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Abstract

In this paper we present an application of read-once cou-
pling from the past to problems in Bayesian inference for la-
tent statistical models. We describe a method of simulating
perfectly from the posterior distribution of the unknown mix-
ture weights in a mixture model. Our method is extended to
a more general mixture problem where unknown parameters
exist for the mixture components, and to a hidden Markov
model.

1. Introduction

Following the seminal work in [9] on perfect simulation, considerable effort has
gone into developing the general methodology, and extending the range of distribu-
tions for which these methods apply. In this paper we describe the implementation
of a perfect simulation algorithm for generating samples from the posterior distri-
bution in three different Bayesian latent variable models. Our methods are firstly
applied to the posterior distribution of the unknown mixture weights in a Bayesian
analysis of a mixture of known distributions. Secondly, we extend the method to the
case where, in addition to unknown weights, the mixture component distributions
are parameterised by unknown parameters, and thirdly, we consider the Bayesian
analysis of a hidden Markov model.

Our approach will be to use and extend a collection of recently developed tech-
niques for perfect simulation. Central to all of our methodology will be the use of
read-once coupling from the past (roCFTP) algorithm for perfect simulation, see
[11]. At the core of this algorithm is the construction of uniformly ergodic blocks
of Markov chain update rules. The main challenge is to construct these blocks of
updates so that they have a significant coalescence probability, ie. the probability
that a block maps the entire state space into just one state is non-negligible.

The main example in this paper is the mixture problem where the mixture com-
ponents are known but the mixture weights are unknown. For this example the
primary updating construction makes use of the duality principle, see [7], by aug-
menting allocation variables. This allows the simultaneous update of all potential
allocations within a rectangular regions in the allocation space and, crucially, to
determine a rectangular region containing the updated allocations. These update
functions will be augmented with catalytic updates.

The catalytic update was first considered by [3] and [2]. As an example [3] con-
siders how catalytic updates may be used for perfect simulation of the posterior
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mixture weights. This is essentially the perfect simulation algorithm we consider
and extend in Section 5.1. Although thus extension is in principle rather general, the
methodology becomes computationally infeasible for even moderately sized prob-
lems. The advantage of the catalytic updates in this context is that they significantly
help in detecting if a block of updates is coalescent. On the downside the first cat-
alytic update in each block of updates is computationally expensive. Using the idea
of one-shot coupling introduced by [10], we extend the approach by [1] of tracking
the rectangular bounding set until it is sufficiently small to make the first catalytic
update “cheap enough”.

In the case where the mixture consists of r densities p(·|θ1), . . . , p(·|θr) where
θ1, . . . , θr are unknown parameters there is an identifiability problem. This problems
stems from the fact that the mixture in invariant under permutation of the unknown
parameters. As a result the posterior distribution has k! identical modes. This
typically leads to problems when attempting to sample the posterior by conventional
MCMC methods as only one of these modes is likely to be explored. Attempts to
eliminate the unidentifiability by e.g. imposing restrictions on the parameter space
may introduce new problems, for more details see [5]. Some of these problems could
be solved if perfect simulation was available.

Our extension of perfect simulation to the case of unknown parameters in the
specification of the component densities is capable of producing exact sample —
although this method is currently only computationally feasible for small data sets.
This is not surprising given the mixing problems experienced using conventional
MCMC for this problem. the same.

As a further extension of our methodology, we consider the case where the al-
location variables are identically distributed we assume they are distributed as a
Markov chain obtaining a hidden Markov model. Posterior simulation is done using
the same basic approach as for the mixture problem. The main difference being
that applying catalytic update appears infeasible.

There exist several works on perfect simulation in connection with mixture mod-
els. In [8] the basic update function is used in a CFTP type algorithm for perfect
simulation. The detection of coalescence is done by tracking a bounding set similar
to what we do. Unlike our method this method seems limited to mixtures of at
most three components. [4] present a perfect slice sampler which turns out to be
inefficient for moderate data sizes. In addition a perfect simulation algorithm is
considered where each update consists in doing a “simple” catalytic update. For
this algorithm coalescence is achieved when a single catalytic update couples the
entire state space. The waiting time for this to happen may be very long.

The remainder of the paper is organised as follows. In section 2 we specify the
basic mixture problem and review the roCFTP algorithm. In section 3 we construct
an update function that has the posterior of interest as it equilibrium distribution.
Section 4 concerns how to construct bounds for the image of this update function.
These bounds are used in Section 5 to produce perfect samples of the posterior
weight distribution. In Section 5 we also review the catalytic update and use it for an
improved perfect simulation algorithm. The section is concluded with a simulation
study comparing different schemes for constructing blocks of updates. In Section 6
we extend our method to the situation where the component densities are Gaussian
with unknown means. In Section 7 we describe an algorithm for perfect simulation
from the posterior transition probabilities in a two state hidden Markov model.
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2. Problem specification

2.1. The posterior weight distribution

Assume that the data points η1, . . . , ηn are an independent sample from an r
component the mixture

r
∑

k=1

mkpk(·),

where the component densities p1, . . . , pr are assumed to be known and the mixture
weights m1, . . . , mr are restricted to mk > 0 and

∑r
k=1 mk = 1.

Introducing a uniform Bayesian prior distribution (Dirichlet D(1, 1, . . . , 1)) for
the unknown weights m = (m1, . . . , mr) on the simplex

S =
{

(m1, . . . , mr) : mk > 0 for all k and

r
∑

k=1

mk = 1
}

,

we obtain the posterior distribution

π(m1, . . . , mr|η) =

n
∏

i=1

[

r
∑

k=1

mkpk(ηi)
]

. (1)

As this is typically intractible, it is usual to resort to Monte Carlo methods for
exploring this distribution. Mixing of MCMC algorithms for this problem is of-
ten problematical. Our goal in perfect simulation is to avoid the burn-in problem
associated with ordinary MCMC.

2.2. Wilson’s read-once CFTP algorithm

The perfect simulation algorithms considered in this paper are all examples of
the roCFTP algorithm introduced by [11]. For completeness we briefly review the
roCFTP algorithm below and set some of the related notation used throughout this
paper.

Assume that we want to sample from a distribution Π on a state space Ω and that
we know how to generate a sequence of independent realisations of a random update
function C : Ω → Ω with the following properties: 1) It preserves stationarity, i.e.
∫

Ω

�
[C(x) ∈ A]Π(dx) = Π(A) for all A ⊆ Ω and 2) has a positive probability of

being coalescent, ie. C maps the entire state space into a single state. A realisation
of a random update function is denoted an update function. In the following #W
denotes the cardinality of the set W .

Under these assumptions we can generate a perfect sample as follows. Generate
a sequence C1, C2, . . . of independent realisations of the random update function
C. Furthermore, let Ti denote the index of the ith coalescent update function,
ie. CTi

(x) is coalescent and hence its image does not depend on x. Then x1 =
CT2−1 ◦· · ·◦CT1

(x) does not depend on x ∈ Ω, and more importantly x1 is a sample
from the target distribution. In general, if xi = CTi+1−1 ◦· · ·◦CTi

(x) then x1, x2, . . .
are independent and identically distributed according to the target distribution. For
a proof based on the ideas of Propp and Wilson’s coupling from the past algorithm,
see [11] and for a more algebraic proof see [3].

In most cases of interest the random update function C is a compound made
up of several “basic” random update functions each fulfilling 1) but not necessarily
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2). So Ci = Fi,K ◦ · · · ◦ Fi,2 ◦ Fi,1 where Fi,1, . . . , Fi,K are random update function
preserving stationarity. For example, F could represent a Gibbs update of the type
described in Section 3.

A further complication is that typically there is no feasible way of telling if a
given realisation Ci is coalescent or not. In some situations it may be possible to
find a criteria which implies that Ci is coalescent but not the other way around.
If the criteria is fulfilled we can declare Ci coalescent. Given such a criteria we
redefine Ti to be the index of the ith update function for which the criteria holds.
Letting xi be defined as before we obtain a subsample of the original perfect sample
which, crucially, is still a perfect sample from the target distribution, see [3]. So it
would seem that the better the criteria is in detecting coalescent update functions
the more effective our perfect sampler is. The downside, as we shall see later, an
effective criteria can come at a high computational cost.

If Ω is of sufficiently low cardinality it may be feasible to check if each x ∈ Ω
result in the same value of Ci(x). In this case all coalescent update functions will
be detected. Instead assume that given update function Ft and W ⊆ Ω we we can
construct a bounding set W ′ so that Ft(W ) ⊆ W ′, where Ft(W ) = {Ft(x) : x ∈ W}.
For each Ci we initially set W = Ω and if at any point #W ′ = 1 we declare Ci

coalescent and non-coalescent otherwise. The roCFTP perfect simulation algorithm
using bounding sets is illustrated in Figure 1 and can be summarised in pseudo code
as follows.

1. Choose arbitrary x in Ω and set s := 0

2. For i = 1, 2, 3, . . .

3. Set W := Ω and xold := x

4. For t = 1, . . . , K

5. Generate Ft and set x := Ft(x)

6. Determine W ′ ⊆ Ω so that Ft(W ) ⊆ W ′

7. Set W := W ′

8. If #W = 1 set xs := xold and s := s + 1

Notice that the x0 generated by the algorithm is not part of the sample from Π,
only x1, x2, . . . are. Notice further that each update function Ft is only used once
unlike conventional CFTP algorithms, hence the name read once CFTP.

In practise constructing Ft so that is preserves stationarity is in general easy but
not quite enough. If Ω is an unbounded state space we typically want F1 to map Ω
into a bounded region with positive probability. In this paper this is only an issue
when the component densities involve unknown parameters. A further challenge is
to construct Ft in such a way that detecting coalescence becomes feasible.

In Section 3 we consider how to construct a random map F that has (1) as
its equilibrium distribution. In Section 4 we show how to construct bounding sets
making perfect simulation possible. In Section 5 we consider three different choices
of the random update function C. Two of these involve using catalytic updates.
Using catalytic updates proves to be computationally expensive but if successfully
applied they make it much easier to tell if a block is coalescent. The third choice
makes use of the fact that the distribution of Ft is allowed to depend on W as long
as Ft conditional on W still preserves stationarity, i.e.

∫

Ω

�
[Ft(x) ∈ A|W ]Π(dx) =

Π(A) for all A, W ⊆ Ω.
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C1 C2 C3 C4 C5

F1,1
· · · F1,5

xinit

Figure 1: Illustration of the roCFTP algorithm. The red region corresponds to
the bounding sets. The blue line corresponds to the target process started in the
arbitrarily chosen state xinit. In this example the compound update functions C2

and C5 are declared coalescent and accordingly T1 = 2, T2 = 5 and x1 = C4 ◦ C3 ◦
C2(x) (black circle) is a sample from Π.

3. Update function: Gibbs sampler updates

It is well known that the Gibbs sampler can be used to approximately simulate
from the posterior distribution (1) by means of the data augmentation methodology,
see [7]. More precisely, to simulate from π, we define auxiliary variables Z1, . . . , Zn ∈
{1, . . . , r} which represent the component allocations of each data point, and use a
Gibbs sampler, whose updates are formally:

(M ′
1, . . . , M

′
r) ∼ π0(· |Z1, . . . , Zn),

Z ′
i ∼ πi(· |M ′

1, . . . , M
′
r), i = 1, . . . , n,

where π0(· | z1, . . . , zn) = D(N1(z) + 1, . . . , Nr(z) + 1) with Nk(z) = #{s : zs = k},
and

πi(k |m1, . . . , mr) = mkpk(ηi)
/

r
∑

j=1

mjpj(ηi), k = 1, . . . , r. (2)

Recall that the Dirichlet distribution D(α1 + 1, . . . , αr + 1) has density on S given
by

hα(m1, . . . , mr) =
Γ(r + α1 + · · · + αr)

Γ(1 + α1) · · ·Γ(1 + αr)
mα1

1 . . . mαr
r .

Implementation of the above Gibbs sampler involves a recursively defined se-
quence Xt = (Z1t, . . . , Znt, M1t, . . . , Mrt) such that Xt+1 = Ft+1(Xt), where F1, F2, . . .
are independent and identically distributed random functions of the form

F (x) = (Z ′
1(x), . . . , Z ′

n(x), M ′
1(x), . . . , M ′

r(x)). (3)
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We now give the detail for the construction of F .
To generate a probability vector (M ′

1(x), . . . , M ′
r(x)) with the Dirichlet D(N1(x)+

1, . . . , Nr(x) + 1) distribution, it suffices to generate independent random variables
G1 ∼ Γ(N1(x) + 1), . . . , Gr ∼ Γ(Nr(x) + 1), setting

M ′
k(x) = Gk(x)/

r
∑

k=1

Gk(x),

where Γ(N + 1) denotes a Gamma distribution with shape parameter N + 1 and
scale parameter 1.

To generate each Z ′
s(x), we suggest using the following sequential rejection

method: Generate r independent uniform random variables ξs,1, . . . , ξs,r. For each
component k = 1, . . . , r in turn, we accept Z ′

s(x) = k if

• pk(ηs)M
′
k(x)/

∑r
j=k pj(ηs)M

′
j(x) > ξs,k, and

• no other component j < k has yet been accepted.

This method of generating Z ′
s(x) has the advantage of requiring a bounded number

of iterations to return an answer, independently of the weights M ′
j(x) or the factors

pk(ηs).

3.1. Generating gamma random variables

We choose to generate Gk ∼ Γ(Nk +1) by rejection sampling based on a t density
with 2 degrees of freedom (Best’s algorithm, [6, p. 410]). More precisely, let Yk/

√
2 ∼

g(y) = 1
2
√

2
(1 + y2/2)−3/2, which we generate as Yk = (U − 1/2)/

√

U(1 − U) with

U ∼ U [0, 1], and propose the value

Gk = Nk + Yk

√

3Nk + 2.25. (4)

This is accepted if and only if

log[64U3(1 − U)3V 2] 6 2(Nk log[Gk/Nk] − Y
√

3Nk + 2.25), (5)

where V ∼ U [0, 1]. It is known that the average number of proposals needed is
less than e

√

6/π 6 4. Observe that the returned value Gk above is a convex (resp.
concave) function of Nk whenever Y > 0 (resp. Y 6 0).

We remark for future reference that the full Gibbs update requires a bounded
amount of computation.

4. Determining the bounding sets

We now consider how to construct bounding sets for the update function F
described in Section 3. From the construction of F it may appear that we need
rather complex bounding sets, e.g. specifying a set of possible allocations for each
zs combined with a subset of the simplex S. However, the following observation
reduces the problem. The construction of each Z ′

s(x) depends only on x through
M ′

1(x), . . . , M ′
r(x), which in turn only depend on x through N1(x), . . . , Nr(x). Hence

the update function, F , only depends on the numbers Nk(x). This leads us to
consider bounding sets of the form W = {x : ak 6 Nk(x) 6 bk}. Below we describe
a practical way of computing constants a′

k and b′k such that

ak 6 Nk(x) 6 bk implies that a′
k 6 Nk(Ft(x)) 6 b′k, (6)
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or in other words, F (W ) ⊆ W ′ = {x : a′
k 6 Nk(x) 6 b′k}. In particular, by setting

ak = 0 and bk = n, we obtain a bounding set that equals Ω.
Suppose that, for each data point ηs, we compute upper and lower bounds for

the component ratios, i.e. numbers LOb
a[s, k] and HIb

a[s, k] such that

LOb
a[s, k] 6 pk(ηs)M

′
k(x)/

r
∑

j=k

pj(ηs)M
′
j(x) 6 HIb

a[s, k] (7)

for all x ∈ {x : ak 6 Nk(x) 6 bk}. We shall give details of this calculation in
Sections 4.1 and 4.2. Armed with these bounds, consider the variety of possible
values the sequential rejection method assigns to Z ′

s(x) as x varies over the allowed
configurations.

• If ξs,k < LOb
a[s, k] then every single allowed configuration accepts the proposal

Zs(x) = k, provided it hasn’t already accepted Zs(x) = i for i < k.

• If ξs,k < HIb
a[s, k] then some (but not necessarily all) configurations accept

the proposal Zs(x) = k, so some may still accept a later proposal Zs(x) = j
for j > k.

• If ξs,k > HIba[s, k] then none of the configurations accept the proposal Zs(x) =
k.

We keep track of the possible outcomes for each k by means of two sets

• LOW(s) = {k : ξs,k < LOb
a[s, k] and ξs,i > HIba[s, i] for all i < k},

• HIGH(s) = {k : ξs,k < HIba[s, k] and ξs,i > LOb
a[s, i] for all i < k}.

We obviously have LOW(s) ⊆ HIGH(s), the lower set representing the (necessarily
unique) component accepted by all allowable configurations (this set is empty if the
configurations are split) while the upper set represents all those components which
are potentially accepted by at least one allowable configuration. It is now clear that
we obtain (6) if we choose

a′
k = #{s : LOW(s) = {k}} and b′k = #{s : HIGH(s) ⊇ {k}}.

We also remark that the calculation of the sets LOW(s) and HIGH(s) is somewhat
biased by the ordering chosen for the components, i.e. since the proposal Zs(x) = 1
is always investigated first, this same component is necessarily overrepresented in
the collection of sets HIGH(s). Similarly, the last component r is necessarily under-
represented. It is easy to avoid this problem (and thereby improve the sandwiching
bounds) by permuting randomly the labels for the components for each s = 1, . . . , n.
In some cases, the improvement is dramatic, and we shall always assume this is done,
although it is suppressed in the notation.

4.1. Calculation of the lower bound LOb
a[s, k]

To begin the discussion, consider the generation of the Gamma distributions

(4) as a function of x. For each component we generate Y
(1)
k , Y

(2)
k , . . . , Y

(αk)
k as in

Section 3.1 until (5) is fulfilled for all ak 6 Nk 6 bk for some Y
(t)
k . Consequently

we have

Gk(x) ∈ Nk(x) + {Y (1)
k , . . . , Y

(αk)
k } ·

√

3Nk(x) + 2.25. (8)

This way we obtain a superset of the set of values of (M ′
1(x), . . . , M ′

r(x)) obtained
for the configurations in the set {x : ak 6 Nk(x) 6 bk}.
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We use the notation Y k = max{Y (t)
k : t = 1, . . . , αk}. Obviously, we have

pk(ηs)M
′
k(x)/

r
∑

j=k

pj(ηs)M
′
j(x) > min

ak6c6bk

t=0,...,αk

{

pk(ηs)[c + Y
(t)
k

√
3c + 2.25]

pk(ηs)[c + Y
(t)
k

√
3c + 2.25] + maxl

∑r
j=k+1 pj(ηs)[lj + Y j

√

3lj + 2.25]

}

,

where the minimum is over those t such that c + Y
(t)
k

√
3c + 2.25 > 0, and the

maximum is over those vectors l belonging to the set

S(a,b) :=
{

l : aj 6 lj 6 bj for all j > k and

r
∑

j=k+1

lj 6 n − c −
∑

i<k

ai

}

. (9)

Note that this set is convex. The computational cost of this lower bound is obvi-
ously at most O(n) times the cost of the maximisation, which as it stands is very
expensive. Indeed, unless we have aj = bj for all but one component j > k, an
exhaustive maximisation is out of the question here. However, we can simplify the
problem by first finding an upper bound valid for all vectors l of interest, and then
maximising this. Indeed, suppose that we have aj < bj for at least two different
components j > k. Then we have the bound

max
l

r
∑

j=k+1

pj(ηs)[lj + Y j

√

3lj + 2.25] 6 max
l

r
∑

j=k+1

pj(ηs)[lj + 0 ∨ Y j

√

3lj + 2.25],

where 0 ∨ z = max(0, z). The upper bound is now an increasing function of l in
each variable, and can therefore be maximised by a greedy hill climbing algorithm:
set lj = aj initially for all j > k, and iteratively allocate the remaining available
amount n − c −∑i<k ai to those components which at each stage give the highest
score increase. The worst case cost of this calculation is O(n), but in practise it
appears to run in O(1) steps on average, since the likelihoods pk(ηs) dominate the
score calculation (i.e. when a single pj(ηs) is much larger than all the others).

In summary, if S(a,b) is one dimensional we set

MAX(c) = max
l∈S(a,b)

r
∑

j=k+1

pj(ηs)[lj + Y j

√

3lj + 2.25]

where the maximisation is exhaustive. Otherwise we set

MAX(c) = max
l∈S(a,b)

r
∑

j=k+1

pj(ηs)[lj + Y j1(Yj>0 or aj=bj)

√

3lj + 2.25]

where maximisation is obtained using the greedy hill climbing algorithm. Then
given MAX(c) we set

LOb
a[s, k] = min

ak6c6bk

t=0,...,αk

{

pk(ηs)[c + Y
(t)
k

√
3c + 2.25]

pk(ηs)[c + Y
(t)
k

√
3c + 2.25] + MAX(c)

}

.
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4.2. Calculation of the upper bound HIb
a[s, k]

The upper bound is calculated similarly. We begin by writing

pk(ηs)M
′
k(x)/

r
∑

j=1

pj(ηs)M
′
j(x) 6 max

ak6c6bk

{

pk(ηs)[c + Y k

√
3c + 2.25]

pk(ηs)[c + Y k

√
3c + 2.25] + minl,t

∑r
j=k+1 pj(ηs)[lj + Y

(t)
j

√

3lj + 2.25]

}

,

where the minimisation holds over S(a,b) and those values of Y
(t)
j satisfying lj +

Y
(t)
j

√

3lj + 2.25 > 0. Now unlike the previous case, it seems hard to find a lower
bound on this quantity because of the extra positivity requirement for the bracketed
quantity (exhaustive minimisation being out of the question). We opt therefore for
the cruder estimate

MIN(c) =
r
∑

j=k+1

pj(ηs) min
aj6l6bj

t=1,...,αj

[l + Y
(t)
j

√
3l + 2.25],

with the proviso l + Y
(t)
j

√
3l + 2.25 > 0, after which we set

HIba[s, k] = max
ak6c6bk

t=0,...,αk

{

pk(ηs)[c + Y
(t)
k

√
3c + 2.25]

pk(ηs)[c + Y
(t)
k

√
3c + 2.25] + MIN(c)

}

.

5. Specifying the compound update function

In this section we consider how to generate perfect samples from (1) using the
roCFTP algorithm using three different choices of the compound random update
function C. In the following Ω = {1, . . . , r}n×S and F : Ω → Ω denotes the random
update function (3) described in Section 3.

Initially we assume C to be a compound of K replica of F , so Ci = Fi,K ◦ · · · ◦
Fi,2 ◦ Fi,1 where Fi,1, . . . , Fi,K are independent realisations of F . To determine if
Ci is coalescent, we make use of the bounding sets found in Section 4 as follows.
Initially set aj = 0 and bj = n, j = 1, . . . , r. Then, sequentially for each Fi,k,
k = 1, . . . , K, update a and b according to the scheme in Section 4. If, after the
(K − 1)st update, we have aj = bj , j = 1, . . . , r, we declare Ci coalescent, and
non-coalescent otherwise. The reason we need aj = bj after K − 1 updates is that
aj = bj implies coalescence in the allocation space, but not necessarily coalescence
in the weight space. The latter is obtained after the Kth update. In practise the
bounding sets derived in Section 4 can be quite “sloppy” in the sense that they are
much larger than the exact bounding {F (x) : x ∈ W}. As mentioned in Section 2.2
this will make the perfect sampler less efficient. Below we will explore one way of
alleviating this problem.

5.1. Catalytic updates

An alternative to the above approach is to use catalytic perfect simulation intro-
duced by [3]. Catalytic perfect simulation is a special case of the roCFTP algorithm
where the update functions have been replaced be so-called catalytic updates. A
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catalytic update is obtain by modifying an existing update function. The basic idea
is that the first catalytic update in each block is constructed in such a way that
with high probability it maps the entire state space into a small number of points.
When this happens coalescence can be detected by tracking these points under sub-
sequent updates. In practise this eliminates the problem of sloppy bounding sets.
The main drawback is that the implementation of the first catalytic update in each
block comes at a computationally high price. [3] also consider catalytic perfect sim-
ulation for the mixture problem. They use an approximative check for coalescence
to reduce the computational cost resulting in an imperfect sampler.

First we consider the following simple catalytic update which modifies a realisa-
tion of F :

F̃x∗(F )(x) =

{

x̃ if ξ 6
P (x,x̃)

P (x,F (x))
P (x∗,F (x))

P (x∗,x̃)

F (x) otherwise.
(10)

Here P (x, x′) = π(m′|z)π(z′|m′) is the transition kernel of F . Further, x∗ ∈ Ω,
ξ ∼ U[0, 1] and x̃ is a sample from P (x∗, ·). In the notation we have suppressed
the dependence on x̃ and ξ. It may be helpful to think of the catalytic update as
a Metropolis-Hastings update with stationary distribution P (x, ·). By invariance
and the fact that F (x) is a sample form P (x, ·) it follows that Fx∗(F )(x) is also a
sample from P (x, ·). In the following we will denote F a basic update to distinguish
it from the catalytic update.

Inspecting (10) it is clear that Fx∗(F )(x∗) = x̃ and in general there will be a
“basin of attraction” around x∗ in which points are mapped to x̃. More precisely the
basin of attraction is given by Basin(x̃, F, ξ, x∗) = {x ∈ Ω : ξP (x, F (x))P (x∗ , x̃) 6

P (x, x̃)P (x∗, x′)}. The catalytic update is illustrated in Figure 2. Notice that if
Basin(x̃, F, ξ, x∗) = Ω then F̃x∗(F ) mapes the entire state space into x̃. Unfortu-
nately, unless Ω is relatively small this is unlikely to happen, see e.g. the centre plot
of Figure 2. This motivates using the following variant of the catalytic update, see
[2] for more details.

Assume that x∗ = (x∗
1, . . . , x

∗
ν) is a vector of ν states and each x∗

i is associ-
ated with a state x̃i ∼ P (x∗

i , ·) and ξi ∼ U [0, 1] both generated independently of
everything else. We can then define the general catalytic updates as

F̃x∗(F ) = F̃x∗

ν
◦ · · · ◦ F̃x∗

2
◦ F̃x∗

1
(F ).

In words, we first modify F using Fx∗

1
, then modify the resulting modified function

using Fx∗

2
and so on. The general catalytic update can be thought of as the result

of running a ν step Metropolis-Hastings chain with stationary distribution given by
P (x, ·) and initial state x′ = F (x) ∼ P (x, ·). By invariance Fx∗(F )(x) is a sample
from P (x, ·). Further, we define the basin of attraction for F̃x∗(F ) as

Basin(x∗, F ) = ∪n
i=1Basin(x̃i, F, ξi, x

∗
i ). (11)

Perfect samples can now be obtained using the roCFTP algorithm with

C = F̃x∗

K
(FK) ◦ · · · ◦ F̃x∗

2
(F2) ◦ F̃x∗

1
(F1)(x),

where F1, . . . , FK are independent realisations of F and x∗
1, . . . ,x

∗
K are vectors of

states which may be of different length and where the configuration of x∗
t may

depend on the bounding set obtained after the first t − 1 updates.

10



Paper No. 07-23, www.warwick.ac.uk/go/crism

Perfect posterior simulation for mixture and hidden Markov models

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

0 10 20 30 40 50

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: The left plot shows how M1(x) depends on N1(x) for a realisation of F
when n = 50 and r = 2. Centre and right plots shows the same but for a catalytic
update F̃ (F ) and F̃x∗(F ), respectively. The blue dots are coordinates affected by the
modification, i.e. the corresponding values of N1(x) belong to a basin of attraction.
Crosses at the bottom of the centre and right plots indicate the location of the x∗s.
Notice how the cardinality of the image decreases from F over F̃ (F ) to F̃x∗(F ).
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The detection of coalescence depends crucially on whether Basin(x∗
1, F1) = Ω or

not. If Basin(x∗, F ) = Ω then F̃x∗(F ) maps the state space into a subset of the ν
points x̃1, . . . , x̃ν . Accordingly we let the bounding set be W = {x̃1, . . . , x̃ν}. After
this the bounding set is updated as follows: if W is the current bounding set then
the next bounding set is W ′ := Fx∗(F )(W ) = {Fx∗(F )(x) : x ∈ W}. Hence the
bounding sets are all exact with the exception of the first as F̃x∗

1
(F1)(Ω) may be a

strict subset of {x̃1, . . . , x̃ν}. Coalescence is declared the moment #W = 1. In prac-
tise this is checked by tracking each x̃i associated with x∗

1 as Fx∗

2
(F2), . . . , Fx∗

K
(FK)

are applied. As we have (alomost) eliminated the sloppy bounding sets defined in
Section 4 this alogrithm is more effecient in detecting coalescence and inducing co-
alescence as a small W is likely to be mapped into just one point. This is confirmed
by simulation studies showing that coalescence is obtained much faster in terms of
the size of K when using catalytic perfect simulation. A further advantage is that
this algorithm much simpler to implement.

If Basin(x∗
1, F1) 6= Ω we do not know if F̃x∗

1
(F1) maps Ω into {x̃1, . . . , x̃ν} or not.

One option would be to check if Basin(x∗
2, F2) = Ω. Instead we choose to declare

C non-coalescent and for the remainder of the block we only apply basic updates
which is equivalent to setting x∗

2 = · · · = x∗
K = ∅.

In practise it seems difficult to check if Basin(x∗, F ) = Ω by other means
than brute force, i.e. for each x ∈ Ω check that x ∈ Basin(x̃i, F, ξi, x

∗
i ) for some

i = 1, . . . , ν. This is potentially computationally infeasible but the following obser-
vations help reduce the problem. Notice that P (x, x′) = π(m′|z)π(z′|m′) so letting
x′ = F (x) the Hastings ratio in (10) can be rewritten as

P (x, x̃)

P (x, x′)

P (x∗, x′)

P (x∗, x̃)
=

π(m̃|z)π(z̃|m̃)

π(m′|z)π(z′|m′)

π(m′|z∗)π(z′|m′)

π(m̃|z∗)π(z̃|m̃)
=

π(m̃|z)

π(m′|z)

π(m′|z∗)
π(m̃|z∗)

=
m̃

N1(x)
1 · · · m̃Nr(x)

r

m′
1
N1(x) · · ·m′

r
Nr(x)

m′
1
N1(x

∗) · · ·m′
r
Nr(x∗)

m̃
N1(x∗)
1 · · · m̃Nr(x∗)

r

=

r
∏

k=1

(

m̃k

m′
k

)Nk(x)−Nk(x∗)

. (12)

As both mk and m̃ are generated as described in Section 3 they are only functions
of N1(x), . . . , Nr(x) and N1(x

∗), . . . , Nr(x
∗), respectively. Hence, the Hastings ratio

(12) only depends on x and x∗ though N1(x), . . . , Nr(x) and N1(x
∗), . . . , Nr(x

∗).
So verifying Basin(x∗, F ) = Ω amounts to checking that each valid configuration
of N1(x), . . . , Nk(x) belongs to one of the ν basins of attraction. As the number of
valid configurations is

r
∑

k=1

(

n − 1

r − k

)(

r

k − 1

)

the complexity of checking if Basin(x∗, F ) = Ω is of order O(νnr−1). Even though
this reduces the computational cost of verifying Basin(x∗, F ) = Ω it may still be
infeasible in practise. This problem can be reduced by combining basic and catalytic
updates.

12
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5.2. Delayed catalyst

So far we have considered two ways of constructing C. Either it consist in apply-
ing K basic updates or K catalytic updates. Assume instead that C is constructed
by applying basic updates until the cardinality of the bounding set W = {x : aj 6

Nj(x) 6 bj} is below some given threshold. When this happens we start applying
catalytic updates until a total number of K updates have been applied. Note that
if the cardinality of W does not get below the threshold no catalytic updates are
applied. In the following let K̃ denote the number of basic updates applied to get
below the threshold. With this setup perfect samples are obtain using the roCFTP
algorithm with

C(x) = F̃x∗

K−K̃
(FK) ◦ · · · ◦ F̃x∗

1
(FK̃+1) ◦ FK̃ ◦ · · · ◦ F1(x),

where F1, . . . , FK are independent realisations of F and each vector of states x∗
i

may depend on the bounding set obtained after the initial K̃ + i − 1 updates.

Coalescence is detected as before by updating the bounding set for each update.
For the initial K̃ basic updates the bounding set is updated using the scheme in
Section 4. Let W be the bounding set obtained after the initial K̃ updates. Then
when the first catalytic update F̃x∗

1
(FK̃+1) is applied we check if Basin(x∗

1, FK̃+1) =
W . If this is the case we track the states x̃i associated with x∗

1 under the subsequent
catalytic updates. If they have coalesced after the K − 1st updates we declare
C coalescent otherwise not. Further, if Basin(x∗

1, FK̃+1) 6= W we declare C non-
coalescent and apply basic updates for the remainder of the block.

By waiting until #W is below the threshold before we apply catalytic updates the
computational cost of checking Basin(x∗

1, FK̃+1) = W has hopefully been reduced
considerably. This idea of waiting until a bounding set is sufficiently small before
a more effective update functions is applied is closely related to the concept of
one-shot coupling, see [10] and the idea in [1] of tracking a bounding set and then
apply a more efficient update at the end of the block.

Notice that a threshold of zero corresponds to the case where C consists only of
realisation of F . Similarly, a threshold larger than (n + 1)r corresponds to the case
where C consists of only modified updates.

5.3. Specifying x∗

It remains how to specify x∗
i . Recall that (10) only depends on x∗ through

N1(x
∗), . . . , Nr(x

∗). So specifying x∗
j reduces to choosing points l = (l1, . . . , ln) in

{(l1, . . . , ln) : lj ∈ {1, . . . , n},∑r
j=1 lj = n}. Assume that W is the current bounding

set. Then we let x∗
i be an equally spaced subgrid {(l1, . . . , ln) : yj = aj + ∆d, d =

0, . . . , b(bj −aj)/∆c,∑r
j=1 lj = n}, where ∆ is the spacing and ak = minx∈W Nk(x)

and bk = maxx∈W Nk(x). With this choice checking Basin(x∗
1, FK̃+1) = Ω has

complexity O(n2(r−1)).

It seems appealing that as the range of W increases, so does the number of points
in x∗ and that these points are evenly distributed. In practise the main advantage
of this choice is when checking if Basin(x∗

1, FK̃+1) = W . Recall that checking if
Basin(x∗

1, FK̃+1) = W consist in checking for each x ∈ W if x ∈ Basin(x̃i, F, ξi, x
∗
i )

for some i = 1, . . . , ν. Instead of systematically going through all basins we start
with the basin associated to x∗ ∈ x∗ chosen so that it minimises ‖ N(x)−N(x∗

i ) ‖.
Due to the grid structure the minimisation is cheap and this trick is expected to

13
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speedup the check of Basin(x∗
1, FK̃+1) = W .

5.4. Simulation study

We now consider a small simulation study mainly comparing different choices
of the threshold. We assume that each component density pi is that of a normal
distributed random variable with mean µi and common variance σ2.

Figure 3 shows the bounding set for N1(x) when generating perfect posterior
samples using two different choices of the threshold and block size K. The same
simulated data set with n = 100 points has been used for both simulations. The
top plot of figure 3 shows the zero threshold case. In this case the size of the
bounding set decreases rapidly to a small size but still struggle to coalesce. In the
lower plot the threshold is 453. After just a few updates the first catalytic update
is applied. With one exception the catalytic update is successful, in the sense that
Basin(x∗

1, FK̃+1) = W . Notice that for this particular simulation a block is declared
coalescent whenever the first catalyst is successful even if the even if a much smaller
block size is used.

Intuitively, the more well-separated the true means are, the easier it should be
to estimate the unknown weights. Figure 4 shows the bounding set in a situation
where the true means are less well separated compared to the true means used
in Figure 3. As a result the bounding set tends to remain close to Ω making the
zero threshold case impracticable. In fact a threshold close to nr is required for the
perfect sampler to work in practise.

Table 1 compares the computational costs of producing perfect posterior samples
for different configurations of the true means, block size, threshold and data size.
Whenever a catalytic update is applied, we let x∗ be a grid with a spacing ∆ = 5.
The results confirm the intuition that as the component densities become more
separated, it becomes easier to determine the individual weights and as consequence
the Markov chains should converge faster. Further, it can be seen that for increased
separation of the true means the advantage of using catalytic updates decreases.

Comparing the results in row 3, 4 and 6 in Table 1 we see the effect of the
threshold. Choosing the threshold too large makes the first catalytic update too
computationally expensive. On the other hand, choosing the threshold too small
may result in the catalytic updates being applied too late to introduce coalescence,
or maybe not applied at all.

Comparing rows 4 and 5 of Table 1 show that the block size, K, has little influence
on the computing time. This is because when coalescence has been declared, the
algorithm is only updating the target process for the remainder of the block which
is computationally inexpensive.

6. Generalisation: Gaussian mixtures with unknown means

So far we have described how to generate perfect samples from the posterior
weight distribution when the mixture components are known. In this section we
extend our approach to the case where the components are specified by unknown
parameters. Specifically we assume that the r components are Gaussian with com-
mon, known variance σ2 and individual, unknown means µ1, . . . , µr. As for the
Bayesian setup we assume a uniform prior on the weights and a Gaussian N (µ∗, τ2)
prior for each µj .

14
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Figure 3: Plots illustrates the roCFTP algorithm with different choices of threshold
and block size. For both plot we have used the same simulated data set specified
by n = 100, r = 3, µ = (0, 1.1, 2.2), m = ( 1

3 , 1
3 , 1

3 ) and σ2 = 0.25. The red region
illustrates the bounding set for N1(x) given by the interval [a1, b1]. As the bounding
set is not updated when Basin(x∗

1, FK̃+1) 6= W we plot the full interval [0, n] when
this happens. The blue line is the target process. Solid squares indicates when the
event Basin(x∗

1, FK̃+1) = W occurs, i.e. when the basin of first catalytic update
successfully cover the bounding set. Triangles indicate the time a given Ci achieves
#W = 1, i.e. when coalescence is declared. Circles indicate a perfect sample from
the posterior. The top plot combines a zero threshold with a block size K = 200.
In the lower plot the block size is K = 30 and the threshold is 453.
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Figure 4: This plot illustrates perfect posterior simulation in a situation where
the data analysed was simulated for the setup specified by n = 100, r = 3, µ =
(0, 0.5, 1), m = ( 1

3 , 1
3 , 1

3 ) and σ2 = 0.25. For this example K = 30 and the threshold
is 953.

Table 1: Computational cost of perfect simulation. For each row we have the table
shows the time for generating 100 independent realisations of the posterior weight
distribution. The data analysed was generated using the parameter n, µ, m and σ
specified in the first eight columns. For rows with identical specifications of n, µ,
m and σ the same data set has been analysed. the delayed catalyst algorithm. The
last two rows specify the threshold (Thl) and block size (K) used in the perfect
simulation algorithm. When the threshold is zero no catalytic updates are ever
used.

n µ1 µ2 µ3 m1 m2 m3 σ CPU Thl K

100 0 0.5 1 1
3

1
3

1
3 0.5 3653 953 30

100 0 1 2 1
3

1
3

1
3 0.5 11767 0 200

100 0 1 2 1
3

1
3

1
3 0.5 475 203 30

100 0 1 2 1
3

1
3

1
3 0.5 181 453 30

100 0 1 2 1
3

1
3

1
3 0.5 217 453 100

100 0 1 2 1
3

1
3

1
3 0.5 918 953 30

100 0 2 4 1
3

1
3

1
3 0.5 73 203 30

100 0 2 4 1
3

1
3

1
3 0.5 68 0 50

200 0 2 4 1
3

1
3

1
3 0.5 391 203 30

200 0 2 4 1
3

1
3

1
3 0.5 413 0 50
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As in Section 3 we start by considering how to simulate approximatively from the
posterior using a Gibbs sampler. Given an augmented state x = (z1, . . . , zn, m1, . . . , mr, µ1, . . . , µr),
we first update the means followed by updates of the weights and allocations. This
leads us to specify an augmented Gibbs evolution of the form

F (x) = (Z ′
1(x), . . . , Z ′

n(x), m′
1(x), . . . , m′

r(x), µ′
1(x), . . . , µ′

r(x)) (13)

where

µ′
k(x) ∼ N

(

σ−2
∑

s∈Ak(x) ηs + τ−2µ∗

σ−2 |Ak(x)| + τ−2
, (σ−2 |Ak(x)| + τ−2)−1

)

, (14)

and Ak(x) = {s : zs = k}. Note that Nk(x) = |Ak(x)| in our previous notation.
The updates M ′

k(x) and Z ′
s(x) are as in Section 3 but with pj(v) replaced by

pk(v, x) = exp−[v − µ′
k(x)]2/2σ2.

By analogy with the previous case, we want to track a bounding set which in
the present setup is of the general form

{

x : Ak ⊆ Ak(x) ⊆ Ak, k = 1, . . . , r
}

. (15)

The set Ak corresponds to the set of data points that could be allocated to the
kth component, whereas Ak corresponds to set of data points allocated to the
kth component and no other component. The full set of possible configurations is
initially of the above type, with Ak = ∅ and Ak = {1, . . . , n} for each k.

As before, the bounds we shall derive are used to obtain expressions of the type

LO[Ak, Ak] 6 M ′
k(x)/

r
∑

j=k

[pj(ηs, x)/pk(ηs, x)]M ′
j(x) 6 HI[Ak, Ak]. (16)

These limits are in turn used exactly as before, to generate the sets LOW(s) and
HIGH(s) for each data point ηs. It remains to define

A′
k = {s : k ∈ LOW(s)} and A

′
k = {s : k ∈ HIGH(s)},

which completes the sandwiching calculation, giving

F
(

{x : Ak ⊆ Ak(x) ⊆ Ak}
)

⊆ {x : A′
k ⊆ Ak(x) ⊆ A

′
k}.

We now explain how to define the random mapping F (x) in (13). The explicit
implementation details for M ′

k(x) and Z ′
s(x) remain unchanged, once the µ′

k(x)
have been computed. We therefore concentrate on describing this case.

If we know that |Ak(x)| = c say, then (14) becomes simply

µ′
k(x) ∼ η(Ak(x)) + (σ−2c + τ−2)1/2N (0, 1)

σ−2c + τ−2
, (17)

where η(A) = σ−2
∑

s∈A ηs + τ−2µ∗ satisfies the constraints

η(c) := min
Ak⊆A⊆Ak,

|A|=c

η(A) 6 η(Ak(x)) 6 max
Ak⊆A⊆Ak,

|A|=c

η(A) =: η(c).

It is important to note that these upper and lower bounds can be quickly calculated,
for each c separately, if we assume (as we shall from now on) that the data points
η1, . . . , ηn are sorted according to size.
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For each c, we may generate a mapping µ′
k(x) = F (x) satisfying (17) for all x

with |Ak(x)| = c, and containing only a small number of image points (hopefully
much smaller than

(

n
c

)

, the number of different subsets of size c sandwiched between

Ak and Ak.). This may be done in generality using Field Couplers ([2]), but here
we prefer to use the technique of Layered Multishift Coupling introduced by [12],
which requires fewer computations but is restricted to the Gaussian and other uni-
modal distributions with easily invertible densities. The formula is given explicitly
as (writing bzc for the integer part of z)

µ′
k(x) =

1√
σ−2c + τ−2

(

Wk +

⌊

η(Ak(x))/
√

σ−2c + τ−2 + Rk − Wk

Rk − Lk

⌋

(Rk − Lk)

)

,

(18)
where Wk ∼ N (0, 1), and we compute Lk = −

√

−2 log(1 − Yk) and Rk =
√−2 logYk

by setting Uk ∼ U [0, 1], and Yk = Uk exp[−W 2
k /2] if Wk > 0, but Yk = 1 −

Uk exp[−W 2
k /2] if Wk 6 0. An important consequence is that

µ′
k(x) ∈

{

(σ−2c + τ−2)−1/2
[

Wk + `(Rk − Lk)
]

if |Ak(x)| = c, ` ∈ �
}

where ` is an integer satisfying

⌊η(c)/
√

σ−2c + τ−2 + Rk − Wk

Rk − Lk

⌋

6 ` 6

⌊η(c)/
√

σ−2c + τ−2 + Rk − Wk

Rk − Lk

⌋

. (19)

By allowing c to vary from c =
∣

∣Ak

∣

∣ to c =
∣

∣Ak

∣

∣ (but keeping Rk, Lk, and Wk fixed
for simplicity), we therefore arrive at a complete cover of all the possible values
which could be taken by µ′

k(x), for x ∈ {x : Ak ⊆ Ak(x) ⊆ Ak}. The average
computational cost for this estimate is O(N log N) for the initial sort (worst case
O(N2)), and at most O(N) for each computation of η(c) and η(c), hence giving

O(N2) altogether. This final computation is repeated for each separate component.

Bounds on the likelihood ratios. For each c, let MEANk(c) denote the set
of possible values taken by µ′

k(x) as x varies over the set {x : Ak ⊆ Ak(x) ⊆ Ak}
with |Ak(x)| = c, in accordance with the formula (18). If ηs is any datapoint, and
|Aj(x)| = l, |Ak(x)| = c, we therefore have

min
µj∈MEANj(l)
µj∈MEANk(c)

exp− 1

2σ2

[

(ηs − µk)2 − (ηs − µj)
2
]

6 pj(x, ηs)/pk(x, ηs)

6 max
µj∈MEANj(l)
µj∈MEANk(c)

exp− 1

2σ2

[

(ηs − µk)2 − (ηs − µj)
2
]

,

Using the formula (18), both the minimum and maximum are straightforward to
calculate. We formalise this by writing

p
sjk

(l, c) 6 pj(x, ηs)/pk(x, ηs) 6 psjk(l, c) on {x : |Aj(x)| = l, |Ak(x)| = c}. (20)

Define

uk(c, ηs) =
1

2σ2

[

max
z(c)6i6z(c)

(

ηs − (σ−2c + τ−2)−1/2(Wk + i(Rk − Lk))
)2
]

(21)
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and

uk(c, ηs) =
1

2σ2

[

min
z(c)6i6z(c)

(

ηs − (σ−2c + τ−2)−1/2(Wk + i(Rk − Lk))
)2
]

(22)

where z(c) and z(c) are respectively the lower and upper bounds given in (19). The
left bound in (20) is then given explicitly by

p
sjk

(l, c) = exp
{

uk(c, ηs) − uj(l, ηs)
}

.

Note that the minimum in (22) is achieved when i equals one of the four values

z(c), z(c),
⌊

√
σ−2c + τ−2ηs − Wk

Rk − Lk

⌋

,
⌈

√
σ−2c + τ−2ηs − Wk

Rk − Lk

⌉

.

The maximum in (21) is achieved when i equals one of the two values z(k), z(k).
These observations speed up the calculation considerably.

The right bound in (20) satisfies

psjk(l, c) = exp
{

uk(c, ηs) − min
aj6`6l

uj(`, ηs)
}

Note the asymmetry in the definitions above. This is needed to cope with the
asymmetry in the calculations of the upper and lower bounds below.

Upper bound in (16). Mimicking the upper bound calculation in Section 4,
we have from (16) and (4) the bound

M ′
k(x)/

r
∑

j=1

[pj(x, ηs)/pk(x, ηs)]M
′
j(x) 6 max

ak6c6bk

{

[c + Y k

√
3c + 2.25]

[c + Y k

√
3c + 2.25] +

∑r
j=k+1 min aj6l6bj

t=0,...,αj

p
sjk

(l, c)[l + Y
(t)
j

√
3l + 2.25]

}

,

where the minimisation is over those values of Y
(t)
j satisfying l+Y

(t)
j

√
3l + 2.25 > 0.

Lower bound in (16). This also is a slight generalisation of the computation
described in Section 4. The starting point is given by the formula

M ′
k(x)/

r
∑

j=1

[pj(ηs)/pk(ηs)]M
′
j(x) > min

ak6c6bk

t=0,...,αk

{

[c + Y
(t)
k

√
3c + 2.25]

[c + Y
(t)
k

√
3c + 2.25] + maxl

∑r
j=k+1 pskj(c)[lj + Y j

√

3lj + 2.25]

}

,

where the maximisation is over S(a,b) (as defined in (9)) as in Section 4, and we
have set pskj(c) = maxaj6l6bj

pskj(l, c) (for otherwise the maximisation is not so
simple). If all but a single component j > k satisfies aj = bj , the maximisation is
straightforward and can be done exactly. In case this assumption doesn’t hold, we
look for an easily maximised upper bound on the maximum. Define

wj(l, ηs) = min
aj6c6l

uj(c, ηs),
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then we obviously have

max
l

r
∑

j=k+1

euk(c,ηs)−uj(lj ,ηs)[lj + Y j

√

3lj + 2.25] 6

max
l

r
∑

j=k+1

euk(c,ηs)−wj(lj ,ηs)[lj + 0 ∨ Y j

√

3lj + 2.25],

where the latter sum is increasing as a function of each lj , thus amenable to the
same greedy hill climbing algorithm as before.

6.1. Simulation experiments

In practise this algorithm only seems to be feasible for quite small data sets
(n < 5) where data consist of one cluster. In other words, the algorithm works best
if the likelihood that the data came from just one Gaussian distribution is high.

To understand why this algorithm does not work satisfactory consider the fol-
lowing. The algorithm relies on generating a random map that maps all possible
configuration of allocations, weights and means into just one configuration. Assume
r = 2 and that data consists of two distinct clusters points. Consider a configuration
where the left most cluster corresponds to component one (and right most cluster
corresponds to component two). A coalescent map should then “flip” the compo-
nent means and component allocations. Given the way allocations are updated here
this would happen with an infeasibly small probability.

6.2. Integrating out the mean

In an attempt to alleviate the problems indicated above we integrating out
µ1, . . . , µr in the posterior density. The resulting joint density for m and z is pro-
portional to

r
∏

k=1

m
Nk(x)
k (Nk(x)σ−2 + τ−2)−

1
2 exp

[

1

2

(η(Ak(x))σ−2 + µ∗τ−2)2

Nk(x)σ−2 + τ−2

]

.

Defining

ζj(i, x) =
(

σ−2(Nj(x−s) + i) + τ−2
)− 1

2 ×

exp

(

1

2

(

σ−2(η(Aj(x−s)) + iηs) + τ−2µ∗
)2

σ−2(Nj(x−s) + i) + τ−2

)

we obtain

�
(Zs = k|m, Zs > k, Z−s) = mk

(

ζk(1, x)/ζk(0, x)
)

/

[

mk

(

ζk(1, x)/ζk(0, x)
)

+
r
∑

j=k+1

mj

(

ζj(1, x)/ζj(0, x)
)

,

]

where Z−s = (Z1, . . . , Zs−1, Zs+1, . . . , Zn). Notice that mk is a function of Nk(x).
Even though component means have been eliminated problems with identifiability
persists. Complicating things further is the fact that the allocation variables are no
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longer conditional independent given the weights. In fact the conditional probability�
[Zs = k|Z−s, m] depends on the exact configuration of Z.
One solution to the identifiability issue is to restrict the state space to those

allocations z where η(Ak(x))
|Ak(x)| 6

η(Aj(x))
|Ak(x)| when k < j. One way of sampling under

this restriction is using a Metropolis-within-Gibbs sampler: For each Zi we propose
a new allocation. Given the proposal we find a lower bound on the acceptance
probability. This implies, in principle, minimising the Hastings ratio over all allowed
allocation fulfilling the restriction imposed above. The Hastings ratio is

�
(Zs = k|Z−s)�
(Zs = j|Z−s)

=

{

mk

√

σ−2Nk(Z−s) + τ−2

σ−2(Nk(Z−s) + 1) + τ−2
×

exp

(

1

2

(σ−2(η(Ak(Z−s)) + ηs) + τ−2µ∗)2

σ−2(Nk(Z−s) + 1) + τ−2

−1

2

(σ−2η(Ak(Z−s)) + τ−2µ∗)2

σ−2Nk(Z−s) + τ−2

)}

×
{

1

mj

√

σ−2(Nj(Z−s) + 1) + τ−2

σ−2Nj(Z−s) + τ−2
×

exp

(

− 1

2

(σ−2(η(Aj(Z−s)) + ηs) + τ−2µ∗)2

σ−2(Nj(Z−s) + 1) + τ−2

+
1

2

(σ−2η(Aj(Z−s)) + τ−2µ∗)2

σ−2Nj(Z−s) + τ−2

)}

We refer to the expression in the two sets of curly brackets as the k term and j term,
respectively. Given mk, Nk(Z−s), mj and Nj(Z−s) it is straight forward to find
upper and lower bounds for η(Ak(Z−s)) and η(Aj(Z−s)). Further, the exponents
in the k and j terms are second order polynomials in η(Ak(Z−s)) and η(Aj(Z−s)),
respectively. So given mk, Nk(Z−s), mj and Nj(Z−s) minimising the Hastings ratio
reduces to minimising a simple function of two variables under the constraint that
η(Ak(Z−s)) + ηs 6 η(Aj(Z−s)) − ηs. The final minimisation is obtain by going
through j = 1, . . . , k and run through the (super)set of possible values of Nk(Z−s)
and Nj(Z−s). Notice that mk and mj depend on Nk(Z) and Nj(Z), respectively. In
practise this method does not seem to give any significant improvement compared
to the situation where the means are not integrated out.

7. Hidden Markov models

In this section we extend our approach to perfect simulation of the posterior
transition probabilities in a discrete state hidden Markov model. Essentially this
means that instead of assuming that the allocation variables Z0, . . . , Zn are inde-
pendent and identically distributed we assume that Z = (Z0, . . . , Zn) is a Markov
chain. For simplicity we assume that Z is a two state Markov chain with transition
matrix Q = {qij : i, j ∈ {1, 2}}, i.e.

�
(Zs+1 = j|Zs = i) = qij . This implies a state

vector x = (z0, . . . , zn, q11, q12, q21, q22).
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It is easily seen that this Markov chain has stationary distribution with density
proportional to (1 − q22, 1 − q11) = (q21, q12). As before, we a priori assume that
η1, . . . , ηn are independent given Z and that ηs|Zs = i ∼ pi. Assuming that the
Markov chain Z is started in equilibrium the joint likelihood for η = (η0, . . . , ηn)
and Z given Q is

π(η, Z|Q) =
n
∏

s=1

qZs−1Zs

n
∏

s=0

pZs
(ηs)(q21 + 1l[Z0 = 2](q12 − q11))/(q21 + q12).

To obtain a simple posterior we assume that the joint priori density for q11 and
q22 is proportional to q12 + q21. The posterior density is then proportional to

n
∏

s=0

pzs
(ηs)

n
∏

s=1

qzs−1zs
(q21 + 1l[z0 = 2](q12 − q21)).

7.1. Specifying the update function

The posterior can be sampled using a Gibbs sampler noticing that conditional
on Z and η the posterior distributions of q11 and q22 are independent and beta:

q11|Z = z, η ∼ beta(N11(x) + 1, N12(x) + 1l[z0 = 2] + 1) (23)

and

q22|Z = z, η ∼ beta(N22(x) + 1, N21(x) + 1l[z0 = 1] + 1),

where Nij(x) = #{s : 1 6 s 6 n, zs−1 = i, zs = j} is the number of transitions
from state i to state j in z. The conditional posterior probabilities for the allocation
variables are

�
(Z0 = 1|Q, η, Z−0) = p1(η0)q21q1z1

/ [p1(η0)q21q1z1
+ p2(η0)q12q2z1

]
�
(Zs = 1|Q, η, Z−s) = p1(ηs)qzs−11q1zs+1

/

[p1(ηs)qzs−11q1zs+1
+ p2(ηs)qzs−12q2zs+1

]

for 1 6 s 6 n − 1,
�
(Zn = 1|Q, η, Z−n) = p1(ηn)qzn−11/[p1(ηn)qzn−11 + p2(ηn)qzn−12]

where Z−s = (Z0, . . . , Zs−1, Zs+1, . . . , Zn).

As in Section 3 the Gibbs sampler can be expressed as a random update function

F (x) = (Z ′
0(x), . . . , Z ′

n(x), q′11(x), q′22(x)).

To generate q′11(x) from the beta distribution (23) generate gamma distributed
variables G11 ∼ Γ(N11(x) + 1) and G12(x) ∼ Γ(N12(x) + 1l[Z0 = 2] + 1) and set
q′11(x) = G11(x)/(G11(x) + G12(x)). The gamma distributed random variables are
generated as in Section 3, i.e.

Gij(x) ∈ Nij(x) + {Y (1)
ij , . . . , Y

(αij)
ij } ·

√

3Nij(x) + 2.25.

The variable q′22(x) is generated in a way similar to that of q′11(x).

To generate Z ′
0(x), generate ξ0 ∼ U [0, 1] and if

ξ0 6 p1(η0)q
′
21q

′
1z1

/
[

p1(η0)q
′
21q

′
1z1

+ p2(η0)q
′
12q

′
2z1

]
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set Z ′
0 = 1 otherwise set Z ′

0(x) = 2. To generate Z ′
s(x), s = 1, . . . , n − 1 generate

ξs ∼ U [0, 1] and if

ξs 6 p1(ηs)q
′
z′

s−1
q′1zt+1

/[p1(ηs)q
′
z′

s−1
1q

′
1zs+1

+ p2(ηs)q
′
z′

s−1
2q

′
2zs+1

]

set Z ′
s(x) = 1 otherwise set Z ′

s(x) = 2. To generate Z ′
n(x) generate ξn ∼ U [0, 1]

and if

ξn 6 p1(ηn)q′z′

n−1
1/[p1(ηn)q′z′

n−1
1 + p2(ηn)q′z′

n−1
2]

set Z ′
n(x) = 1 otherwise set Z ′

n(x) = 2.

7.2. Determining the bounding sets

Unlike in Section 4 here F (x) depends on the exact configuration of x. Con-
sequently we consider bounding sets of the form W [A] = {x : zi ∈ Ai}, where
A = (A1, . . . , An) and A1, . . . , An are non-empty subsets of {1, 2}. Notice that
whereas in Section 6 we have sets Ak and Ak for each component here we have a
set As for each data point. Given A and a realisation of F we give a practical way
of determining A′ = (A′

1, . . . , A
′
n) so that x ∈ W [A] implies F (x) ∈ W [A′].

Assume that for each t we can find bounds LOs[A] and HIs[A] so that

LOs[A] 6
�
(Zs(x) = 1|Q(x), Z−s(x), η) 6 HIs[A], ∀x ∈ W [A],

where Z−s(x) = (Z ′
0(x), . . . , Z ′

s−1(x), zs+1, . . . , zn). Then if ξs 6 LO[A]s we know
that for any x ∈ W [A] we have Z ′

s(x) = 1, hence we set A′
s = {1}. If LO[A]s <

ξs 6 HI[A]s then the state of Z ′
s(x) may be either 1 or 2 depending on x, hence

A′
s = {1, 2}. Finally, if ξs > HI[A]s then Z ′

s(x) = 2 for all x ∈ W [A], hence
A′

s = {2}.
When finding the bounds, we consider three separate cases: s = 0, 1 6 s 6 n− 1

and s = n. In all three cases this involves a maximisation/minimisation over a
(super)set of possible configurations of N = (N11, N12, N21, N22). To determine this
set we notice that for the two state Markov chain we consider here it is clear that
the difference between N12 and N21 is at most one. Further, as

∑2
i=1

∑2
j=1 Nij = n

this implies N12 = b(n − N11 − N22)/2c + 1l[z0 = 1]((n − N11 − N22) mod 2) and
N21 = b(n − N11 − N22)/2c + 1l[z0 = 2]((n − N11 − N22) mod 2).

Assume we have bounds N ij and N ij so that N ij 6 Nij(x) 6 N ij for all

x ∈ W [A] and i, j = 1, 2. Then N11 6 N11 6 N11 and given N11, N22 6 N22 6

min(N22, n − N11). Given N11 and N22 and for each value of z̃ ∈ A0 we have
N12 = b(n − N11 − N22)/2c + 1l[z̃ = 1]((n − N11 − N22) mod 2) and N21 = b(n −
N11 − N22)/2c+ 1l[z̃ = 2]((n − N11 −N22) mod 2). This leads us to define the set

N [A] = {(N11, N12, N21, N22) : N11 6 N11 6 N11,

N22 6 N22 6 min(n − N11, N22),

N12 = b(n − N11 − N22)/2c + 1l[z̃ = 1]((n − N11 − N22) mod 2),

N21 = b(n − N11 − N22)/2c + 1l[z̃ = 2]((n − N11 − N22) mod 2), z̃ ∈ A0}.
We are now ready to define the bounds. In the case s = 0

LO0[A] = min
N∈N [A]

z̃∈A1

p1(η0)(1 − q22(N))q1z̃1
(N)

p1(η0)(1 − q22(N))q1z̃1
+ p2(η0)(1 − q11(N))q2z̃1

(N)
,
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Table 2: Each row in the table corresponds to a single data set. Each data set is
a realisation of the hidden Markov model specified by the parameters given in the
first six columns in the corresponding row. The perfect simulation algorithm was
run until it had produced 100 perfect samples. The time taken to produce the 100
perfect samples is shown in the last column.

n µ1 µ2 q11 q22 σ CPU time (sec.)

25 -1 1 0.3 0.6 0.5 61
100 -1 1 0.3 0.6 0.5 10512

where

q11(N) =
G11

G11 + G12
=

N11Y
(t11)
11

√
3N11 + 2.25

N11Y
(t11)
11

√
3N11 + 2.25 + N12Y

(t12)
12

√
3N12 + 2.25

and t11 and t12 are minimal w.r.t. fulfilling (5). The variable q22(N) given in a
similar way. More over, q12(N) = 1 − q11(N) and q21(N) = 1 − q22(N).

For 1 6 s 6 n − 1

LOs[A] = min
N∈N [A]

z̃∈A′

s−1,˜̃z∈At+1

p1(ηs)qz̃1(N)q1˜̃z(N)

p1(ηs)qz̃1(N)q1˜̃z(N) + p2(ηs)qz̃2(N)q2˜̃z(N)
, (24)

and for s = n

LOn[A] = min
N∈N [A]
z̃∈A′

n−1

p1(ηn)qz̃1(N)

p1(ηn)qz̃1(N) + p2(ηn)qz̃2(N)
, (25)

Each HIs is defined as LOs except minimisation is replaced by maximisation. Notice
that that (24) and (25) involves the set A′

s−1. This implies that LOs−1 and HIs−1

have to be determined before LOs and HIs can be determined.

The minimisation and maximisation over N [A] has a worst case complexity of
O(n2). With n data points the worst case complexity for determining A′ is O(n3).

7.3. Generating perfect samples

As in Section 5 we use Wilson’s read-once algorithm for perfect simulation. The
main difference is that we do not make use of catalytic updates as they are computa-
tionally infeasible. Catalytic updates were feasible in Section 5 because determining
Basin(Y1, FK̃+1) could be reduced from checking all valid configurations of z to all
valid configurations of N . It is not clear how one can construct a catalytic update in
the hidden Markov chain context with a similar computationally convenient prop-
erty.

Table 2 shows the computational cost of two different data sizes. In both cases pi

is the density of a normal distributed random variable with mean µi and variance
σ2. Furthermore, each Ci is a compound of 10 update functions. It seems that a
quadrupling of the size of the data result in a dramatic increase in the computational
cost as could be expected given the complexity of the algorithm.
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8. Discussion

We have introduced a general methodology for perfect simulation for mixture
models. Although the applications of our techniques do not extend as far as the
class of problems addressed by MCMC, the methods are exact, and more applicable
than existing method for perfect simulation.

The use of catalytic updates, though computationally expensive, seem particular
useful for harder problems. The advantage is two-fold, first of all it helps us declare
coalescence much sooner than would be possible without it. This is mainly due to
the fact that the catalytic move, if successful, maps (a subset of) the state space
into a “small” countable number of states. Secondly the catalytic update increases
the probability of coupling when upper and lower bounds are close.

It is somewhat unsatisfactory that checking the basin of the first catalytic update
can only be determined by brute force. Further research should go into improving
this. Another open question considers whether there exists a optimal way of choos-
ing Y . A simulation study, not considered here, suggests that an unevenly spaced
grid reduce the number of catalysts needed. Another open questions is if it possible
to develop theoretical guidelines for how to choose the threshold.
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