Computational Resources: Hardware, Software & Training

Tom Nichols

Big assist from: Wilfred Kendall & David Firth

Thanks to ad hoc PhD IT induction team: Camille Maumet, Seb Armstrong, Matt Moores, David Selby

Oth Consideration: Platform

- Windows
 - Pro
 - It's sitting on your desk
 - Lots of software, often not free
 - Con
 - Greedy background/system processes
 - Limited/no ability to script programs
 - Interfaces, programs sometimes bloated

Oth Consideration: Platform

- Linux
 - Pro
 - Fast (e.g. compared to Windows on same hardware)
 - Lots of software, usually free
 - Build around command line, programing, scripting
 - Con
 - Software not always well documented
 - Can have steep learning curve, but many easy-to-use installations now available (e.g. Ubuntu)

Linux

Oth Consideration: Platform

- Apple Mac
 - Pro
 - Beautiful interface, usually very intuitive
 - MacOS built on Linux, hence command line tools, programming, scripting, easy at hand
 - Coolness
 - Con
 - Hardware more expensive and *only* from Apple

Oth Consideration: Platform

- Cloud/Web Solutions
 - I.e. browser based tools like Google Docs, Office Online
 - Pro
 - As long as you have internet, you have everything
 - Always backed up...
 No data loss due to lost/stolen laptop/drive
 - Con
 - Security issues... give someone your password, they have your 'cloud' life
 - Offline access
 - Some solutions, but never as elegant as just working on your own machine

Oth Consideration: Exotic Options

- Cloud Computing
 - Buy a 'slice' of a compute farm
 - Amazon Web Services
 - Only pay for AWS 'Instance' when it is used & computing

- Pros
 - Linux hosts always updated, not your problem
 - Always accessible, known uptime
- Cons
 - Metered usage You pay for *exactly* what you use
 - Have a useless MCMC that runs for days? You pay!

Oth Consideration: Exotic Options

- Graphical Processing Units (GPUs)
 - Formerly just for video games, now for scientific computing
 - Requires specialized code, thinking deeply about how to best parallelize your problem

- Never stand-alone, usually installed into Linux box
- Field Programmable Gate Arrays (FPGA)
 - Custom-designed chips to accelerate computations
 - Bleeding edge

1st – 3rd Consideration: Backup, Backup, Backup

- Office Desktop
 - Everything on your H: drive is backed up by university
 - Everything local is not!
 - Your responsibility to back it up!
- Personal laptop
 - Buy a big external USB drive (e.g. 2TB for £50)
 - Use system's default back up 'history' tool
 - Mac: Time Machine, Windows: File History
 - Dropbox
 - Keep key files in synchronized folder or just drag a copy of key items (thesis.tex!) there now and again

Email

- University Solution
 - <u>http://warwick.ac.uk/insite</u> -> Email or <u>http://webmail.warwick.ac.uk</u>
- Can activate forwarding under settings [IT Help Doc]
 - They warn against this, as you then take responsibility for email loss, etc

Windows	Linux	Mac	Web
Outlook	Evolution (Ubuntu: free, open source)	Mail	Microsoft Office 365
	Kmail (Kubuntu: free, open source)	Microsoft Outlook	Gmail (free) Yahoo (free)
Thunderbird (free, open Mutt, pine (text-only, free			

Calendar

- Pick one device/platform as 'primary', and make sure it synchronizes to all your devices
 - E.g. University's Office 365, or Google Calendar or Apple Calendar
 - Sync all others to it
 - *** Not tested in general!***
 Only can vouch for: Google primary, sync'd to Mac & iPhone/Android

Windows	Ubuntu	Mac	Web
Outlook	Evolution (Ubuntu: free, open source)	Calendar	Google Calendar (free)
	Korganizer (Kubuntu: free, open source)	Microsoft Outlook	
Rainlendar (free) Mozilla Sunbird or Lightning (both free, open source)			

Computational Resources Available to You (1/2)

- Your desktop
 - Refreshed on regular basis, but some variation
 - If not fit for purpose, complain!
- Buster
 - Linux cluster
 - 12 high-performance Dell Linux workstations
 - 1 head node 'buster.stats.warwick.ac.uk'
 - Controls 11 other via SGE job control system
 - Share common file storage system
- Goldfinch
 - Linux host with GPU card

Session 3: Becoming a Power Buster User Date: Tuesday 29 November, 4-5pm

Computational Resources Available to You (2/2)

- Centre for Statistical Computing (CSC)
 - Tinis
 - Newly cluster, 3500 Intel Haswell cores (c. 2015)
 - Minerva
 - Old cluster, 2500 Intel Westmere core (c. 2011) (To be decommissioned in early 2017!)
 - Apocrita
 - Cluster based at Queen Mary
 - Cluster of Workstations (COW)
 - Uses free cycles when desktop Linux system unused

CSC also covered in... Session 3: Becoming a Power Buster User Date: Tuesday 29 November, 4-5pm

Computational Courses in Other Departments

- MSc courses on computational methods are taught in various departments
 - Center for Statistical Computing (CSC)
 - Computer Science (CS)
 - Mathematics
 - Physics
 - In all cases, need to inquire about ability of a Stats student to join... formally or informally.
- See also
 - IT Services
 - http://go.warwick.ac.uk/itstraining
 - Oxford's CUDA (GPU) school
 - https://people.maths.ox.ac.uk/gilesm/cuda/

Educational Resources: <u>CSC Modules</u>

- CY900: Foundations of Scientific Computing
 - Linux and programming basics (including Makefiles), and basics of scientific computing, incl. Linear Alg & Solving PDEs; including Matlab, R, etc.
- CY901: High Performance Scientific Computing
 - Optimizing serial and parallelized code; shared vs distributed memory programming; message passing; GPU programming
- CY903: Practical Algorithms and Data Structures
 - Algorithms for serial and parallelized coding; data structures for scientific computing; algorithm re-use; gauging algorithmic complexity

Educational Resources: <u>CS Modules</u>

- Foundations of Data Analytics
 - Statistics, Databases, Regression, Classification, data structures
- Data Mining
 - Models/algorithms & their accuracy

Educational Resources: MathSys Modules

- MA934 Numerical Methods
 - Derivation, interpolation and extrapolation, integration, extremal finding, ODE; sorting, binary trees, search; MCMC
- CO923-18 Computational Methods for Complex Systems
 - Systems of linear equations, eigenvalue problems, matrix problems; MCMC, the Ising model; generation of constrained complex networks; useful algorithms and data structures; networked dynamical systems

Educational Resources: Physics Modules

- High Performance Computing in Physics
 - Optimizing serial and parallelized code; shared vs distributed memory programming; message passing; GPU programming

Questions

• Look for these slides and links on the web