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Statistical model

Continuous Itô semi-martingale Xt = X0 +
∫ t

0 as ds +
∫ t

0 σs dWs,
t ∈ [0,1], (Tj ,Yj) obs. of Poisson point process on [0,1]×R
with intensity measure

Λ(A) =
∫ 1

0

∫
R
1A(t,y)λt,y dt dy , λt,y = nλ1(y ≥ Xt ).

Connatural discrete-time model:

Yi = Xtn
i

+ εi , i = 0, . . . ,n, εi ≥ 0, εi
iid∼ Fλ(x)=λx(1+O(1)).
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Intra-day order book price dynamics
Order price levels for
Facebook asset,
12:00 - 12:30, June 2nd
2014, levels 1-5, bid-ask
spread colored in dark
red.

Order levels 1-30 and
arrivals for AAPL,
12:00 - 12:45, July 28th
2014.

Data by .
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Groundwork & Contribution
Principal objective: Recovery of quadratic variation of stochastic
boundary Xt .
Main application: Estimation of integrated volatility for portfolio
and risk management.
Groundwork on volatility estimation:

• For discrete observations Xi/n, i = 0, . . . ,n, the realized
volatility satisfies

n
1
2

(
∑

n
i=1

(
X i

n
−X (i−1)

n

)2−
∫ 1

0 σ2
s ds
)
 N

(
0,2∫ 1

0 σ4
s ds
)
,

and is asymptotically efficient.

• However, the direct observation model does not accurately
fit high-frequency data.

• Prominent microstructure noise model: Yi = Xtn
i

+ εi

with εi i.i.d., E[εi ] = 0.

• Apply estimators to which time series of prices (micro
prices, traded prices, etc.)?
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n
1
4
(

ˆIV −
∫ 1

0 σ2
s ds
)
 N

(
0,8η∫ 1

0 σ3
s ds
)
.
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Construction of an estimator
Partition the unit interval into h−1

n ∈N equi-spaced bins
Tn

k = [khn,(k + 1)hn),k = 0, . . . ,h−1
n −1, nhn ∈N, hn→ 0.

Parametric estimation theory motivates bin-wise minima

mn,k = min
i∈In

k

Yi , In
k = {khnn,khnn + 1, . . . ,(k + 1)hnn−1},

mn,k = min
Tj∈Tn

k

Yj .

as estimators of Xkhn . Var(mini∈In
k
εi) ∝ (nλhn)−2, so locally

constant signal approximation Xt = Xkhn +OP(h1/2
n ) on Tn

k is

only admissible when h1/2
n = o((nλhn)−1).

Optimal rate attained when

hn = K
2
3 (nλ)−

2
3 ,K> 0, nhn ∝ n

1
3 λ
− 2

3 .
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The function Ψ

Introduce for Xt = Xkhn + σkhn

∫ t
khn

dWs on Tn
k in PPP-model:

Ψ
(
σ

2
khn

)
= h−1

n E
[(

mn,k −mn,k−1
)2]

,k = 1, . . . ,h−1
n −1,

an invertible function, MC approximation above for K = 32.

Ψ−1

(
lr−1

n /2

∑
k=(l−1)r−1

n /2+1

(
mn,2k−mn,2k−1

)2
2h−1

n rn

)
≈ σ

2
lr−1

n hn
,

where r−1
n hn is a coarse grid size with rnh−1

n , r−1
n ∈ 2N.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014
Slide 9/28



H U M B O L D T - U N I V E R S I T Y B E R L I N

The estimator based on local minima

ĨV
hn,rn

n =
rnh−1

n

∑
l=1

Ψ−1

(
lr−1

n /2

∑
k=(l−1)r−1

n /2+1

(
mn,2k−mn,2k−1

)2
2h−1

n rn

)
hnr−1

n .

In the regression-type model

Ψn
(
σ

2
khn

)
= h−1

n E
[(

mn,k −mn,k−1
)2]

,k = 1, . . . ,h−1
n −1 ,

with a sequence Ψn→Ψ. Estimator

ÎV
hn,rn

n =
rnh−1

n

∑
l=1

Ψ−1
n

(
lr−1

n /2

∑
k=(l−1)r−1

n /2+1

(
mn,2k−mn,2k−1

)2
2h−1

n rn

)
hnr−1

n .

For σt = σ = const., use ÎV
hn,hn

n . For Lipschitz σt balance
approximation error r−1

n hn with second order term on each

coarse interval of order rn⇒ rn ∝ h1/2
n = (nλ)−1/3.
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The law of bin-wise minima

105 bins,
σ = 1 ,
nhn=100,
εi∼Exp(5)

Rewrite mn,k −mn,k−1 = Rn,k −Ln,k , where Rn,k = mn,k −Xkhn ,
Ln,k = mn,k−1−Xkhn . For Xt = Xkhn + σ

∫ t
khn

dWs, invoke
time-reversibility to see that Rn,k , Ln,k , k = (l−1)r−1

n + 1, . . . ,
lr−1

n , are all identically distributed and independent,
except Rn,k and Ln,k+1. Infer Ψ(σ2

khn
)hn = 2Var(Rn,k ),

and similarly for Ψn.
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Connection to Brownian excursion areas
Proposition Choose hn = K2/3(nλ)−2/3. Consider t ∈ Tn

k and
Xt = Xkhn +

∫ t
khn

σdWs, t ∈ Tn
k . Then in the PPP-model for all

x ∈R:

P
(

h−1/2
n Rn,k > xσ

)
= E

[
exp
(
−Kσ

∫ 1

0
(x + Wt)+dt

)]
.

In the regression-type model for all x ∈R:

lim
n→∞

P
(

h−1/2
n Rn,k > xσ

)
= E

[
exp
(
−Kσ

∫ 1

0
(x + Wt)+ dt

)]
.

Laplace transforms of such expressions can be obtained via
Feynman–Kac formula. It draws a connection between
measures on the path space to parabolic PDEs as the
transitional probability p for Brownian motion obeys

∂tp(t,x ;s,y) = 1
2 ∂

2
xp(t,x ;s,y) ,

−∂sp(t,x ;s,y) = 1
2 ∂

2
y p(t,x ;s,y) .
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Result with Feynman–Kac formula
The Laplace transform (in t) of

E
[

exp
(
−
√

2θ

∫ t

0
(Ws + x)+ ds

)]
, θ ∈R,

is derived as solution of
d2ζ

dx2 = 2sζ−2θ
2/3,x < 0,

d2ζ

dx2 = 2(
√

2θx + s)ζ−2θ
2/3,x > 0.

With the Airy function Ai and Scorer function Gi

Ai(x) = π
−1

∫
∞

0
cos(t3/3 + xt)dt, Gi(x) = π

−1
∫

∞

0
sin(t3/3 + xt)dt :

E
[∫

∞

0
exp
(
− st−

√
2θ

∫ t

0
(Ws + x)+ ds

)
dt

]
= θ

− 2
3 ζs(x ,θ),

ζs,+(x ,θ) = As Ai
(√

2θ
1
3 x + θ

− 2
3 s
)

+ πGi
(√

2θ
1
3 x + θ

− 2
3 s
)
,

ζs,−(x ,θ) = Bs exp
(√

2sx) + s−1
θ

2/3 .
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Convergence rate of the estimator
Assumption The drift as is bounded and Borel-measurable, the
volatility σt is a Lipschitz function, σt > 0. The constant K of hn

is chosen sufficiently large.

Theorem For hn = K2/3(nλ)−2/3 and rn = κn−1/3, κ > 0, the
estimator based on the PPP-model satisfies

(
ĨV

hn,rn

n −
∫ 1

0
σ

2
s ds
)

= OP
(
n−

1
3
)
.

Corollary The estimator based on the regression-type model
satisfies (

ÎV
hn,rn

n −
∫ 1

0
σ

2
s ds
)

= OP
(
n−

1
3
)
.
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The lower bound for the minimax rate
We show for the PPP-model that in the parametric experiment,
Xt = σdWt , t ∈ [0,1], σ > 0 unknown, the optimal rate of
convergence is n−1/3 in minimax sense. This serves a fortiori as
a lower bound for the general nonparametric case.

Theorem
For any sequence of estimators σ̂2

n of σ2 ∈ (0,∞) from the
parametric PPP-model for each σ2

0 > 0, the local minimax lower
bound is

∃δ > 0 : lim inf
n→∞

inf
σ̂n

max
σ2∈{σ2

0,σ
2
0+δn−1/3}

Pσ2(|σ̂2
n−σ

2| ≥ δn−1/3) > 0,

where the infimum extends over all estimators σ̂n based on
the PPP-model with λ = 1 and Xt = σWt . The law of the
latter is denoted by Pσ2 .
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Sketch of information-theoretic proof
First reduction: Decompose in sum of two independent PPPs:

PPPΛ = PPPΛr + PPPΛs with Λ = Λr + Λs ,

λr (t,y) = n
((

b−1(y−Xt)+

)2∧1
)
,b > 0, λs = λ−λr .

Provide more information by (T s
j ,XT s

j
)j≥1 instead of (T s

j ,Y
s
j )j≥1.

Second reduction: Conditional on (T s
j ) observations (T r

i ,Y
r
i ),

T r
i ∈ [T s

j−1,T
s
j ) form for each j independent PPPs on

[0,T s
j −T s

j−1] with intensities

λ
j(t,y) = n

(
b−1
(

y−σB
0,T s

j −T s
j−1

t

)
+
∧1
)
,

with a Brownian bridge denoted by B0,T .
For this more informative experiment standard bounds for
the Hellinger distance imply the Theorem, b ∝ n−1/3.
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Example for one realised path
Regression model, σ = 1, exponential errors with λ−1 = 0.005,
n = 100000, hn = 0.001, nhn = 100.
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First order approximation of Ψ
When hn = K2/3λ−2/3n−2/3 and λ−1� σt for all t , or K large,
the local minima are predominantly determined by mini∈In

k
Xtn

i
.

High signal-to-noise ratios found for high-frequency data in
empirical studies.
Joint law of end-point of Z =

∫
σdW and its minimum:

P
(

min
0≤s≤t

Zs <m,Zt ≥w
)

=
∫ 2m−w

−∞

(2πσ
2)−1/2 exp{−1/(2σ

2)z2}dz ,

g(m,w) = 2(w−2m)

σ3
√

2π
exp{−1/(2σ

2)(2m−w)2},m∈ (−∞,0],w ∈ [m,∞) .

This yields for k = bth−1
n c, mn,k = mini∈In

k
Xtn

i
:

lim
n→∞

h−1/2
n E[Ln,k ] =−

√
(2/π)σt , lim

n→∞
h−1

n E[L2
n,k ] = σ

2
t ,

lim
n→∞

h−1
n E[Ln,k+1Rn,k ] = 1

2 σ
2
t ,⇒ Ψ(σ

2
t ) = 2σ

2
t

(π−2)
π

.
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Accuracy of first-order approximation

Comparison of ∑
h−1

n /2
k=1 (mn,2k −mn,2k−1)2

and σ2(π−2)/π for σ ∈ [0,1],
n = 100000,nhn = 100;
λ−1 = 0.005 (top) and λ−1 = 0.05 (bot-
tom).
Conclude simple estimator

ÎV
hn

n,app =
π

π−2

h−1
n /2

∑
k=1

(
mn,2k −mn,2k−1)2.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014
Slide 22/28



H U M B O L D T - U N I V E R S I T Y B E R L I N

Monte Carlo simulations: Setup
Simulate Yi = Xi/n + εi , i = 0, . . . ,n,.

1 σ2
t = 0.1

(
1−0.4sin

(
3
4 πt
))
, t ∈ [0,1], drift a = 0.1.

2 σ2
t =

(∫ t
0 c ·ρdWs +

∫ t
0

√
1−ρ2 · c dW⊥s

)
· σ̃t ,

W⊥ Brownian motion independent of W , c = 0.05,
ρ = 0.5, a = 0.1 and seasonality function
σ̃t = 0.1

(
1− t

1
3 + 0.5 · t2

)
.
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Monte Carlo simulations: Results

n = 100000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

500 200 0.0015 0.1031 0.00 0.0332 0.1171 0.93

1000 100 0.0068 0.0542 0.08 0.0407 0.0518 3.10

10000 10 0.1393 0.0060 76.40 0.8688 0.0085 98.88

n = 10000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n nhn Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 100 0.0020 0.1227 0.00 0.0179 0.1200 0.26

500 20 0.0183 0.0219 1.35 0.0555 0.0239 11.43

1000 10 0.0392 0.0116 11.75 0.1401 0.0138 58.72

Results for ˆIV
hn
n,app in setup 1. Bias rescaled with n1/3, variance

with factor n2/3. Based on first order approximation.
Results for setup 2 equally well, ˆIV

hn
n,app comes close but

does not attain minimal MSE because of the bias.
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Monte Carlo simulations: Results

n = 100000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n r−1

n Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

500 100 -0.0069 0.1051 0.04 -0.0194 0.1049 0.36

1000 100 0.0095 0.0528 0.17 -0.0148 0.0571 0.38

10000 100 0.0064 0.0056 0.72 0.0066 0.0077 0.56

n = 10000 εi
iid∼ Exp(λ = 2000) εi

iid∼ Exp(λ = 200)

h−1
n r−1

n Biasn1/3 Varn2/3 Bias2%MSE Biasn1/3 Varn2/3 Bias2%MSE

100 20 -0.0078 0.1168 0.05 0.0029 0.1199 0.00

500 100 -0.0136 0.0237 0.77 -0.0008 0.0257 0.00

1000 100 0.0086 0.0125 0.59 0.0109 0.0135 0.87

Results for ˆIV
hn,rn
n in setup 1. Bias rescaled with n1/3, variance

with factor n2/3. Results for setup 2 equally well, also different
error distributions considered in report. Above choice of rn

slightly better than rn =
√

hn.
Monte Carlo approximation of Ψn employed.
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Monte Carlo empirical distribution
Parametric setup σ = 1. Empirical distribution of
(V̂ar(σ̂2

n))−1/2 σ̂2
n for 1000 iterations, , λ−1 = 0.005,

n = 100000,hn = 1000.
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Summary & Outlook
Summary:

• Improved volatility estimation based on order prices.

• We obtain n1/3 as optimal convergence rate.

• First applications promising.

• First data applications using orders and traded prices
support the idea of the same latent efficient price and its
volatility recovered with methods based on microstructure
noise model with centred and one-sided errors,
respectively.
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Summary & Outlook
Outlook:

• Strive for stable CLT in model where the volatility is a
semi-martingale.

• Design an explicit feasible estimator.

• Application: Validate model using all available information
from bids, asks, trades.
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Thank you for your attention!
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