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Introduction Bayesian Statistics

Bayesian Statistics

In Bayesian statistics we are interested in sampling from the posterior:

p(θ|y) ∝ p(y |θ)p(θ),

where p(y |θ) is the likelihood, p(θ) is the prior, y = (y1, . . . , ym)> is the
observed data and θ ∈ Θ ⊂ Rp is an unknown parameter.
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Introduction Intractable Models

Simulator Models

Simulator models are a type of stochastic model that is often used to
approximate a real-life process, such as:

the movement patterns of invasive species of animals;
biological mechanisms, or
the outbreak of an infectious disease,

Unfortunately, for these types of models, p(y |θ) is generally
computationally intractable.
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Introduction Approximate Bayesian Computation

Approximate Bayesian Computation (ABC)

ABC is the current state-of-the-art likelihood-free Bayesian method.

ABC prefers θ that produce simulated data x ∼ p(·|θ) that is ‘close’ to
y in terms of summary statistics that are generated according to
S(·) : Rm → Rd .

Targets the posterior conditional on observed summary
p(θ|sy ) ∝ p(sy |θ)p(θ) where sy = S(y).

Estimates p(sy |θ) non-parametrically via simulations.

Choice of S(·) is a trade-off between information loss and
dimensionality.
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Introduction Approximate Bayesian Computation

ABC Likelihood Approximation

Simulate n iid datasets, denoted x1:n = (x1, . . . , xn), from the model
based on θ.

Calculate n sets of summary statistics, s1:n = (S(x1), . . . ,S(xn))
= (s1, . . . , sn).

The intractable p(sy |θ) is replaced with the estimated ABC likelihood,

p̂ε(sy |θ) =
1
n

n∑
i=1

Kε(ρ(sy , si)).

ρ(·) is called the discrepancy function;
Kε(·) is a kernel weighting function with bandwidth ε, and
ε is called the ABC tolerance (bias/variance trade-off).
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Introduction Approximate Bayesian Computation

ABC Limitations

ABC has several drawbacks, including:

Highly sensitive to choice of tuning parameters ε, ρ(·) and to a
lesser extent Kε(·);
No standard way to select ε or ρ, and
Suffers from the curse of dimensionality with respect to the size of
the summary statistic.
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Synthetic Likelihood Introduction

Synthetic Likelihood

In synthetic likelihood methods, we assume a parametric form of the
likelihood, which acts as a surrogate for the true likelihood.

In general, synthetic likelihood methods
can scale better to a high-dimensional summary statistic
do not require as much tuning
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Synthetic Likelihood Introduction

Synthetic likelihood

The synthetic likelihood method1 uses a working normal likelihood:

p(sy |θ) ≈ pA(sy |θ) = N (sy |µ(θ),Σ(θ)).

µ(θ) and Σ(θ) are typically unknown but can be estimated according to:

µn(θ) =
1
n

n∑
i=1

S(xi) and

Σn(θ) =
1

n − 1

n∑
i=1

(S(xi)− µn(θ))(S(xi)− µn(θ))>,

where x1, . . . , xn
iid∼ p(·|θ). The synthetic likelihood estimate is then

pA(sy |θ) ≈ N (sy |µn(θ),Σn(θ)).

1Wood (2010). Nature. 466:1102.
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Synthetic Likelihood BSL

Bayesian Synthetic Likelihood

The synthetic likelihood has been considered in a Bayesian
framework2, called Bayesian Synthetic likelihood (BSL).

The BSL posterior approximation is then:

pBSL(θ|sy ) ∝ pBSL(sy |θ)p(θ), where

pBSL(sy |θ) =

∫
N (sy |µn(θ),Σn(θ))

n∏
i=1

p(S(xi)|θ)dS(x1) · · ·S(xn).

Typically MCMC is used to sample from pBSL(θ|sy ). n is a tuning
parameter chosen to maximise the computational efficiency.

2Price et al (2018). JCGS. 27:1-11
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Synthetic Likelihood Limitations

Limitations of BSL

1 The number of simulations per iteration, n, needs to be large for
estimating high dimensional covariance matrix.

2 The distribution of the summary statistic must be roughly
Gaussian.

3 Reliance on MCMC to explore parameter space (not ideal in high
dimensions).

4 Can perform poorly when model cannot recover observed statistic
(i.e. model misspecification).

In this talk, we address 1 and 2; 3 and 4 are addressed in other work.
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Synthetic Likelihood Scaling

Scaling of the unconstrained log SL variance

Assumption 1. The simulated summaries are generated iid and
distributed according to N (µ(θ),Σ(θ)).

Result 1. Consider the standard synthetic likelihood estimator as
p̂d (sy |θ) = N (sy ; µ̂n(θ), Σ̂n(θ)). For n and d large:

Var [log p̂d (sy |θ)] = O
(

d2n2

(n − d)3

)
.

Letting n ∝ d2, we have that Var [log p̂d (sy |θ)] = O(1).

Thus, n must scale quadratically with d to control the variance of the
unconstrained log synthetic likelihood estimator.
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Synthetic Likelihood Scaling

Scaling of the diagonal log synthetic likelihood
variance

Assumption 2. The simulated summaries are generated iid and
distributed according to N (ζ(θ),Ω(θ)), where Ω(θ) is diagonal.

Result 2. Synthetic likelihood estimator:
p̂d ,w (sy |θ) = N (sy ; ζ̂n(θ), Ω̂n(θ)). For n and d large:

Var
[
log p̂d ,w (sy |θ)

]
= O

(
dn2

(n − d)3

)
.

Letting n ∝ d , we have that Var
[
log p̂d ,w (sy |θ)

]
= O(1).

Thus, n must scale linearly with d to control the variance of the
diagonal log synthetic likelihood estimator.
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Synthetic Likelihood Scaling

Significant computational benefits are possible in BSL algorithms if the
summary statistics are uncorrelated.

However, it is challenging to find a summary statistic vector that is both
independent across its dimensions and retains a large proportion of
the information content intrinsic to the observed data.

Our solution: Whitening Bayesian Synthetic Likelihood3.

3Priddle et al (2020). arXiv preprint arXiv:1909.04857.
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Whitening Bayesian Synthetic Likelihood Covariance Matrix Estimation

Covariance Estimation

In previous BSL research we have considered the following covariance
matrix shrinkage estimator4:

Σn,γ = Σ
1/2
d (γR̂ + (1− γ)Id )Σ

1/2
d ,

where R̂ = Σ
−1/2
d ΣnΣ

−1/2
d where Σd = diag(Σn).

By using the Warton estimator, we can reduce n.

However, when there is significant correlation between the marginal
summary statistics, the Warton estimator is a poor approximation of
Σn. This leads to poor posterior approximations.

4Warton (2008). JASA 103(481):340-349.
Chris Drovandi ABC One World Seminar 14 / 35



Whitening Bayesian Synthetic Likelihood Whitening Transformation

Whitening Bayesian Synthetic Likelihood

We consider a whitening transformation

s̃ = Ws

which transforms so that Var(s) = Σ becomes Var(s̃) = Id .

W is estimated at some initial parameter value θ0. Now the
transformation is approximate at a given θ value.

We hold W constant, and use the wBSL estimator in an MCMC
algorithm.

Given the summary statistics are approximately decorrelated, we can
apply heavier shrinkage.
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Whitening Bayesian Synthetic Likelihood Whitening Transformation

There are infinitely many W that decorrelate the marginal summary
statistics at θ0.

Different W are more effective in decorrelating summaries generated
away from θ0.

We find PCA whitening works best. WPCA = Λ−1/2U>, where
Σ = UΛU> is the eigendecomposition of the covariance matrix.
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Whitening Bayesian Synthetic Likelihood Simple Example

Toy example – MA(2) model

The MA(2) model represents a univariate series of temporally
dependent observations as

xt = wt + θ1wt−1 + θ2wt−2

where wi ∼ N (0, σ2) for i = −1,0,1, . . . ,T0, t = 1, . . . ,T0, and has
parameter constraints −1 < θ2 < 1, θ1 + θ2 > −1 and θ1 − θ2 < 1.

Here y is 200 observations from the MA(2) process with
θtrue = (θ1, θ2)> = (0.6,0.2)>. We take sy = y to be the full dataset.

Chris Drovandi ABC One World Seminar 17 / 35



Whitening Bayesian Synthetic Likelihood Simple Example

Warton

tv =

0.38

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2

Exact

= 0.92, n = 5000

PCA

tv =

0.07

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2

Exact

= 0.75, n = 5000

Warton

tv =

0.92

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

2

Exact

= 0, n = 230

PCA

tv =

0.38

0.3 0.4 0.5 0.6 0.7 0.8 0.9

1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

2

Exact

= 0, n = 180

Results for the MA(2) example
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Whitening Bayesian Synthetic Likelihood Complex Example

Toad example

We consider an individual-based model for the movement of a species
of Fowler’s toads5. We consider their random return model.

The model assumes toads take refuge during the day and forage
throughout the night.

The overnight displacement is drawn from the levy alpha-stable
distribution S(α, ξ) with stability α and scale ξ.

Toads return at the end of their foraging with probability p0. The return
site is determined at random from previous refuge sites.

5Marchand et al 2017. Ecological Modelling. 360:63-69
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Whitening Bayesian Synthetic Likelihood Complex Example

y is the displacements of nt = 66 toads over nd = 63 days.

y is summarised to 4 sets comprising the moving distances for time
lags of 1,2,4,8 days.

Number of returns for all four time lags (defined as distance < 10m).

For the non-returns we consider log difference between adjacent
p-quantiles with p = 0,0.1, . . . ,1 and also the median. Repeat for each
time lag.

48 statistics. Difficult for conventional ABC to deal with.

We use a simulated dataset with θtrue = (α, ξ, p0)> = (1.7,35,0.6)>.
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Whitening Bayesian Synthetic Likelihood Complex Example
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semiBSL Introduction

Semi-parametric BSL (semiBSL)

semiBSL6 provides additional robustness for a non-Gaussian
distributed summary statistic.

We model each univariate summary statistic S j using kernel density
estimation. That is, given n iid model simulations x1, . . . , xn, the KDE is
given by:

ĝSj (s) =
1
n

n∑
i=1

Kh(s − S(xi)
j),

where Kh(u) = h−1K (u/h) and h is the bandwidth.

We use a Gaussian kernel for K and select h using rule of thumb.

6An et al (2020). Statistics and Computing, 30(3):543-557.
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semiBSL Introduction

Semi-parametric BSL (semiBSL)

The Gaussian copula is used to model the dependence structure:

c(u) =
1√

det(R)
exp

{
−1

2
η>(R−1 − Id )η

}
where R is the correlation matrix, η = (Φ−1(u1), . . . ,Φ−1(ud ))>, Φ−1 is
the inverse cdf of the N (0,1) and uj = GSj (sj

y ) for j = 1, . . . ,d .

The summary statistic likelihood estimate is then:

1√
det(R̂)

exp

{
−1

2
η̂>sy (R̂−1 − Id )η̂sy

} d∏
j=1

ĝj(s
j
y )
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semiBSL TKDE and wsemiBSL

Transformation kernel density estimation (TKDE)

Standard KDE often does not provide adequate smoothing over all
features of the distribution (global bandwidth), and can fail for heavy
tailed distributions.

We consider Transformation kernel density estimation (TKDE)7.

Firstly, transform the data so that the standard (global bandwidth) KDE
is more accurate (close to Gaussian), then transform back to the
original domain.

7Wand et al (1991). JASA. 86(414):343-353.
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semiBSL TKDE and wsemiBSL TKDE

Transformation in TKDE

We consider the hyperbolic power transformation8:

Gω(s) =

{
ν sinh(ψ−s) sechλ−(β−s)/ψ− s ≤ 0
ν sinh(ψ+s) sechλ+(ψ+s)/ψ+ s > 0,

where s is median centered, ω = {ν, ψ−, λ−, ψ+, λ+}, ν, ψ−, ψ+ > 0
and |λ−|, |λ+| ≤ 1. λ−, λ+ are the power parameters; ψ−, ψ+ are the
scale parameters, and α is the normalising constant. We approximate
the MLE of ω numerically.

An initial log transformation may also be applied for positively skewed
data, negatively skewed data, or data with heavy kurtosis.

8Tsai et al (2017). CSDA. 115:250-266.
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semiBSL TKDE and wsemiBSL TKDE

Transformation kernel density estimation

Intermediate densities of TKDE procedure.
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semiBSL TKDE and wsemiBSL TKDE

Transformation kernel density estimation

Comparison of KDE and TKDE estimators.
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semiBSL TKDE and wsemiBSL TKDE

semiBSL TKDE – α-stable stochastic volatility model

Used to model financial returns. The return process is given by:

yt = exp
(xt

2

)
vt

xt ∼ N (µ+ φ(xt−1 − µ), σt ).

We assume vt ∼ SD(α, β, γ, δ), where α, β, γ and δ control the tail
heaviness, the skewness, the scale and the location, respectively.

We consider two observed datasets and infer θ = (α, β)> with fixed
µ = 5, φ = 1, γ = 1, δ = 0 and σ = 0.2. We set θtrue = (1.2,0.5)> and
θtrue = (0.7,0.5)> and sy = y (50 observations).
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semiBSL TKDE and wsemiBSL TKDE
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Results for α-stable stochastic volatility model.
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semiBSL TKDE and wsemiBSL TKDE

Whitening or TKDE?
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semiBSL TKDE and wsemiBSL Whitening

wsemiBSL TKDE

Our whitening method can be applied to semiBSL, call this wsemiBSL.
wsemiBSL applies whitening transformation to the standard Gaussian
quantiles:

η̃ = Wη (1)

and not directly to the summary statistic vector.

Furthermore, we can apply whitening in conjunction with TKDE to
achieve computational gains on top of the improved robustness, call
this wsemiBSL TKDE.
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semiBSL TKDE and wsemiBSL Whitening

wsemiBSL TKDE – MA(2) example
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wsemiBSL TKDE posterior approximations for MA(2) example.
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Closing Remarks R Package

R Package

We have an evolving R package for BSL9. TKDE still to be
implemented.

9An et al (2020). https://arxiv.org/abs/1907.10940.
Chris Drovandi ABC One World Seminar 33 / 35



Closing Remarks Limitations/Future Work

Limitations/Future Work

Limitations:
Efficiency gains of whitening is dampened by irregular marginals.

Future Work:
Improve robustness of BSL methods to non-linear dependence
structures between marginal summary statistics.
Robustness of semiBSL to model misspecification.
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