Volatility estimation from high-frequency observations with irregular errors – Concepts and consequences or Improved volatility estimation based on limit order books

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß

11th September 2014 Slide 1/28

Outline

Model & Motivation

- 2 Volatility estimation based on local order statistics
- 3 Law of local minima and upper bound

4 Lower bound

6 Application

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 2/28

Outline

Model & Motivation

2 Volatility estimation based on local order statistics

3 Law of local minima and upper bound

4 Lower bound

6 Application

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 3/28

Statistical model

Continuous Itô semi-martingale $X_t = X_0 + \int_0^t a_s \, ds + \int_0^t \sigma_s \, dW_s$, $t \in [0, 1], (T_j, \mathcal{Y}_j)$ obs. of Poisson point process on $[0, 1] \times \mathbb{R}$ with intensity measure

$$\Lambda(A) = \int_0^1 \int_{\mathbb{R}} \mathbb{1}_A(t, y) \lambda_{t, y} \, dt \, dy, \quad \lambda_{t, y} = n \lambda \mathbb{1}(y \ge X_t).$$

Connatural discrete-time model:

$$Y_{i} = X_{t_{i}^{n}} + \varepsilon_{i}, i = 0, \dots, n, \ \varepsilon_{i} \geq 0, \ \varepsilon_{i} \stackrel{\textit{iid}}{\sim} \mathcal{F}_{\lambda}(x) = \lambda x (1 + o(1)).$$

Intra-day order book price dynamics

Order price levels for Facebook asset, 12:00 - 12:30, June 2nd 2014, levels 1-5, bid-ask spread colored in dark red.

Order levels 1-30 and arrivals for AAPL, 12:00 - 12:45, July 28th 2014.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 5/28

Groundwork & Contribution

Principal objective: Recovery of quadratic variation of stochastic boundary X_t .

Main application: Estimation of *integrated volatility* for portfolio and risk management.

Groundwork on volatility estimation:

- For discrete observations $X_{i/n}$, i = 0, ..., n, the *realized* volatility satisfies $n^{\frac{1}{2}} \left(\sum_{i=1}^{n} \left(X_{\frac{i}{n}} - X_{\frac{(i-1)}{n}} \right)^2 - \int_0^1 \sigma_s^2 ds \right) \rightsquigarrow N(0, 2 \int_0^1 \sigma_s^4 ds)$, and is asymptotically efficient.
- However, the direct observation model does not accurately fit high-frequency data.
- Prominent *microstructure noise model*: Y_i = X_{t_iⁿ} + ε_i with ε_i i.i.d., E[ε_i] = 0.

Groundwork & Contribution

Principal objective: Recovery of quadratic variation of stochastic boundary X_t .

Main application: Estimation of *integrated volatility* for portfolio and risk management.

Groundwork on volatility estimation:

- For discrete observations $X_{i/n}$, i = 0, ..., n, the realized volatility is asymptotically efficient.
- However, the direct observation model does not accurately fit high-frequency data.
- Prominent *microstructure noise model*: $Y_i = X_{t_i^n} + \varepsilon_i$ with ε_i i.i.d., $\mathbb{E}[\varepsilon_i] = 0$. Efficient estimator by Bibinger et al (2014) for $\varepsilon_i \stackrel{iid}{\sim} N(0,\eta^2)$ satisfies $n^{\frac{1}{4}} (I\hat{V} - \int_0^1 \sigma_s^2 ds) \rightsquigarrow N(0,8\eta \int_0^1 \sigma_s^3 ds)$.

Groundwork & Contribution

Principal objective: Recovery of quadratic variation of stochastic boundary X_t .

Main application: Estimation of *integrated volatility* for portfolio and risk management.

Groundwork on volatility estimation:

- For discrete observations X_{i/n}, i = 0,..., n, the realized volatility is asymptotically efficient.
- However, the direct observation model does not accurately fit high-frequency data.
- Prominent *microstructure noise model*: Y_i = X_{tⁿ_i} + ε_i with ε_i i.i.d., E[ε_i] = 0. Efficient estimator by Bibinger et al (2014).
- Apply estimators to *which* time series of prices (micro prices, traded prices, etc.)?

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 6/28

Outline

Model & Motivation

2 Volatility estimation based on local order statistics

3 Law of local minima and upper bound

4 Lower bound

6 Application

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 7/28

Construction of an estimator

Partition the unit interval into $h_n^{-1} \in \mathbb{N}$ equi-spaced bins $\mathfrak{T}_k^n = [kh_n, (k+1)h_n), k = 0, \dots, h_n^{-1} - 1, nh_n \in \mathbb{N}, h_n \to 0.$ Parametric estimation theory motivates bin-wise minima

$$m_{n,k} = \min_{i \in \mathcal{I}_k^n} Y_i, \quad \mathcal{I}_k^n = \{kh_n n, kh_n n + 1, \dots, (k+1)h_n n - 1\},$$
$$m_{n,k} = \min_{T_i \in \mathcal{T}_k^n} \mathcal{Y}_j.$$

as estimators of X_{kh_n} . $\mathbb{V}ar(\min_{i \in \mathbb{J}_k^n} \varepsilon_i) \propto (n\lambda h_n)^{-2}$, so locally constant signal approximation $X_t = X_{kh_n} + \mathfrak{O}_{\mathbb{P}}(h_n^{1/2})$ on \mathfrak{T}_k^n is only admissible when $h_n^{1/2} = o((n\lambda h_n)^{-1})$. *Optimal rate* attained when

$$h_n = \mathcal{K}^{\frac{2}{3}}(n\lambda)^{-\frac{2}{3}}, \mathcal{K} > 0, \ nh_n \propto n^{\frac{1}{3}}\lambda^{-\frac{2}{3}}.$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 8/28

The function Ψ

Introduce for $X_t = X_{kh_n} + \sigma_{kh_n} \int_{kh_n}^t dW_s$ on \mathfrak{T}_k^n in PPP-model:

$$\Psi(\sigma_{kh_n}^2) = h_n^{-1} \mathbb{E}[(m_{n,k} - m_{n,k-1})^2], k = 1, \dots, h_n^{-1} - 1,$$

an invertible function, MC approximation above for $\mathcal{K} =$ 32.

$$\Psi^{-1}\left(\sum_{k=(l-1)r_n^{-1}/2+1}^{lr_n^{-1}/2} (m_{n,2k}-m_{n,2k-1})^2 2h_n^{-1}r_n\right) \approx \sigma_{lr_n^{-1}h_n}^2$$

where $r_n^{-1}h_n$ is a coarse grid size with $r_nh_n^{-1}$, $r_n^{-1} \in 2\mathbb{N}$.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 9/28

The estimator based on local minima

$$I\widetilde{V}_{n}^{h_{n},r_{n}} = \sum_{l=1}^{r_{n}h_{n}^{-1}} \Psi^{-1} \left(\sum_{k=(l-1)r_{n}^{-1}/2+1}^{lr_{n}^{-1}/2} (m_{n,2k}-m_{n,2k-1})^{2} 2h_{n}^{-1}r_{n} \right) h_{n}r_{n}^{-1}.$$

In the regression-type model

$$\Psi_n(\sigma_{kh_n}^2) = h_n^{-1} \mathbb{E}[(m_{n,k} - m_{n,k-1})^2], k = 1, \dots, h_n^{-1} - 1;$$

with a sequence $\Psi_n \rightarrow \Psi$. Estimator

$$I\widehat{V}_{n}^{h_{n},r_{n}} = \sum_{l=1}^{r_{n}h_{n}^{-1}} \Psi_{n}^{-1} \left(\sum_{k=(l-1)r_{n}^{-1}/2+1}^{lr_{n}^{-1}/2} (m_{n,2k}-m_{n,2k-1})^{2} 2h_{n}^{-1}r_{n} \right) h_{n}r_{n}^{-1}.$$

For $\sigma_t = \sigma = \text{const.}$, use $\widehat{W}_n^{h_n,h_n}$. For Lipschitz σ_t balance approximation error $r_n^{-1}h_n$ with second order term on each coarse interval of order $r_n \Rightarrow r_n \propto h_n^{1/2} = (n\lambda)^{-1/3}$.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 10/28

Outline

Model & Motivation

2 Volatility estimation based on local order statistics

3 Law of local minima and upper bound

4 Lower bound

6 Application

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 11/28

The law of bin-wise minima

Rewrite $m_{n,k} - m_{n,k-1} = \mathcal{R}_{n,k} - \mathcal{L}_{n,k}$, where $\mathcal{R}_{n,k} = m_{n,k} - X_{kh_n}$, $\mathcal{L}_{n,k} = m_{n,k-1} - X_{kh_n}$. For $X_t = X_{kh_n} + \sigma \int_{kh_n}^t dW_s$, invoke time-reversibility to see that $\mathcal{R}_{n,k}$, $\mathcal{L}_{n,k}$, $k = (l-1)r_n^{-1} + 1, \ldots, lr_n^{-1}$, are all identically distributed and independent, except $\mathcal{R}_{n,k}$ and $\mathcal{L}_{n,k+1}$. Infer $\Psi(\sigma_{kh_n}^2)h_n = 2 \operatorname{Var}(\mathcal{R}_{n,k})$, and similarly for Ψ_n .

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 12/28

Connection to Brownian excursion areas

Proposition Choose $h_n = \mathcal{K}^{2/3}(n\lambda)^{-2/3}$. Consider $t \in \mathcal{T}_k^n$ and $X_t = X_{kh_n} + \int_{kh_n}^t \sigma dW_s, t \in \mathcal{T}_k^n$. Then in the PPP-model for all $x \in \mathbb{R}$:

$$\mathbb{P}\Big(h_n^{-1/2}\mathcal{R}_{n,k} > x\sigma\Big) = \mathbb{E}\Big[\exp\Big(-\mathcal{K}\sigma\int_0^1(x+W_t)_+dt\Big)\Big].$$

In the regression-type model for all $x \in \mathbb{R}$:

$$\lim_{n\to\infty}\mathbb{P}\Big(h_n^{-1/2}\mathcal{R}_{n,k}>x\sigma\Big)=\mathbb{E}\Big[\exp\Big(-\mathcal{K}\sigma\int_0^1(x+W_t)_+\,dt\Big)\Big].$$

Laplace transforms of such expressions can be obtained via *Feynman–Kac formula*. It draws a connection between measures on the path space to parabolic PDEs as the transitional probability *p* for Brownian motion obeys

$$\partial_t p(t,x;s,y) = \frac{1}{2} \partial_x^2 p(t,x;s,y), -\partial_s p(t,x;s,y) = \frac{1}{2} \partial_y^2 p(t,x;s,y).$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 13/28

Result with Feynman–Kac formula

The Laplace transform (in t) of

$$\mathbb{E}\Big[\exp\Big(-\sqrt{2} heta\int_0^t(\mathit{W}_{\!\!\mathcal{S}}\!+\!x)_+\,\mathit{ds}\Big)\Big],\; heta\in\mathbb{R},$$

is derived as solution of

$$\frac{d^2\zeta}{dx^2} = 2s\zeta - 2\theta^{2/3}, x < 0, \ \frac{d^2\zeta}{dx^2} = 2(\sqrt{2}\theta x + s)\zeta - 2\theta^{2/3}, x > 0.$$

With the Airy function Ai and Scorer function Gi

$$\operatorname{Ai}(x) = \pi^{-1} \int_0^\infty \cos(t^3/3 + xt) \, dt, \operatorname{Gi}(x) = \pi^{-1} \int_0^\infty \sin(t^3/3 + xt) \, dt :$$

$$\mathbb{E}\left[\int_0^\infty \exp\left(-st - \sqrt{2}\theta \int_0^t (W_s + x)_+ \, ds\right) \, dt\right] = \theta^{-\frac{2}{3}} \zeta_s(x,\theta),$$

$$\zeta_{s,+}(x,\theta) = A_s \operatorname{Ai}\left(\sqrt{2}\theta^{\frac{1}{3}}x + \theta^{-\frac{2}{3}}s\right) + \pi \operatorname{Gi}\left(\sqrt{2}\theta^{\frac{1}{3}}x + \theta^{-\frac{2}{3}}s\right)$$

$$\zeta_{s,-}(x,\theta) = B_s \exp\left(\sqrt{2sx}\right) + s^{-1}\theta^{2/3}.$$
Markus Biblinger, joint work with Moritz Jirak and Markus Relfi – Improved violatility estimation based on limit order books – 11th September 2014

Convergence rate of the estimator

Assumption The drift a_s is bounded and Borel-measurable, the volatility σ_t is a Lipschitz function, $\sigma_t > 0$. The constant \mathcal{K} of h_n is chosen sufficiently large.

Theorem For $h_n = \Re^{2/3} (n\lambda)^{-2/3}$ and $r_n = \kappa n^{-1/3}$, $\kappa > 0$, the estimator based on the PPP-model satisfies

$$\left(\widetilde{IV}_n^{h_n,r_n}-\int_0^1\sigma_s^2\,ds\right)=\mathfrak{O}_{\mathbb{P}}\left(n^{-\frac{1}{3}}\right).$$

Corollary The estimator based on the regression-type model satisfies

$$\left(\widehat{IV}_n^{h_n,r_n}-\int_0^1\sigma_s^2\,ds\right)=\mathcal{O}_{\mathbb{P}}\left(n^{-\frac{1}{3}}\right).$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 15/28

Outline

Model & Motivation

2 Volatility estimation based on local order statistics

3 Law of local minima and upper bound

4 Lower bound

6 Application

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 16/28

The lower bound for the minimax rate

We show for the PPP-model that in the parametric experiment, $X_t = \sigma dW_t$, $t \in [0, 1]$, $\sigma > 0$ unknown, the optimal rate of convergence is $n^{-1/3}$ in minimax sense. This serves a fortiori as a lower bound for the general nonparametric case.

Theorem

For any sequence of estimators $\hat{\sigma}_n^2$ of $\sigma^2 \in (0,\infty)$ from the parametric PPP-model for each $\sigma_0^2 > 0$, the local minimax lower bound is

$$\exists \delta > 0: \underset{n \to \infty}{\text{liminfinf}} \max_{\hat{\sigma}_n \sigma^2 \in \{\sigma_0^2, \sigma_0^2 + \delta n^{-1/3}\}} \mathbb{P}_{\sigma^2}(|\hat{\sigma}_n^2 - \sigma^2| \ge \delta n^{-1/3}) > 0,$$

where the infimum extends over all estimators $\hat{\sigma}_n$ based on the PPP-model with $\lambda = 1$ and $X_t = \sigma W_t$. The law of the latter is denoted by \mathbb{P}_{σ^2} .

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 17/28

Sketch of information-theoretic proof

First reduction: Decompose in sum of two independent PPPs:

$$\begin{split} \mathsf{PPP}_{\Lambda} &= \mathsf{PPP}_{\Lambda_r} + \mathsf{PPP}_{\Lambda_s} \text{ with } \Lambda = \Lambda_r + \Lambda_s, \\ \lambda_r(t, y) &= n\Big(\big(b^{-1} (y - X_t)_+ \big)^2 \wedge 1 \Big), b > 0, \lambda_s = \lambda - \lambda_r. \end{split}$$

Provide more information by $(T_j^s, X_{T_j^s})_{j\geq 1}$ instead of $(T_j^s, Y_j^s)_{j\geq 1}$. Second reduction: Conditional on (T_j^s) observations (T_i^r, \mathcal{Y}_i^r) , $T_i^r \in [T_{j-1}^s, T_j^s)$ form for each *j* independent PPPs on $[0, T_j^s - T_{j-1}^s]$ with intensities

$$\lambda^{j}(t,y) = n\left(b^{-1}\left(y - \sigma B_{t}^{0,T_{j}^{s}-T_{j-1}^{s}}\right)_{+} \wedge 1\right),$$

with a Brownian bridge denoted by $B^{0,T}$. For this more informative experiment standard bounds for the Hellinger distance imply the Theorem, $b \propto n^{-1/3}$.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 18/28

Outline

Model & Motivation

2 Volatility estimation based on local order statistics

3 Law of local minima and upper bound

4 Lower bound

6 Application

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 19/28

Example for one realised path

Regression model, $\sigma = 1$, exponential errors with $\lambda^{-1} = 0.005$, n = 100000, $h_n = 0.001$, $nh_n = 100$.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 20/28

First order approximation of Ψ

When $h_n = \mathcal{K}^{2/3} \lambda^{-2/3} n^{-2/3}$ and $\lambda^{-1} \ll \sigma_t$ for all t, or \mathcal{K} large, the local minima are predominantly determined by $\min_{i \in \mathcal{I}_k^n} X_{t_i^n}$. High signal-to-noise ratios found for high-frequency data in empirical studies.

Joint law of end-point of $Z = \int \sigma dW$ and its minimum:

$$\mathbb{P}\left(\min_{0\leq s\leq t} Z_{s} < m, Z_{t} \geq w\right) = \int_{-\infty}^{2m-w} (2\pi\sigma^{2})^{-1/2} \exp\left\{-1/(2\sigma^{2})z^{2}\right\} dz,$$

$$g(m,w) = \frac{2(w-2m)}{\sigma^{3}\sqrt{2\pi}} \exp\left\{-1/(2\sigma^{2})(2m-w)^{2}\right\}, m \in (-\infty,0], w \in [m,\infty).$$

This yields for $k = \lfloor th_{n}^{-1} \rfloor, m_{n,k} = \min_{i\in \mathbb{J}_{k}^{n}} X_{t_{i}^{n}}:$

$$\lim_{n \to \infty} h_{n}^{-1/2} \mathbb{E}[\mathcal{L}_{n,k}] = -\sqrt{(2/\pi)}\sigma_{t}, \lim_{n \to \infty} h_{n}^{-1} \mathbb{E}[\mathcal{L}_{n,k}^{2}] = \sigma_{t}^{2},$$

$$\lim_{n \to \infty} h_{n}^{-1} \mathbb{E}[\mathcal{L}_{n,k+1}\mathcal{R}_{n,k}] = \frac{1}{2}\sigma_{t}^{2}, \Rightarrow \Psi(\sigma_{t}^{2}) = 2\sigma_{t}^{2} \frac{(\pi-2)}{\pi}.$$

Accuracy of first-order approximation

Comparison of $\sum_{k=1}^{h_n^{-1}/2} (m_{n,2k} - m_{n,2k-1})^2$ and $\sigma^2(\pi - 2)/\pi$ for $\sigma \in [0, 1]$, $n = 100000, nh_n = 100$; $\lambda^{-1} = 0.005$ (top) and $\lambda^{-1} = 0.05$ (bottom).

Conclude simple estimator

$$\widehat{IV}_{n,app}^{h_n} = \frac{\pi}{\pi - 2} \sum_{k=1}^{h_n^{-1}/2} (m_{n,2k} - m_{n,2k-1})^2.$$

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 22/28

Monte Carlo simulations: Setup

Simulate $Y_i = X_{i/n} + \varepsilon_i, i = 0, \dots, n$,.

1
$$\sigma_t^2 = 0.1 \left(1 - 0.4 \sin \left(\frac{3}{4} \pi t \right) \right), \ t \in [0, 1], \ drift \ a = 0.1.$$

2
$$\sigma_t^2 = \left(\int_0^t c \cdot \rho \, dW_s + \int_0^t \sqrt{1 - \rho^2} \cdot c \, dW_s^\perp\right) \cdot \tilde{\sigma}_t,$$

 W^\perp Brownian motion independent of $W, c = 0.05,$
 $\rho = 0.5, a = 0.1$ and seasonality function
 $\tilde{\sigma} = 0.1(1 - t^{\frac{1}{2}} + 0.5 - t^2)$

Monte Carlo simulations: Results

n = 100000		ε	$\stackrel{iid}{\sim} Exp(\lambda =$	2000)	$\epsilon_i \stackrel{iid}{\sim} Exp(\lambda = 200)$			
h_n^{-1}	nhn	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE	
500	200	0.0015	0.1031	0.00	0.0332	0.1171	0.93	
1000	100	0.0068	0.0542	0.08	0.0407	0.0518	3.10	
10000	10	0.1393	0.0060	76.40	0.8688	0.0085	98.88	
n = 10000		$\epsilon_i \stackrel{iid}{\sim} Exp(\lambda = 2000)$			$arepsilon_{i} \stackrel{\textit{iid}}{\sim} Exp(\lambda = 200)$			
h_{n}^{-1}	nh _n	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE	
100	100	0.0020	0.1227	0.00	0.0179	0.1200	0.26	
500	20	0.0183	0.0219	1.35	0.0555	0.0239	11.43	
1000	10	0.0392	0.0116	11.75	0.1401	0.0138	58.72	

Results for $\hat{lV}_{n,app}^{h_n}$ in setup 1. Bias rescaled with $n^{1/3}$, variance with factor $n^{2/3}$. Based on *first order approximation*. Results for setup 2 equally well, $\hat{lV}_{n,app}^{h_n}$ comes close but does not attain minimal MSE because of the bias.

Monte Carlo simulations: Results

n = 100000		ε	$\stackrel{id}{\sim} Exp(\lambda = 1)$	2000)	$\epsilon_i \stackrel{iid}{\sim} Exp(\lambda = 200)$		
h_{n}^{-1}	r_n^{-1}	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE
500	100	-0.0069	0.1051	0.04	-0.0194	0.1049	0.36
1000	100	0.0095	0.0528	0.17	-0.0148	0.0571	0.38
10000	100	0.0064	0.0056	0.72	0.0066	0.0077	0.56
n = 10000		$arepsilon_i \stackrel{iid}{\sim} Exp(\lambda {=} 2000)$			$\mathbf{\epsilon}_i \stackrel{\textit{iid}}{\sim} Exp(\lambda {=} 200)$		
h_n^{-1}	r_n^{-1}	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE	Bias n ^{1/3}	Var <i>n</i> ^{2/3}	Bias ² %MSE
100	20	-0.0078	0.1168	0.05	0.0029	0.1199	0.00
500	100	-0.0136	0.0237	0.77	-0.0008	0.0257	0.00
1000	100	0.0086	0.0125	0.59	0.0109	0.0135	0.87

Results for $l\hat{V}_n^{h_n,r_n}$ in setup 1. Bias rescaled with $n^{1/3}$, variance with factor $n^{2/3}$. Results for setup 2 equally well, also different error distributions considered in report. Above choice of r_n slightly better than $r_n = \sqrt{h_n}$. *Monte Carlo approximation of* Ψ_n employed.

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 25/28

Monte Carlo empirical distribution

Parametric setup $\sigma = 1$. Empirical distribution of $(\widehat{\mathbb{Var}}(\hat{\sigma}_n^2))^{-1/2} \hat{\sigma}_n^2$ for 1000 iterations, , $\lambda^{-1} = 0.005$, n = 100000, $h_n = 1000$.

Summary & Outlook

Summary:

- Improved volatility estimation based on order prices.
- We obtain $n^{1/3}$ as optimal convergence rate.
- First applications promising.
- First data applications using orders and traded prices support the idea of the *same latent efficient price* and its volatility recovered with methods based on microstructure noise model with centred and one-sided errors, respectively.

Summary & Outlook

Outlook:

- Strive for stable CLT in model where the volatility is a semi-martingale.
- Design an explicit feasible estimator.
- Application: Validate model using all available information from bids, asks, trades.

Literature

Bibinger, M., Jirak, M., Reiß, M., (2014). Improved volatility estimation based on limit order books. *arXiv:1408.3768*

Bibinger, M., Jirak, M., Reiß, M., (2014). Applying volatility estimators based on limit order books. technical report, available under www.mathematik. hu-berlin.de/for1735/Publ/application.pdf.

Thank you for your attention!

Markus Bibinger, joint work with Moritz Jirak and Markus Reiß — Improved volatility estimation based on limit order books — 11th September 2014 Slide 28/28