Volatility estimation from high-frequency observations with irregular errors – Concepts and consequences or *Improved volatility estimation based on limit order books*

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß

SFB 649 ÖKONOMISCHES **RISIKO**

11th September 2014 Slide 1/28

Outline

1 [Model & Motivation](#page-2-0)

- 2 [Volatility estimation based on local order statistics](#page-8-0)
- ³ [Law of local minima and upper bound](#page-12-0)

4 [Lower bound](#page-17-0)

6 [Application](#page-20-0)

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 2/28

Outline

1 [Model & Motivation](#page-2-0)

2 [Volatility estimation based on local order statistics](#page-8-0)

³ [Law of local minima and upper bound](#page-12-0)

4 [Lower bound](#page-17-0)

6 [Application](#page-20-0)

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 3/28

Statistical model

Continuous Itô semi-martingale $X_t = X_0 + \int_0^t a_s ds + \int_0^t \sigma_s dW_s$ $t \in [0,1], (\mathcal{T}_j, \mathcal{Y}_j)$ obs. of Poisson point process on $[0,1] \times \mathbb{R}$ with intensity measure

$$
\Lambda(A)=\int_0^1\int_{\mathbb{R}}1\!\!1_A(t,y)\lambda_{t,y}\,dt\,dy,\quad \lambda_{t,y}=n\lambda1\!\!1(y\geq X_t).
$$

Connatural discrete-time model:

$$
Y_i=X_{t_i^n}+\varepsilon_i, i=0,\ldots,n, \varepsilon_i\geq 0, \varepsilon_i\stackrel{iid}{\sim} F_{\lambda}(x)=\lambda x(1+{\scriptstyle\textcircled{\tiny 1}}(1)).
$$

 9.9

ř.

 0.40

Intra-day order book price dynamics

Order price levels for Facebook asset,

12:00 - 12:30, June 2nd 2014, levels 1-5, bid-ask spread colored in dark red.

Order levels 1-30 and arrivals for AAPL, 12:00 - 12:45, July 28th 2014.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 5/28

Groundwork & Contribution

Principal objective: Recovery of quadratic variation of stochastic boundary *X^t* .

Main application: Estimation of *integrated volatility* for portfolio and risk management.

Groundwork on volatility estimation:

- For discrete observations $X_{i/n}$, $i = 0, \ldots, n$, the *realized volatility* satisfies $n^{\frac{1}{2}} \Big(\sum_{i=1}^n \big(X_{\frac{i}{n}}-X_{\frac{(i-1)}{n}}\big)^2 - \int_0^1 \sigma_s^2 ds \Big) \rightsquigarrow \mathrm{N}\big(0, 2 \int_0^1 \sigma_s^4 ds \big) \, ,$ *n* and is *asymptotically efficient*.
- However, the direct observation model does not accurately fit high-frequency data.
- Prominent *microstructure noise model*: $Y_i = X_{t_i^n} + \varepsilon_i$ with ε_i i.i.d., $\mathbb{E}[\varepsilon_i] = 0$.

Groundwork & Contribution

Principal objective: Recovery of quadratic variation of stochastic boundary *X^t* .

Main application: Estimation of *integrated volatility* for portfolio and risk management.

Groundwork on volatility estimation:

- For discrete observations $X_{i/n}$, $i = 0, \ldots, n$, the *realized volatility* is *asymptotically efficient*.
- However, the direct observation model does not accurately fit high-frequency data.
- Prominent *microstructure noise model*: $Y_i = X_{t_i^n} + \varepsilon_i$ with ε_i **i.i.d.,** $\mathbb{E}[\varepsilon_i] = 0$. Efficient estimator by Bibinger et al (2014) for $\varepsilon_i \stackrel{iid}{\sim}$ N $(0,\eta^2)$ satisfies $n^{\frac{1}{4}}\left(\hat{IV}-\int_{0}^{1}\sigma_{s}^{2}ds\right)\rightsquigarrow\mathrm{N}\big(0,8\eta\int_{0}^{1}\sigma_{s}^{3}ds\big)\,.$

Groundwork & Contribution

Principal objective: Recovery of quadratic variation of stochastic boundary *X^t* .

Main application: Estimation of *integrated volatility* for portfolio and risk management.

Groundwork on volatility estimation:

- For discrete observations $X_{i/n}$, $i = 0, \ldots, n$, the *realized volatility* is *asymptotically efficient*.
- However, the direct observation model does not accurately fit high-frequency data.
- Prominent *microstructure noise model*: $Y_i = X_{t_i^n} + \varepsilon_i$ with ε_i i.i.d., $\mathbb{E}[\varepsilon_i] = 0$. Efficient estimator by Bibinger et al (2014).
- Apply estimators to *which* time series of prices (micro prices, traded prices, etc.)?

Outline

1 [Model & Motivation](#page-2-0)

2 [Volatility estimation based on local order statistics](#page-8-0)

³ [Law of local minima and upper bound](#page-12-0)

4 [Lower bound](#page-17-0)

6 [Application](#page-20-0)

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 7/28

Construction of an estimator

Partition the unit interval into $h^{-1}_n \in \mathbb{N}$ equi-spaced bins $\mathcal{T}_k^n = [kh_n, (k+1)h_n), k = 0, \ldots, h_n^{-1} - 1, nh_n \in \mathbb{N}, h_n \to 0.$ Parametric estimation theory motivates bin-wise minima

$$
m_{n,k} = \min_{i \in \mathcal{I}_k^n} Y_i, \ \ \mathcal{I}_k^n = \{kh_n n, kh_n n + 1, \ldots, (k+1)h_n n - 1\},
$$

$$
m_{n,k} = \min_{T_j \in \mathcal{T}_k^n} \mathcal{Y}_j.
$$

as estimators of X_{kh_n} . $\mathbb{V}\text{ar}(\min_{i \in \mathcal{I}_k^n} \varepsilon_i) \propto (n\lambda h_n)^{-2}$, so locally constant signal approximation $X_t = X_{kh_n} + \mathbb{O}_\mathbb{P}(h_n^{1/2})$ on \mathbb{T}_k^n is only admissible when $h_n^{1/2} = o((n \lambda h_n)^{-1}).$ *Optimal rate* attained when

$$
h_n=\mathcal{K}^{\frac{2}{3}}(n\lambda)^{-\frac{2}{3}}, \mathcal{K}>0, nh_n \propto n^{\frac{1}{3}}\lambda^{-\frac{2}{3}}.
$$

The function Ψ

Introduce for $X_t = X_{kh_n} + \sigma_{kh_n} \int_{kh_n}^t dW_s$ on \mathcal{T}_k^n in PPP-model:

$$
\Psi(\sigma_{kh_n}^2) = h_n^{-1} \mathbb{E}\big[\big(m_{n,k} - m_{n,k-1}\big)^2\big], k = 1, \ldots, h_n^{-1} - 1,
$$

an invertible function, MC approximation above for $K = 32$.

$$
\Psi^{-1}\left(\sum_{k=(l-1)r_{n}^{-1}/2+1}^{lr_{n}^{-1}/2}\left(m_{n,2k}-m_{n,2k-1}\right)^{2}2h_{n}^{-1}r_{n}\right)\approx\sigma_{lr_{n}^{-1}h_{n}}^{2}\int_{\mathbb{S}^{n}}\mathbb{P}\left(\math
$$

where $r_n^{-1}h_n$ is a coarse grid size with $r_nh_n^{-1}, r_n^{-1} \in 2{\mathbb N}.$

Markus Bibinger, joint work with Moritz Jirak and Markus Beiß — [Improved volatility estimation based on limit order books](#page-0-0) Slide 9/28

The estimator based on local minima

$$
\widetilde{IV}_n^{h_n,r_n} = \sum_{l=1}^{r_n h_n^{-1}} \Psi^{-1} \Biggl(\sum_{k=(l-1)r_n^{-1}/2+1}^{h_n^{-1}/2} \left(m_{n,2k} - m_{n,2k-1} \right)^2 2 h_n^{-1} r_n \Biggr) h_n r_n^{-1}.
$$

In the regression-type model

$$
\Psi_n(\sigma_{kh_n}^2) = h_n^{-1} \mathbb{E}\big[\big(m_{n,k} - m_{n,k-1}\big)^2\big], k = 1, \ldots, h_n^{-1} - 1\,,
$$

with a sequence Ψ*ⁿ* → Ψ. Estimator

$$
\widehat{IV}_n^{h_n,r_n} = \sum_{l=1}^{r_n h_n^{-1}} \Psi_n^{-1} \Bigg(\sum_{k=(l-1)r_n^{-1}/2+1}^{h_n^{-1}/2} \left(m_{n,2k} - m_{n,2k-1} \right)^2 2 h_n^{-1} r_n \Bigg) h_n r_n^{-1}.
$$

For $\sigma_t = \sigma$ = const., use $\widehat{N}_n^{h_n, h_n}$ *n* . For Lipschitz σ*^t* balance approximation error $r_n^{-1}h_n$ with second order term on each coarse interval of order $r_n \Rightarrow r_n \propto h_n^{1/2} = (n\lambda)^{-1/3}.$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 10/28

Outline

1 [Model & Motivation](#page-2-0)

2 [Volatility estimation based on local order statistics](#page-8-0)

³ [Law of local minima and upper bound](#page-12-0)

4 [Lower bound](#page-17-0)

6 [Application](#page-20-0)

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 11/28

The law of bin-wise minima

 $\mathsf{Rewrite} \; m_{n,k} - m_{n,k-1} = \mathcal{R}_{n,k} - \mathcal{L}_{n,k}, \text{ where } \mathcal{R}_{n,k} = m_{n,k} - X_{kh_n},$ $\mathcal{L}_{n,k} = m_{n,k-1} - X_{kh_n}$. For $X_t = X_{kh_n} + \sigma \int_{kh_n}^t dW_s$, invoke time-reversibility to see that $\mathcal{R}_{n,k}$, $\mathcal{L}_{n,k}$, $k = (l-1)r_n^{-1} + 1, \ldots$, *lr*_n^{−1}, are all identically distributed and independent, ϵ except $\mathcal{R}_{n,k}$ and $\mathcal{L}_{n,k+1}$. Infer $\Psi(\sigma_{kh_n}^2)h_n = 2 \mathbb{V}\text{ar}(\mathcal{R}_{n,k}),$ and similarly for Ψ*n*.

Connection to Brownian excursion areas

Proposition Choose $h_n = \mathcal{K}^{2/3}(n\lambda)^{-2/3}$ *. Consider* $t \in \mathcal{T}_k^n$ and $X_t = X_{kh_n} + \int_{kh_n}^t \sigma \, dW_s, t \in \mathcal{T}_k^n$. Then in the PPP-model for all *x* ∈ R*:*

$$
\mathbb{P}\left(h_n^{-1/2}\mathcal{R}_{n,k} > x\sigma\right) = \mathbb{E}\left[\exp\left(-\mathcal{K}\sigma\int_0^1(x+W_t)_+dt\right)\right].
$$

In the regression-type model for all $x \in \mathbb{R}$ *:*

$$
\lim_{n\to\infty}\mathbb{P}\left(h_n^{-1/2}\mathcal{R}_{n,k}>x\sigma\right)=\mathbb{E}\Big[\exp\Big(-\mathcal{K}\sigma\int_0^1(x+W_t)_+dt\Big)\Big].
$$

Laplace transforms of such expressions can be obtained via *Feynman–Kac formula*. It draws a connection between measures on the path space to parabolic PDEs as the transitional probability *p* for Brownian motion obeys

$$
\partial_t p(t, x; s, y) = \frac{1}{2} \partial_x^2 p(t, x; s, y),
$$

$$
-\partial_s p(t, x; s, y) = \frac{1}{2} \partial_y^2 p(t, x; s, y).
$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order Slide 13/28

Result with Feynman–Kac formula

The Laplace transform (in *t*) of

$$
\mathbb{E}\Big[\exp\Big(-\sqrt{2}\theta\int_0^t (W_s+x)_+\,ds\Big)\Big],\ \theta\in\mathbb{R},
$$

is derived as solution of

$$
\frac{d^2\zeta}{dx^2} = 2s\zeta - 2\theta^{2/3}, x < 0, \ \frac{d^2\zeta}{dx^2} = 2(\sqrt{2}\theta x + s)\zeta - 2\theta^{2/3}, x > 0.
$$

With the *Airy function* Ai and *Scorer function* Gi

$$
\begin{array}{l} \displaystyle A i(x)=\pi^{-1}\int_0^\infty \cos\left(t^3/3+xt\right)dt, \, \text{Gi}(x)=\pi^{-1}\int_0^\infty \sin\left(t^3/3+xt\right)dt \, \, . \\ \displaystyle \mathbb{E}\left[\int_0^\infty \exp\Big(-st-\sqrt{2}\theta\int_0^t \big(W_s+x\big)_+ \, ds\Big) \, dt\right]=\theta^{-\frac{2}{3}}\zeta_s(x,\theta), \\ \displaystyle \zeta_{s,+}(x,\theta)=A_s\, \text{Ai}\big(\sqrt{2}\theta^{\frac{1}{3}}x+\theta^{-\frac{2}{3}}s\big)+\pi \text{Gi}\big(\sqrt{2}\theta^{\frac{1}{3}}x+\theta^{-\frac{2}{3}}s\big) \, \sup_{\zeta^{\mathcal{N}^{-1}}\atop{\delta\in\mathcal{N}^{-1}}} \hspace{-.3cm}\zeta_{s,-}(x,\theta)=B_s\exp\big(\sqrt{2s}x\big)+s^{-1}\theta^{2/3} \, . \\ \displaystyle \zeta_{s,-}(x,\theta)=B_s\exp\big(\sqrt{2s}x\big)+s^{-1}\theta^{2/3} \, . \end{array}
$$

Convergence rate of the estimator

Assumption The drift a^s is bounded and Borel-measurable, the volatility σ*^t is a Lipschitz function,* σ*^t* > 0*. The constant* K *of hⁿ is chosen sufficiently large.*

Theorem For h_n = $\mathcal{K}^{2/3}(n\lambda)^{-2/3}$ *and r_n* = $\kappa n^{-1/3}$, $\kappa > 0$, the *estimator based on the PPP-model satisfies*

$$
\left(\widetilde{\textit{IV}}_{n}^{h_{n},r_{n}}-\int_{0}^{1}\sigma_{s}^{2}\textit{d}s\right)=\mathbb{O}_{\mathbb{P}}\big(n^{-\frac{1}{3}}\big)\,.
$$

Corollary The estimator based on the regression-type model satisfies

$$
\left(\widehat{N}_n^{h_n,t_n}-\int_0^1\sigma_s^2\,ds\right)=\mathcal{O}_{\mathbb{P}}\big(n^{-\frac{1}{3}}\big).
$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 15/28

Outline

1 [Model & Motivation](#page-2-0)

2 [Volatility estimation based on local order statistics](#page-8-0)

³ [Law of local minima and upper bound](#page-12-0)

4 [Lower bound](#page-17-0)

6 [Application](#page-20-0)

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 16/28

The lower bound for the minimax rate

We show for the PPP-model that in the parametric experiment, $X_t = \sigma \, dW_t, \, t \in [0,1], \, \sigma > 0$ unknown, the optimal rate of convergence is *n^{−1/3} i*n minimax sense. This serves a fortiori as a lower bound for the general nonparametric case.

Theorem

For any sequence of estimators $\hat{\sigma}_{n}^{2}$ *of* $\sigma^{2} \in (0,\infty)$ *from the parametric PPP-model for each* σ 2 ⁰ > 0*, the local minimax lower bound is*

$$
\exists \delta > 0: \liminf_{n \to \infty} \lim_{\hat{\sigma}_n} \max_{\sigma^2 \in {\{\sigma_0^2, \sigma_0^2 + \delta n^{-1/3}\}}} \mathbb{P}_{\sigma^2}(|\hat{\sigma}_n^2 - \sigma^2| \geq \delta n^{-1/3}) > 0,
$$

where the infimum extends over all estimators σˆ*ⁿ based on the <code>PPP-model</code> with* $\lambda = 1$ *and* $X_t = \sigma W_t$ *. The law of the latter is denoted by* \mathbb{P}_{σ^2} *.*

Sketch of information-theoretic proof

First reduction: Decompose in sum of two independent PPPs:

$$
\mathsf{PPP}_{\Lambda} = \mathsf{PPP}_{\Lambda_r} + \mathsf{PPP}_{\Lambda_s} \text{ with } \Lambda = \Lambda_r + \Lambda_s,
$$

$$
\lambda_r(t,y) = n\Big(\big(b^{-1}(y - X_t)_+\big)^2 \wedge 1\Big), b > 0, \lambda_s = \lambda - \lambda_r.
$$

Provide more information by $(T^s_j, X_{T^s_j})_{j \geq 1}$ instead of $(T^s_j, Y^s_j)_{j \geq 1}$. *Second reduction:* Conditional on (T_j^s) observations (T_i^r, \mathcal{Y}_i^r) , $T_i' \in [T_{j-1}^s, T_j^s)$ form for each *j* independent PPPs on $[0, T_j^s - T_{j-1}^s]$ with intensities

$$
\lambda^{j}(t,y)=n\Big(b^{-1}\Big(y-\sigma B_{t}^{0,T_{j}^{s}-T_{j-1}^{s}}\Big)_{+}\wedge 1\Big),\,
$$

with a Brownian bridge denoted by $\mathit{B}^{0,\mathit{T}}.$ For this more informative experiment standard bounds for the Hellinger distance imply the Theorem, $b \propto n^{-1/3}.$

Markus Bibliography Binger, including Bibliography and Moritz Jirak and Markus Reisenberg and September 2014. Slide 18/28

Outline

1 [Model & Motivation](#page-2-0)

2 [Volatility estimation based on local order statistics](#page-8-0)

³ [Law of local minima and upper bound](#page-12-0)

4 [Lower bound](#page-17-0)

6 [Application](#page-20-0)

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 19/28

Example for one realised path

Regression model, $\sigma = 1$, exponential errors with $\lambda^{-1} = 0.005$, $n = 100000$, $h_n = 0.001$, $nh_n = 100$.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 20/28

First order approximation of Ψ

When $h_n = \mathcal{K}^{2/3} \lambda^{-2/3} n^{-2/3}$ and $\lambda^{-1} \ll \sigma_t$ for all *t*, or $\mathcal K$ large, the local minima are predominantly determined by min $_{i\in\mathbb{J}_{k}^{n}}\mathsf{X}_{t_{i}^{n}}.$ High signal-to-noise ratios found for high-frequency data in empirical studies.

Joint law of end-point of $\mathcal{Z} = \int \sigma dW$ and its minimum:

$$
\mathbb{P}\Big(\underset{0\leq s\leq t}{\text{min}}\,Z_{s}< m, Z_{t}\geq w\Big)=\int_{-\infty}^{2m-w}\big(2\pi\sigma^{2}\big)^{-1/2}\exp\left\{-1/(2\sigma^{2})z^{2}\right\}dz\,,\\ g(m,w)=\frac{2(w-2m)}{\sigma^{3}\sqrt{2\pi}}\exp\left\{-1/(2\sigma^{2})(2m-w)^{2}\right\},m\in(-\infty,0],w\in[m,\infty)\,.
$$
 This yields for $k=\lfloor th_{n}^{-1}\rfloor$, $m_{n,k}=\min_{i\in\mathbb{J}_{k}^{n}}X_{t_{i}^{n}}:$
\n
$$
\underset{n\rightarrow\infty}{\text{lim}}\,\,h_{n}^{-1/2}\mathbb{E}\big[\mathcal{L}_{n,k}\big]=-\sqrt{(2/\pi)}\sigma_{t}\,,\,\underset{n\rightarrow\infty}{\text{lim}}\,\,h_{n}^{-1}\mathbb{E}\big[\mathcal{L}_{n,k}^{2}\big]=\sigma_{t}^{2},\,\underset{n\rightarrow\infty}{\text{min}}\,\,\underset{n\rightarrow\in
$$

Accuracy of first-order approximation

Comparison of $\sum_{k=1}^{h_{n}^{-1}/2} (m_{n,2k} - m_{n,2k-1})^{2}$ and $\sigma^2(\pi-2)/\pi$ for $\sigma \in [0,1]$, $n = 100000, nh_n = 100;$ $\lambda^{-1}=$ 0.005 (top) and $\lambda^{-1}=$ 0.05 (bottom). Conclude simple estimator

$$
\widehat{IV}_{n,app}^{h_n} = \frac{\pi}{\pi-2} \sum_{k=1}^{h_n^{-1}/2} (m_{n,2k} - m_{n,2k-1})^2.
$$

 \geq

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 22/28

Monte Carlo simulations: Setup

Simulate $Y_i = X_{i/n} + \varepsilon_i, i = 0, \ldots, n$,.

 $\sigma^2_t =$ 0.1 $\left(1-0.4\sin\left(\frac{3}{4}\right)\right)$ $(\frac{3}{4}\pi t)$), $t \in [0,1]$, drift $a = 0.1$.

2
$$
\sigma_t^2 = \left(\int_0^t c \cdot \rho \, dW_s + \int_0^t \sqrt{1 - \rho^2} \cdot c \, dW_s^{\perp} \right) \cdot \tilde{\sigma}_t,
$$

\n*W*^{\perp} Brownian motion independent of *W*, *c* = 0.05,
\n
$$
\rho = 0.5, a = 0.1 \text{ and seasonality function}
$$

\n
$$
\tilde{\sigma}_t = 0.1 \left(1 - t^{\frac{1}{3}} + 0.5 \cdot t^2 \right).
$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — [Improved volatility estimation based on limit order books](#page-0-0) — 11th September 2014 Slide 23/28

Monte Carlo simulations: Results

Results for $\hat{W}^{h_n}_{n,app}$ in setup 1. Bias rescaled with $n^{1/3},$ variance with factor *n* 2/3 . Based on *first order approximation*. Results for setup 2 equally well, $\hat{W}^{h_n}_{n,app}$ comes close but does not attain minimal MSE because of the bias.

Monte Carlo simulations: Results

Results for \hat{W}^{h_n,r_n}_n $n_n^{n_n,n_n}$ in setup 1. Bias rescaled with $n^{1/3}$, variance with factor $n^{2/3}$. Results for setup 2 equally well, also different error distributions considered in report. Above choice of *rⁿ* √ slightly better than $r_n = \sqrt{h_n}$. *Monte Carlo approximation of* Ψ*ⁿ* employed.

Monte Carlo empirical distribution

Parametric setup $\sigma = 1$. Empirical distribution of $(\widehat{\mathbb{V}\text{ar}}(\hat{\sigma}_n^2))^{-1/2} \hat{\sigma}_n^2$ for 1000 iterations, , $\lambda^{-1} = 0.005$, $n = 100000, h_n = 1000.$

Summary & Outlook

Summary:

- *Improved* volatility estimation based on order prices.
- We obtain *n* ¹/³ as *optimal convergence rate*.
- First applications promising.
- First data applications using orders and traded prices support the idea of the *same latent efficient price* and its volatility recovered with methods based on microstructure noise model with centred and one-sided errors, respectively.

Summary & Outlook

Outlook:

- Strive for stable CLT in model where the volatility is a semi-martingale.
- Design an explicit feasible estimator.
- Application: Validate model using all available information from bids, asks, trades.

Literature

Bibinger, M., Jirak, M., Reiß, M., (2014). Improved volatility estimation based on limit order books. *arXiv:1408.3768*

Bibinger, M., Jirak, M., Reiß, M., (2014). Applying volatility estimators based on limit order books. *technical report, available under* [www.mathematik.](www.mathematik.hu-berlin.de/for1735/Publ/application.pdf) [hu-berlin.de/for1735/Publ/application.pdf](www.mathematik.hu-berlin.de/for1735/Publ/application.pdf)*.*

Thank you for your attention!

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit Slide 28/28