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Mixed-effect Ornstein-Uhlenbeck model

Observations: (Xj(t), 0 ≤ t ≤ T ) j = 1, . . . , N , N processes described by{
dXj(t) =

(
φj − Xj(t)

α

)
dt+ σdWj(t)

Xj(0) = xj

→ it models the variability along time for each subject.
(Wj)1≤j≤N are N independent standard Wiener processes.
(φj)1≤j≤N are N unobserved i.i.d. r.v. with density f : random effect
of individual j.
(φj)1≤j≤N and (Wj)1≤j≤N are independent.
(x1, . . . , xN ) are known values.
T in fixed, known.
The positive constants σ and α are supposed to be known.
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→ When t is fixed: due to the independence of the φj and the Wj , the
Xj(t) are N i.i.d. r. v.

Xj(t) = Xj(0)e−t/α + φjα(1− e−t/α) + σe−t/α
∫ t

0

es/αdWj(s).

→ Differences between observations are due to the realization of both the
Wj and φj .

→ However, the N trajectories (Xj(t), 0 ≤ t ≤ T ), j = 1, . . . , N are i.i.d.

Charlotte Dion 3 / 20



Model and motivation
Nonparametric estimator

Numerical study
Conclusions

Xj represents the behaviour of one individual and φj describes the
individual specificity.

Goal: to estimate in a nonparametric way the density f of the random
effects.

Parametric approach: Gaussian assumption (c.f. e.g Genon-Catalot
and Larédo, (2013), Donnet and Samson, (2008), Delattre et al.,
(2013)).
Nonparametric: Comte et al., (2013), for large T . Not efficient when T
is small.

Proposal: a new nonparametric estimator, built by deconvolution,
depending on two parameters, selected in a data-driven way.
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Notations

Let us consider f and g in L1(R) ∩ L2(R):
‖f‖2 =

∫
R |f(x)|2dx.

The Fourier transform of f : f∗(x) =
∫
R e

iuxf(u)du for all x ∈ R.
The convolution product of f and g: f ? g(x) =

∫
R f(x− y)g(y)dy.

We assume

(A) f ∈ L2(R), f∗ ∈ L1(R) ∩ L2(R).
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Construction of the estimator: deconvolution steps

dXj(t) =

(
φj −

Xj(t)

α

)
dt+ σdWj(t), Xj(0) = xj

For j = 1, . . . , N , τ ∈]0, T ], estimators of the φj

Zj,τ :=
Xj(τ)−Xj(0)−

∫ τ
0

(−Xj(s)
α

ds)

τ
.

Notice that
Zj,τ = φj +

σ

τ
Wj(τ).

When τ is fixed: the two members of the sum are independent, thus
(Zj,τ )j=1,...,N are i.i.d., and

fZτ (u) = f ? fσ
τ
Wj(τ)(u).

Fourier transform under (A)

f∗Zτ (u) = f∗(u)f∗σ
τ
Wj(τ)(u) ⇔ f∗(u) = f∗Zτ (u)eu

2σ2/2τ .
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Cut-off choice
Fourier inversion

f(x) =
1

2π

∫
R
e−iuxf∗Zτ (u)e

u2σ2

2τ du.

Estimator of f∗Zτ (u): f̂∗Zτ (u) = (1/N)
∑N
j=1 e

iuZj,τ .

But: integrability of f̂∗Zτ (u)eu
2σ2/2τ no more ensured → cut-off.

Idea due to Comte et al (2013): to link the time of the process τ and the
cut-off

f̂τ (x) =
1

2π

∫ √τ
−
√
τ

e−iux
1

N

N∑
j=1

eiuZj,τ e
u2σ2

2τ du.

→ Problem when τ is small. We introduce a new cut-off parameter s:

f̂s,τ (x) =
1

2π

∫ s
√
τ

−s
√
τ

e−iux
1

N

N∑
j=1

eiuZj,τ e
u2σ2

2τ du.
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To simplify the theoretical study, we replace s
√
τ by a new parameter m.

Resulting estimator: f̃m,s, when m2/s2 ∈]0, T ],

f̃m,s(x) =
1

2π

∫ m

−m
e−iux

1

N

N∑
j=1

e
iuZ

j,m2/s2 e
u2σ2s2

2m2 du

with m and s in two finite setsM and S.
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Study of the mean integrated squared error (MISE):

Decomposition E
[
‖f̃m,s − f‖2

]
= ‖f − E[f̃m,s]‖2 + E

[
‖f̃m,s − E[f̃m,s]‖2

]
.

Definition fm is defined by f∗m := f∗1[−m,m].

Proposition

Under (A), E[f̃m,s] = fm and we have

E
[
‖f̃m,s − f‖2

]
≤ ‖fm − f‖2 +

m

πN

∫ 1

0

eσ
2s2v2dv.

Bias term: decreases when m in-
creases, independent of s

‖fm−f‖2 =
1

2π

∫
|u|≥m

|f∗(u)|2du.

Variance term: increases withm
and s

m

πN

∫ 1

0

eσ
2s2v2dv.

→ Bounded as soon as s is
bounded.
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Finite collections

→ We want to choose the best couple (m, s): the one realizing the
bias-variance compromise.

S := {sl =
1

2l
2

σ
, 1/2P−1 ≤ σsl ≤ 2, l = 0, . . . , P}

M := {m =

√
k∆

σ
, k ∈ N∗, 0 < m ≤ N}

with 0 < ∆ < 1 a small step to be fixed.

C := {(m, s) ∈M× S, m2/s2 ≤ T}.
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New criterion extended from the Goldenshluger and Lepski’s method
Consider (m, s) ∈ C.
Penalty function

pen(m, s) = κ
m

N
eσ

2s2 ,

where κ is a numerical constant to be calibrated.
Criterion

Γm,s = max
(m′,s′)∈C

(
‖f̃m′,s′ − f̃(m′,s′)∧(m,s)‖2 − pen(m′, s′)

)
+

where (m′, s′) ∧ (m, s) := (m′ ∧m, s′ ∧ s).
Selection

(m̃, s̃) = arg min
(m,s)∈C

{Γm,s + pen(m, s)}.

Lemma

There is a constant C′ depending on ‖f‖, σ, ∆, and P + 1 the cardinality of
S, such that:

E[Γm,s] ≤ 18‖f − fm‖2 +
C′(P + 1)

N
.
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Main non-asymptotic result on the final estimator: oracle type inequality

Theorem (D. (2014))

Under (A), consider the estimator f̃m̃,s̃, there exists κ0 a numerical
constant such that, for all penalty constant κ ≥ κ0,

E[‖f̃m̃,s̃ − f‖2] ≤ C inf
(m,s)∈C

{
‖f − fm‖2 + pen(m, s)

}
+
C′(P + 1)

N

where C > 0 is a numerical constant as soon as κ is fixed and C′ is the
previous constant of Lemma.

Automatic realisation of the bias-penalty compromise.

We choose the two parameters in an adaptive way, thus this gives more
flexibility in the choice of the estimator.
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Numerical study
Exact simulation of the processes.
Discretization, time step δ, small (500 to 2000 observations).
Choice of parameters and designs (ex: T = 0.3, 10, 100, 300)
Calibration κ = 0.3.
∆ = 0.08.
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Study on simulated data with N = 240, T = 0.3, δ = 0.00015,
σ = 0.0135, α = 0.039

Figure : - 25 estimators f̃m̃,s̃, - the true density f : gamma and mixed gamma

Table : Empirical mean integrated squared error, computed from 100 simulated
data sets

f gamma f mixed-gamma
f̃m̃,s̃ 0.068 0.038

Oracle 0.041 0.029
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Application on a neuronal database

Interspikes interval (ISI) measures: measurements along time of the
membrane potential in volts [V] of one single neuron, between the spikes.

Figure : Left: Membrane potential, right: the 240 observed trajectories

→We consider the observations as independent realizations of
our model.
→ Picchini et al. (2010) proves that the Ornstein-Uhlenbeck
model with one random effect fits better the data than without.
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Parameters values
T = 0.3, time step δ = 0.00015 [s].
The initial voltage = the resting potential: xj = 0.
The diffusion coefficient is fixed σ = 0.0135 [V/

√
s] (estimated in

Picchini et al (2010) )
α [s]: time constant of the neuron α = 0.039 [s] (estimated in Lansky
et al (2006))

→ φj is the local input that neuron receives during the jth ISI.

→ Estimation of f obtained in Picchini et al (2010) under Gaussian
assumption: N (0.278, 0.0412).

We although represent the adaptive kernel estimator associate to the r.v.
Zj,T ,

f̂h(x) =
1

N

N∑
j=1

1

h
K

(
x− Zj,T

h

)
where we choose the bandwidth ĥ among a collection, with a data-driven
Lepski’s procedure developed in the article.
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Estimated density f on a neuronal database

Figure : – f̂
ĥ
, – f̃m̃,s̃, - - the density from Picchini et al (2010) N (0.278, 0.0412)

and ... the density Γ(46.3, 0.006)
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Conclusions
More precise estimation instead of parametric assumption. Can be
used to simulate the φj .
This new parameter s generalizes the results of Comte et al (2013)
even if T is large.
Selection procedure of two parameters which can be adapted in other
cases.

Further works
Remark: the procedure can be written with a drift b(x) + φj with b
satisfying assumption but not necessary linear.
Add a new random effect: α.
Solve the problem when σ(x) 6= σ1 without assuming σ(x) < σ1.
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Thank you for your attention.
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