f_{\omega}(\phi^{(m)}, y^{(m)})\|_{2}^{2}}{2} - \log \mid \det J_{f_{\omega}} \mid \right)$$

Minimize **KL-divergence** between true posterior and approximation for all possible data y

$$\arg \max_{\omega} \iint p(y,\phi) \log p_{\omega}(\phi \mid y) \, dy \, d\phi$$

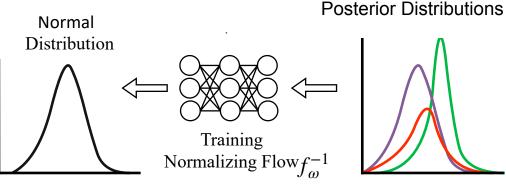
=
$$\arg \max_{\omega} \iint p(y,\phi) (\log p(f_{\omega}(\phi, y)) + \log \mid \det J_{f_{\omega}} \mid) \, dy \, d\phi$$

$$\approx \arg \min_{\omega} \frac{1}{M} \sum_{m=1}^{M} \left(\frac{\|f_{\omega}(\phi^{(m)}, y^{(m)})\|_{2}^{2}}{2} - \log \mid \det J_{f_{\omega}} \mid \right)$$

We need sample pairs $(\phi^{(m)}, y^{(m)})!$

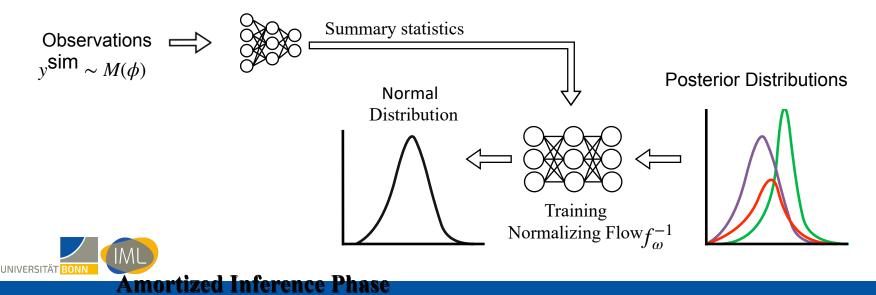
Neural Posterior Density Estimation

- Minimize **KL-divergence** between true posterior and approximation for all possible data *y*
- Generate samples ϕ from prior and produce simulations y^{sim}



Neural Posterior Density Estimation

- Minimize **KL-divergence** between true posterior and approximation for all possible data *y*
- Generate samples ϕ from prior and produce simulations y^{SIM}

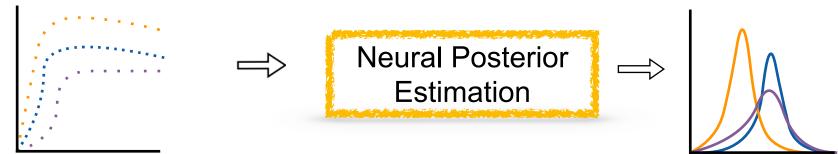


How do we get the individual-specific posterior in a scalable way?

Amor

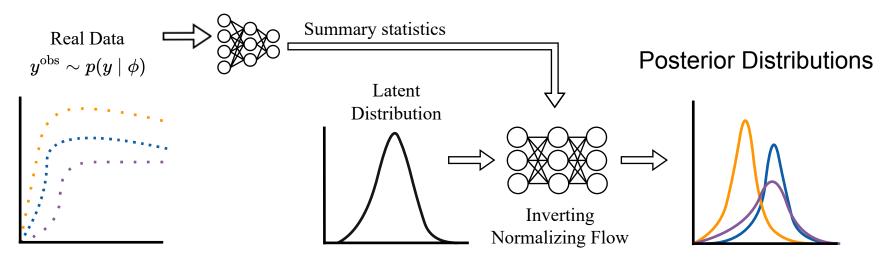
 $egin{array}{l} {
m Real Data} \ y^{
m obs} \sim p(y \mid \phi) \end{array}$

Posterior Distributions



How do we get the individual-specific posterior in a scalable way?

Amortized Inference Phase



sample from normal distribution and condition on real data

Choices to be made

- Depth of invertible neural networks
- Type of summary networks
- Duration of training (early stopping)
- Loss function (e.g. Wasserstein instead of KL-divergence)

Choices to be made

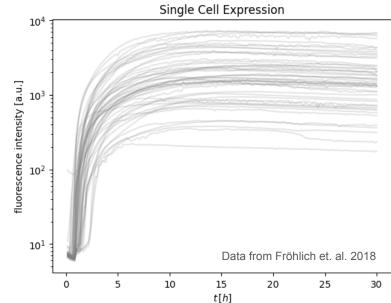
- Depth of invertible neural networks
- Type of summary networks
- Duration of training (early stopping)
- Loss function (e.g. Wasserstein instead of KL-divergence)

Other types of neural density estimators

- Conditional variational autoencoders (Kingma & Welling, 2022)
- Conditional generative adversarial neural networks (Wang & Ročková 2022)

Example Application

- living cells show molecular and phenotypic differences at the single-cell level
- mass cytometry can provide snapshots in thousands to millions of cells
- time-lapse microscopy measurements of **single-cells after transfection** with synthetic mRNA to assess mRNA lifetime

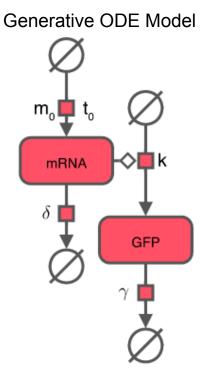


Amortized Approach to Non-Linear Mixed-Effects

1. Simulate individual cells with generative model from prior

2. Train neural density estimator with simulations

3. Infer population parameter from real data

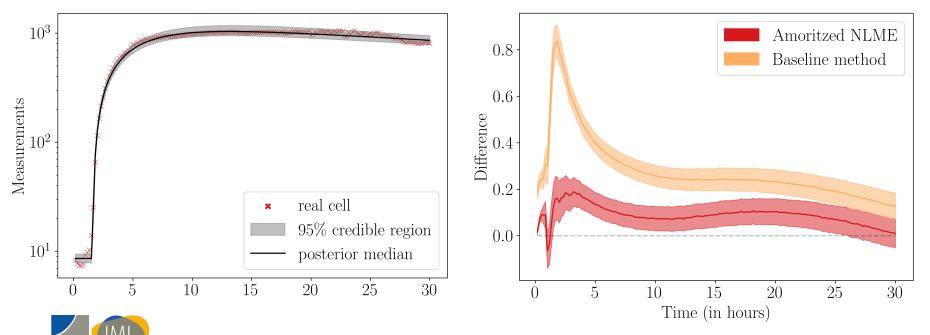


Inference Results

UNIVERSITÄT BON

Neural Density Estimator

Population Estimation



Current Limitations

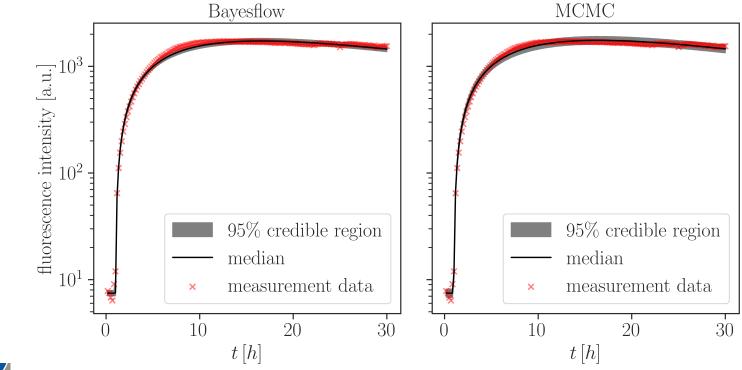
Neural Density Estimator

- Expressivity of the normalizing flow (Hagemann et. al. 2023)
- Misspecification of the model (Schmitt et. al. 2022)
- Non-conservative posteriors (Hermans et. al. 2022)

Population Estimation

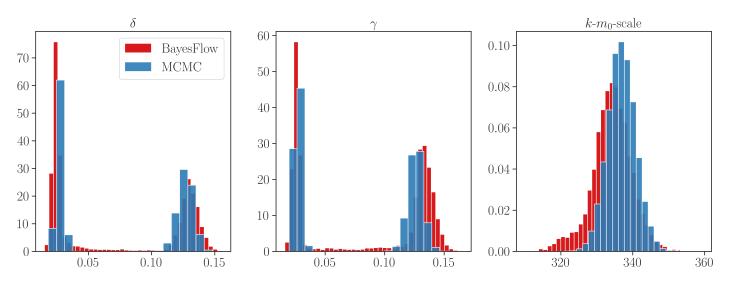
• Robust inference of parameters with no variability

Comparison to MCMC



Comparison to MCMC

For ODE Model

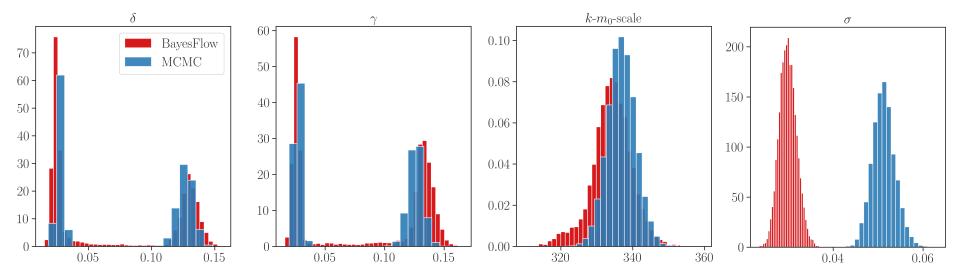


Sampling Time for Single Cell MCMC: 30min run time BayesFlow: 1s

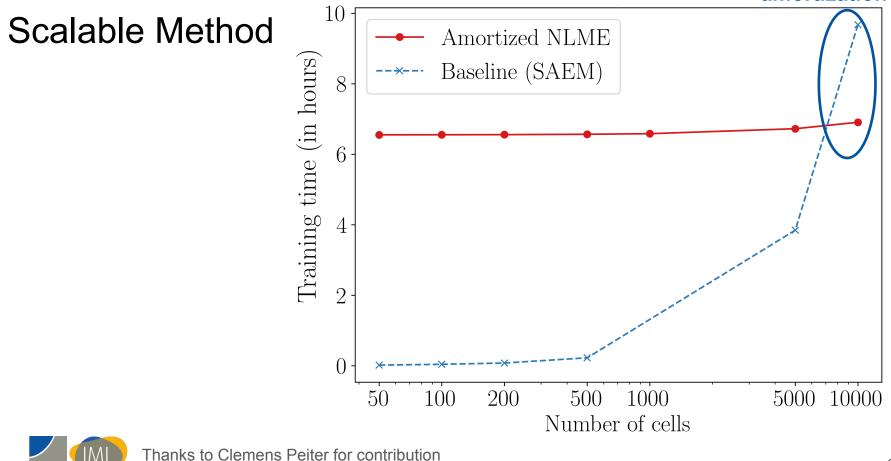
Comparison to MCMC

For ODE Model

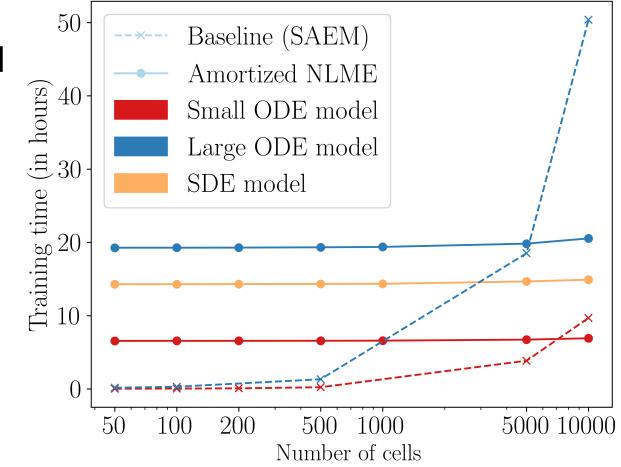
Sampling Time for Single Cell MCMC: 30min run time BayesFlow: 1s



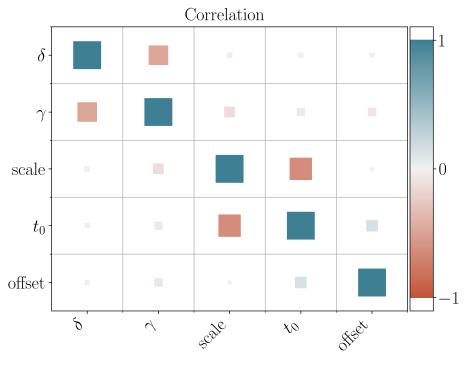
amortization



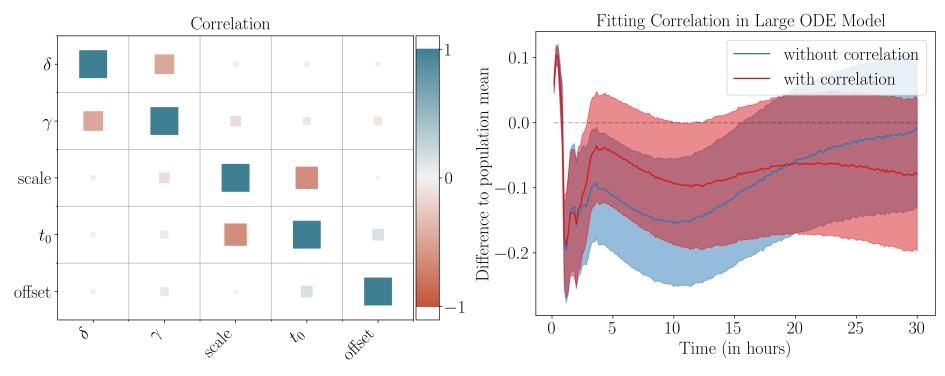
UNIVERSITÄT BON



Flexible Method

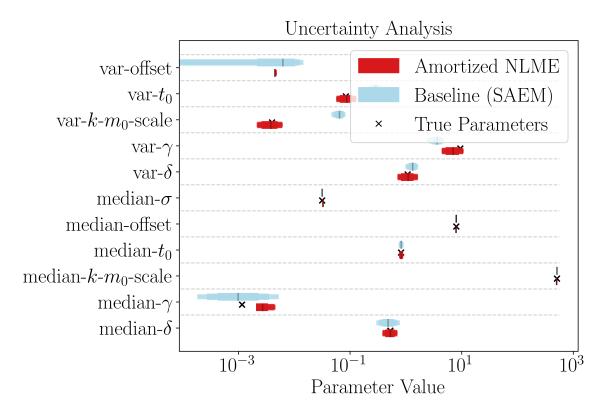


Flexible Method



Basically no additional computational cost!

Easy Uncertainty Analysis



Conclusion

Amortized Inference Phase

- Mixed effect models can describe heterogenous populations
- Scalable inference is computationally challenging
- Amortized approach by
 - Training a **neural posterior density estimator** on simulated data
 - Cheap inference
 - Flexible population model, uncertainty analysis, ...

Paper is coming soon :)

Federal Ministry of Education and Research



AG Prof. Hasenauer

jonas.arruda@uni-bonn.de

yannik.schaelte@uni-bonn.de

