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Problem Statement

f (y(obs) ∣ θ) = ∫ f (y(obs) ∣ x, θ) f (x |θ) dx

f (y(obs) ∣ θ) = Z−1(θ)exp[−Hθ(y(obs))]

• a large number of unobserved latent variables:

• or an unknown partition function (e.g. Ising-type model):

Likelihood functions involving high-dimensional integration/summation 
over latent variables, because there is either

Z(θ) = ∑
y

exp[−Hθ(y)]



Approximate Bayesian Computation (ABC)

• Simulate model outputs , for many parameter sets , from  . 

• Accept/reject the corresponding parameter sets depending on 
whether those outputs agree with the observations in terms of  

• Certain features (summary statistics)   

• A certain tolerance 

• E.g. Ising model

y θ f(y |θ)

s(y)

f (y ∣ β, h) = Z−1(β, h)exp β ∑
<i, j>

yiyj + h∑
i

yi

= Z−1(β, h)exp [βE(y) + βhM(y)]
s(y) := (E(y), M(y))T

sufficient statistics!



Tuning the tolerance: 
Simulated Annealing ABC (SABC)

• Use metric   -> interpret as energy. 

• Simulate from    while continuously lowering temperature . 

• For ,   .

ρ(s, s(obs))

f (s, θ) e−ρ(s,s(obs))/T T

T → 0 f (s, θ) e−ρ(s,s(obs))/T → f (θ |s(obs))

Initialisation: sample an ensemble of particles  from the prior {sj, θj}N
j=1 f (s, θ)

1. Draw a random particle  from the ensemble


2. Make a jump in parameter space 


3. Simulate a data set  from the model  and calculate 


4. Accept the move with probability  


5. Lower the temperature  adaptively so as to minimise entropy production.

(sj, θj)
θj → θ*j

y*j f (y ∣ θ) s*j = s(y*j )

min 1,
f (θ*j )
f (θj)

exp [−
ρ(s*j , s(obs)) − ρ(sj, s(obs))

T ]
T

Albert et al., Stat. Comput. 2014



Data compression - fighting the curse of 
dimensionality

• The computational price to pay for decreasing the 
tolerance grows exponentially with the output 
dimension. 

• Therefore, we must compress the data to a handful of 
summary statistics.  

• Generally, this leads to a loss of information relevant 
to constrain the parameters.



Summary Statistics

Consider a generic stochastic model:

f(y, θ) = f(y |θ)f(θ) θ ∈ ℝp , y ∈ ℝN ,

and a map of summary statistics

s : ℝN ⟶ ℝq .

We want them to be  

asymptotically sufficient:           

(Accuracy) 

Asymptotically concentrated:     

(Efficiency)

I(s(Y), Θ) = I(Y, Θ) + 𝒪(N−1)

H(s(Y) |Θ) ∼ − ln N

-> Thermodynamic state variables

Albert et al., SciPost Physics 2022



• If sufficient statistics cannot easily be found, a 
reasonable choice is to use parameter estimators, e.g.

• Fearnhead and Prangle (2012) use a linear regression 
(built-into SABC software packages) 

• Machine Learning lends itself to this task as well! 
(e.g. Jiang 2017)

s(y) = ̂θ(y) = ∫ θf(θ |y)dθ

Summary Statistics
Albert et al., SciPost Physics 2022



Summary Statistics

• For large i.i.d. datasets, parameter estimators capture most of the  
-related information in the data. 

• If the data is correlated, this is no longer the case and we might need 
more summary statistics than parameters 

• This is due to entropic effects: For members of the exponential family

θ

Fθ(s) := − ln f(s |θ) = − ln∫ f(y |θ)dΩs(y) = Uθ(s) − S(s)

f(y |θ) = Z−1(θ)c(y)exp (
q

∑
α=1

sα(y)gα(θ))
the free energy splits into en energy and an entropy term

and is not necessarily concentrated around a single point, for fixed , 
even if N is large; possibly even when  (phases!).

θ
N → ∞

Albert et al., SciPost Physics 2022



Summary Statistics

Toy:       yn+1 = αf(yn) + σϵn , ϵn ∼ 𝒩(0,1) i.i.d. , f(y) = y2(y − 1)

Albert et al., SciPost Physics 2022
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Summary Statistics

α̂(y) =
∑N

n=1 yn f (yn−1)

∑N
n=1 ( f (yn−1))2

,

̂σ2(y) =
1
N

N

∑
n=1

(yn − α̂(y)f (yn−1))2 ,

o(y) =
1
N

N

∑
n=1

( f (yn−1))2 .

Sufficient statistics:

Parameter estimators

Order parameter

f (y |θ) ∝ σ−N exp [−∑
n

(yn+1 − αf (yn))2

2σ2 ] , θ = (α
σ)

Toy:       yn+1 = αf(yn) + σϵn , ϵn ∼ 𝒩(0,1) i.i.d. , f(y) = y2(y − 1)

Albert et al., SciPost Physics 2022



Summary Statistics

o

α̂(y) =
∑N

n=1 yn f (yn−1)

∑N
n=1 ( f (yn−1))2

,

̂σ(y) =
1
N

N

∑
n=1

(yn − α̂(y)f (yn−1))2 ,

o(y) =
1
N

N

∑
n=1

( f (yn−1))2 .

Sufficient statistics:

Parameter estimators

Order parameter

Albert et al., SciPost Physics 2022



Summary Statistics

ℒ =
1
p

p

∑
α=1 ( sα − θα

θα )
2

+
1
N

N

∑
i=1 ( ̂yi − yi

yi )
2

.

Explicit Noise Conditional Autoencoder 
ENCA

Albert et al., SciPost Physics 2022

y
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Summary Statistics

Explicit Noise Conditional Autoencoder 
ENCA

ℒ = ∑
j,α ( s( j)

α − θα

θα )
2

+ ∑
α (

̂θα − θα

θα )
2



Summary Statistics

Toy:       yn+1 = αf(yn) + σϵn , ϵn ∼ 𝒩(0,1) i.i.d. , f(y) = y2(y − 1)

Albert et al., SciPost Physics 2022

• True posterior
• Only MLEs 
• 3 Stats form ENCA
• 2 Stats from ENCA



Summary Statistics

Toy:       yn+1 = αf(yn) + σϵn , ϵn ∼ 𝒩(0,1) i.i.d. , f(y) = y2(y − 1)

Albert et al., SciPost Physics 2022

• M-realizations
• 2 Stats 
• 3 Stats

SciPost Phys. Core 5, 043 (2022)
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Figure 5: Typical time-series x generated with model (9) (green) compared against the
reconstructions by the ENCA-decoder, using two (red) or three (blue) latent variables.
The two time-series were generated with the same set of parameters, ↵ = 5.3 and
� = 0.015. Two statistics are sufficient to encode the information about which
attractor has been taken, but at the price of a degraded parameter regression and
thus a degraded reconstruction. The data has not previously been used for training
the AE.
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Figure 6: Metropolis-generated posterior for model (9) (green, representing the
ground truth) compared against ABC posteriors using all three latent variables (blue)
from ENCA (left) and INCA (right) and using only the two MLE-regressors (red). The
posterior resulting from only two ENCA-generated summary statistics is shown in
grey. The dashed boxes represent the ABC priors, while the black dots represent the
true values of the parameters used to generate the synthetic data set.

no need for a third statistic. Hence, this model does not exhibit phases. However, the example
shows that there may be features in the output of stochastic models that de-correlate very
slowly as N grows, requiring auxiliary statistics even for large N .

The second example is a stochastic non-linear iterative map model with both additive and
multiplicative noise:

xn+1 = ↵n f (xn)+✏n , ↵n ⇠ U[↵,↵+�] , ✏n ⇠ U[0,✏] i.i.d. , n= 0, . . . , N�1 (N = 200) , (13)

and three parameters, ✓✓✓ = (↵,�,✏)T . It is an example for the common situation where we
have more internal-noise degrees of freedom (↵↵↵, ✏✏✏) than observed output components (x).
Integrating out the unobserved degrees of freedom typically takes us outside of the exponential
family, as is the case for this model. According to the Pitman-Koopman-Darmois theorem,
we would need a set of summary statistics that grows unbounded with the size of the data
(N) to achieve strict sufficiency. However, we expect to be able to compress most of the
parameter-related information into few summary statistics nonetheless. We have trained both
ENCA and INCA with 3 (q = p) as well as 4, 5 and 6 summary statistics. Fig. 7 shows that, when
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Finding low-dimensional features in streamflow data

ℒ =
1
N

N

∑
i=1 ( Q̂i − Qi

Qi )
2

.

Nature
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Finding low-dimensional features in streamflow data

• 4 features seem to 
be sufficient to predict 
streamflow.

• There seems to be 
information missing 
in the known static 
catchment attributes.



Finding low-dimensional features in streamflow data



Finding low-dimensional features in streamflow data



Conclusions
• The ENCA architecture can be used to 

disentangle high-dimensional 
irrelevant from low-dimensional 
relevant information.  

• It can be used to find near-sufficient and 
concentrated summary statistics in 
simulated data from stochastic 
models. 

• It can be used to find catchment features 
in observed streamflow data. 

Thanks to my collaborators: Simone Ulzega, Antonietta Mira, Firat 
Oezdemir, Fernando Perez-Cruz, Alberto Bassi. 
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