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Introduction

Aim: To convince you that path signatures can be a useful tool when applying
approximate Bayesian computation to time-series simulators of different kinds.
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Context & notation
Inference for dynamic, stochastic simulation models

▶ Models that are defined by an underlying computer program

▶ Forward simulation easy: x ∼ p(x | θ) for time-series x, θ ∈ Θ ⊆ Rd

▶ Evaluating p(x | θ) hard/expensive for any (x,θ) combination

▶ Consequence: inference on θ is tricky – many inference procedures
require access to p(x | θ) e.g. Bayes

π(θ | x) = p(x | θ)
p(x)

π(θ) (1)
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Context & notation
Inference for dynamic, stochastic simulation models

▶ Models that are defined by an underlying computer program

▶ Forward simulation easy: x ∼ p(x | θ) for time-series x, θ ∈ Θ ⊆ Rd

▶ Evaluating p(x | θ) hard/expensive for any (x,θ) combination

▶ Consequence: inference on θ is tricky – many inference procedures
require access to p(x | θ) e.g. Bayes

π(θ | x) = p(x | θ)
p(x)

π(θ) (1)

▶ Resort to simulation-based inference, such as approximate Bayesian
computation (abc): with kernel function Kϵ, bandwidth parameter ϵ > 0,
and summary statistics s s.t. sx := s(x),

πabc,ϵ (θ | sx) ∝
∫

Kϵ(sx, sx̃) p(x̃ | θ)π(θ) dx̃ (2)
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Challenge
Choosing appropriate distances/summary statistics for time-series data

▶ Kernel Kϵ typically uses some distance D internally, e.g.

Kϵ(sx, sx̃) ∝ I [D(sx, sx̃) ≤ ϵ] , (Uniform kernel)

Kϵ(sx, sx̃) ∝ exp {−D(sx, sx̃)/ϵ} (Gaussian kernel)

. . .
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Challenge
Choosing appropriate distances/summary statistics for time-series data

▶ Kernel Kϵ typically uses some distance D internally, e.g.

Kϵ(sx, sx̃) ∝ I [D(sx, sx̃) ≤ ϵ] , (Uniform kernel)

Kϵ(sx, sx̃) ∝ exp {−D(sx, sx̃)/ϵ} (Gaussian kernel)

. . .

▶ What D and/or s to use for different time-series data?

0 T
Time

Figure: Univariate time-series
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Challenge
Choosing appropriate distances/summary statistics for time-series data

▶ Kernel Kϵ typically uses some distance D internally, e.g.

Kϵ(sx, sx̃) ∝ I [D(sx, sx̃) ≤ ϵ] , (Uniform kernel)

Kϵ(sx, sx̃) ∝ exp {−D(sx, sx̃)/ϵ} (Gaussian kernel)

. . .

▶ What D and/or s to use for different time-series data?

0 T
Time

Figure: Multivariate time-series

February 2, 2023 Approximate Bayesian Computation with Path Signatures 3



Challenge
Choosing appropriate distances/summary statistics for time-series data

▶ Kernel Kϵ typically uses some distance D internally, e.g.

Kϵ(sx, sx̃) ∝ I [D(sx, sx̃) ≤ ϵ] , (Uniform kernel)

Kϵ(sx, sx̃) ∝ exp {−D(sx, sx̃)/ϵ} (Gaussian kernel)

. . .

▶ What D and/or s to use for different time-series data?

0 T
Time

Figure: Irregularly sampled, multivariate time-series
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Challenge
Choosing appropriate distances/summary statistics for time-series data

▶ Kernel Kϵ typically uses some distance D internally, e.g.

Kϵ(sx, sx̃) ∝ I [D(sx, sx̃) ≤ ϵ] , (Uniform kernel)

Kϵ(sx, sx̃) ∝ exp {−D(sx, sx̃)/ϵ} (Gaussian kernel)

. . .

▶ What D and/or s to use for different time-series data?

Figure: Irregularly spaced, non-Euclidean time-series
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Existing approaches to choosing distance/summary statistics
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Existing approaches to choosing distance/summary statistics
Hand-crafted summary statistics

Prototypical approach: Euclidean distance between hand-crafted
summary statistics s.

Figure: Schematic of manual method for defining “distance”.

Ad-hoc derivation of hand-crafted summary statistics can be
time-consuming, expensive, risky. . .
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Existing approaches to choosing distance/summary statistics
Semi-automatic abc (Fearnhead and Prangle, 2012)

▶ Use sx = Eπ [θ | x] in abc→ minimises quadratic loss
between “true” parameters θ∗ and

θ̂abc = Eπabc,ϵ [θ | sy]

▶ Estimate sx by learning nonlinear map from xi to θi , where
(xi ,θi )

n
i=1 ∼ p(x | θ)π(θ) is simulated training data. Then

use
D(sx, sy) = ∥sx − sy∥2

▶ Drawback: need to define suitable space of functions over
which to search. What function space is appropriate/useful for
time-series of different kinds?

February 2, 2023 Approximate Bayesian Computation with Path Signatures 6



Existing approaches to choosing distance/summary statistics
K2-abc: abc with kernel embeddings (Park et al., 2016)

▶ Compare empirical distribution of simulator and real data via MMD

▶ For sufficiently expressive kernel k(X , ·), e.g. RBF, kernel mean
embedding encodes all information of the distribution

µX := E[k(X , ·)], µ̂X =
1

n

n∑
i=1

k(xi , ·), D(x, y) = MMD2.

Figure: Schematic of MMD. Treats the xi in x = (x1, . . . , xn) as exchangeable.
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Existing approaches to choosing distance/summary statistics
abc with the Wasserstein distance (Bernton et al., 2019)

Compare simulated and real time-series, x and y, via the Wasserstein distance:

D(x, y) = Wp(x, y) := min
σ∈Sn

n∑
i=1

ρ(xi , yσ(i))
p,

ρ(xt , ys) = ∥xt − ys∥ + λ|t − s|

▶ Sn: set of permutations of 1, ..., n

▶ λ: hyperparameter balancing “vertical” and “horizontal” transport

Figure: Schematic of Wasserstein distance. Sort of accounts for dependencies.
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Existing approaches to choosing distance/summary statistics
Other approaches in this vein...

▶ abc with the Kullback-Liebler divergence (Jiang, 2018)

▶ abc with the energy statistic (Nguyen et al., 2020)

▶ . . .

See Drovandi and Frazier (2022) for a recent review and
comparison of all of the above.

These approaches are primarily designed for independent – rather
than time-series-like – data. How can we deal with time-series?
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Our contribution: abc with path signatures

We propose (semi-)automatic approaches to abc for time-series
models of different kinds using path signatures.

Remainder of this talk:

▶ Overview of path signatures & properties

▶ Our proposed signature-based methods & some theoretical
properties

▶ Experimental results

▶ Summary & conclusion
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Path signatures
Introduction

Let h : [0,T ] → H be a path in Hilbert space H with bounded
variation:

∥h∥1−var := sup
ζ(0,T )

n−1∑
i=1

∥hti+1 − hti∥H < ∞.

The signature map sends h to an infinite collection of tensors of
increasing order:

Sig : h 7→ (1,S1(h),S2(h), . . . ) ∈
∏
m≥0

H⊗m

where

Sm(h) =

∫ T

tm=0
· · ·
∫ t2

t1=0
dht1 ⊗ · · · ⊗ dhtm (3)
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Path signatures
Example 2.3, Király and Oberhauser (2019)

Consider ht = (at , bt) ∈ R2.

S1(h) =


∫ T

0

dat∫ T

0

dbt

 and S2(h) =


∫ T

0

∫ t2

0

dat1dat2

∫ T

0

∫ t2

0

dat1dbt2∫ T

0

∫ t2

0

dbt1dat2

∫ T

0

∫ t2

0

dbt1dbt2

 .
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Path signatures
Where have they come from?

They appear in solutions to controlled/stochastic differential
equations, e.g. for Brownian motion Bt and linear operator A,

dYt = A(Yt) ◦ dBt , Y0 = y

has a solution of the form (Lyons et al., 2007)

Yt =
∑
m≥0

A⊗mSm,[0,t](B) y .
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Path signatures
Where have they come from?

They appear in solutions to controlled/stochastic differential
equations, e.g. for Brownian motion Bt and linear operator A,

dYt = A(Yt) ◦ dBt , Y0 = y

has a solution of the form (Lyons et al., 2007)

Yt =
∑
m≥0

A⊗mSm,[0,t](B) y .

Lyons’s rough path theory (see e.g. Lyons et al., 2002, 2007; Friz
and Hairer, 2020) built around the closely related notion of a
multiplicative functional.
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Path signatures
Key properties
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Path signatures
Key properties

Uniqueness: For injective paths h, g with common origin, Sig(h) = Sig(g) iff
h = g . (Enforcing these conditions always possible.)
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Path signatures
Key properties

Uniqueness: For injective paths h, g with common origin, Sig(h) = Sig(g) iff
h = g . (Enforcing these conditions always possible.)

Universal nonlinearity: Linear functionals on signatures are dense in the space
of continuous, real-valued functions on compact sets of paths.

Kernelisation: The signature kernel for bounded variation paths
h, g : [0,T ] → H is

k(h, g) = ⟨Sig(h), Sig(g)⟩ :=
∑
m≥0

⟨Sm(h), Sm(g)⟩H⊗m .

Király and Oberhauser (2019): k(h, g) can be evaluated using only inner

products on points in the path. Király and Oberhauser (2019) and Salvi et al.

(2020) provide efficient methods for evaluating k.
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Path signatures
From sequences in data space to paths in Hilbert space

Real scenario: observe sequence x = (x1, . . . , xn) ∈ X n at times
0 = t1 < · · · < tn = T . How to map to path in H?

1. Embed data in a Hilbert space: Through canonical feature map for
kernel κ : X × X → R with corresponding rkhs H.

2. Obtain a H-valued path: Through interpolation (e.g. linear).

Figure: Embedding sequences with the signature kernel (Dyer et al., 2022).
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abc with path signatures
Approach 1: Signature abc

Interpret signature as summary statistic: s(x) = Sig(x) ⇒ a sufficient statistic!
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D(x, y) := ∥Sig(x)− Sig(y)∥2 = k(x, x) + k(y, y)− 2k(x, y) (4)
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Distance computation can be kernelised with signature kernel k:

D(x, y) := ∥Sig(x)− Sig(y)∥2 = k(x, x) + k(y, y)− 2k(x, y) (4)

Convergence of Signature abc posterior

Let X = Rm, x, y ∈ X n be length-n sequences in X . Under the regularity
conditions on p(x | θ) assumed in Bernton et al. (2019), and with D as in
Equation (4) + some additional benign conditions on κ, the abc posterior

πabc,ϵ(θ | Sig(y)) → π(θ | y) as ϵ → 0.
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abc with path signatures
Approach 1: Signature abc

Interpret signature as summary statistic: s(x) = Sig(x) ⇒ a sufficient statistic!

Distance computation can be kernelised with signature kernel k:

D(x, y) := ∥Sig(x)− Sig(y)∥2 = k(x, x) + k(y, y)− 2k(x, y) (4)

Convergence of Signature abc posterior

Let X = Rm, x, y ∈ X n be length-n sequences in X . Under the regularity
conditions on p(x | θ) assumed in Bernton et al. (2019), and with D as in
Equation (4) + some additional benign conditions on κ, the abc posterior

πabc,ϵ(θ | Sig(y)) → π(θ | y) as ϵ → 0.

Behaviour as n → ∞ for fixed ϵ
For a continuous-time process observed over fixed time interval [0,T ],

πabc,ϵ(θ | Sig(y)) ⇀ πabc,ϵ(θ | Sig(h)) as n → ∞.
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abc with path signatures
Approach 2: Signature Regression abc

Exploit “universal nonlinearity” of Sig to perform semi-automatic
abc for time-series simulators.

What space of functions to optimise over? Linear functionals on
signatures – signature kernel is universal for sequences (Király and
Oberhauser, 2019).
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abc with path signatures
Approach 2: Signature Regression abc

Exploit “universal nonlinearity” of Sig to perform semi-automatic
abc for time-series simulators.

What space of functions to optimise over? Linear functionals on
signatures – signature kernel is universal for sequences (Király and
Oberhauser, 2019).

E.g. kernel ridge regression with signature kernel k , s.t.

θ̂(x) :=

(
R∑

r=1

a1,rk(x, x
(r)), . . . ,

R∑
r=1

ad ,rk(x, x
(r))

)′

and
D (x, y) = ∥θ̂(x)− θ̂(y)∥2
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Experimental results
Ricker model (Wood, 2010)

logNt+1 = log r + logNt − Nt + σϵt , ϵt ∼ N (0, 1)

yt ∼ Po (ϕNt) .

Aim: approximate posterior for θ = (log r , ϕ, σ) with pseudo-data
y ∼ p(y | θ∗), θ∗ = (4, 10, 0.3) and priors

log r ∼ U(3, 8), ϕ ∼ U(0, 20), σ ∼ U(0, 0.6).
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Experimental results
Ricker model (Wood, 2010)

“Delay” : (x1, x2, . . . , xn) 7→ ((x1, x2), (x2, x3), . . . , (xn−1, xn))

Figure: (Ricker model) Wasserstein distance (left) and MMD (middle)
between abc and ground-truth posteriors. Right: Euclidean distances between
abc and ground truth posterior means.
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Experimental results
Results for multivariate, irregularly spaced sequences of variable length: Kypraios (2007)

▶ Stochastic model of infections by and recovery from virus in
population, determine by parameters β and γ

▶ Event-based simulation: events occur with time-dependent
rate in discrete population over time interval [0,T ]

▶ Output: multivariate time-series y of variable length and with
irregularly spaced observations counting number of infected
and susceptible individuals at each time

▶ Posterior available in closed form for Gamma priors on β and γ

▶ Perform inference on θ = (β, γ) given pseudo-true data y
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Experimental results
Results for multivariate, irregularly spaced sequences of variable length: Kypraios (2007)

Figure: (Generalised stochastic epidemic model) Left: Wasserstein
distance between abc and ground-truth posteriors. Middle: MMD
between abc and ground-truth posteriors. Right: Euclidean distances
between abc and ground truth posterior means.
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Experimental results
Results for dynamic graph model

Kernelisation lets us operate on sequences of arbitrary objects.
Example: graphs (e.g. simulating social networks).

Signature/Signature Regression abc performs the following steps
implicitly:

1. Send observations to rkhs H of graph kernel κ (e.g.
Weisfeiler-Lehman)

2. Compute signature kernel for these H-valued, piecewise-linear
paths
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Experimental results
Results for dynamic graph model: Zhang et al. (2017)

Model:

▶ If an edge absent at time t − 1, they appear (resp. remain absent) with
probability φ (resp. 1− φ);

▶ If edge present at time t − 1, they disappear (resp. remain present) with
probability τ (resp. 1− τ).
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Figure: a: Prior. b: Signature abc posterior. Red point: true parameters.
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Computational complexity & cost

Complexity:

▶ Signature kernel: O(n2)

▶ MMD: O(n2)

▶ Wasserstein: O(n3) in multivariate settings with Hungarian algorithm

Observed cost: signature methods generally more expensive in our experiments
(with some exceptions)

▶ Possible to reduce cost with e.g. GPUs, truncated signature kernels etc.

▶ Possible improvements to implementation

February 2, 2023 Approximate Bayesian Computation with Path Signatures 24



Summary & conclusion

▶ abc for dynamic, stochastic simulation models can be
challenging: difficult to construct summary statistics or
distance measure

▶ Argued for the use of path signatures in abc for generic
time-series simulators

▶ Demonstrated empirical performance on a range of dynamic,
stochastic simulation models

Thank you!

Twitter: @joelnmdyer
Website: https://joelnmdyer.github.io

Email: joel.dyer@maths.ox.ac.uk
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