Nonparametric estimation in a mixed-effect
Ornstein-Uhlenbeck model
Charlotte Dion™)(®

Ph. D. 2013-2016.
Supervisors: Adeline Samson", Fabienne Comte®

(1) LJK, UMR CNRS 5224, Université Joseph Fourier, Grenoble 1
(2) MAP5, UMR CNRS 8145, Université Paris Descartes, Paris Cité

11/09/2014

S« MAPS

1/20



Content

© Model and motivation

© Nonparametric estimator built by deconvolution
o Construction of the collection of estimators
@ Data driven selection method

© Numerical study
@ Study on simulated data
@ Study on a neuronal database

© Conclusions

L e | L /20



Mixed-effect Ornstein-Uhlenbeck model

Observations: (X;(t),0<t<T)j=1,...,N, N processes described by

dX;(t)
X;(0)

(65— 22 at + odw; (1)

Ly

— it models the variability along time for each subject.
o (W;)i<j<n~ are N independent standard Wiener processes.
@ (¢j)1<j<n are N unobserved i.i.d. r.v. with density f: random effect
of individual j.
o (¢j)1<j<n and (W;)i1<;<n are independent.
e (z1,...,xzN) are known values.
e T in fixed, known.

@ The positive constants o and « are supposed to be known.
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— When ¢t is fixed: due to the independence of the ¢; and the W}, the
X;(t) are N i.i.d. r. v.

¢
X;(t) = X;(0)e™ " + pja(l —e ) + Ue_t/a/o e AW, (s).

— Differences between observations are due to the realization of both the
VVj and gi)j.

— However, the N trajectories (X;(¢),0<t<T),57=1,...,N are i.i.d.



X represents the behaviour of one individual and ¢; describes the
individual specificity.

Goal: to estimate in a nonparametric way the density f of the random
effects.

o Parametric approach: Gaussian assumption (c.f. e.g Genon-Catalot
and Larédo, (2013), Donnet and Samson, (2008), Delattre et al.,
(2013)).

o Nonparametric: Comte et al., (2013), for large 7". Not efficient when T'
is small.

Proposal: a new nonparametric estimator, built by deconvolution,
depending on two parameters, selected in a data-driven way.
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Construction of the collection of estimators
Data driven selection method

Notations

Let us consider f and g in L*(R) N L*(R):
o IfI12 = fy 11 (@) 2da.
e The Fourier transform of f: f*(x) = [, ““”f(u)du for all z € R.
e The convolution product of f and g: fxg(z) = [, f( g(y)dy.

We assume

(A) f e L*R), f* € L'(R) N L*(R).

~ Charlotte Dion 5,20



Construction of the estimator: deconvolution steps

4X; () = < . (t)> dt + odW;(t), X;(0) = z;
For j =1,...,N, 7 €]0,T], estimators of the ¢,

_X(r) - (-4 ds)

Zjr -

T



Construction of the collection of estimators
Data driven selection method

Construction of the estimator: deconvolution steps

dX;(t) = < RS (t)> dt +odW;(t), X;(0) =
For j =1,...,N, 7 €]0,T], estimators of the ¢,

X;(r) = X;(0) — Jy (-5 ds)

Zjr = -

Notice that o
Zjr = ¢5 + _W;(7).

When 7 is fixed: the two members of the sum are independent, thus
(Zj+)j=1,..,n are i.i.d., and

[z, (u) = f* few, () (u).

~ Charlotte Dion 6/ 20
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Zjr = ¢5 + _W;(7).
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[z, (u) = f* few, () (u).

Fourier transform under (A)

P () = @ 2w, () & f (W) = f2, (e
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Cut-off choice

Fourier inversion

f(x) = % /Re_i”meT (u)e%du. J

Estimator of f7_(u): f}f (u) = (1/N) SN euZir,

Jj=1

But: integrability of f}f (u)euz"z/ 27 no more ensured — cut-off.



Construction of the collection of estimators
Data driven selection method

Cut-off choice

Fourier inversion

flz) = %/}Re_mmfa( )e 2T du.

Estimator of f3,_(u): f5, (u) = (1/N) YN, ™%
But: integrability of f}T (u)e“zaz/zT no more ensured — cut-off.
Idea due to Comte et al (2013): to link the time of the process 7 and the

cut-off
1 (V7 a
7o) = 2W/ Z 1r e %27 du,

— Problem when 7 is small.



Construction of the collection of estimators
Data driven selection method

Cut-off choice

Fourier inversion

flz) = %/}Re_mmfa( )e 2T du. J

Estimator of f7_(u): f}T (u) = (1/N) Z] e 7,

But: integrability of f}T (u)e“zaz/zT no more ensured — cut-off.
Idea due to Comte et al (2013): to link the time of the process 7 and the

cut-off
1 VT ) 1 N _— w202
Fr(z) = / I —— E e Te T du.
on JF N =

— Problem when 7 is small. We introduce a new cut-off parameter s:

N 1 VT —zuz iuZ; -
for(@) = %/ Z et du

—sVT =

-~ Charlotte Dion 7/20



To simplify the theoretical study, we replace sy/7 by a new parameter m.

Resulting estimator: f, s, when m? /5% €]0,T7,

N
~ 1 mo 1 iwZ . u?o?s?
frs(@) = o= [ eIy e e ot du

o -

with m and s in two finite sets M and S.



Construction of the collection of estimators
Data driven selection method

Study of the mean integrated squared error (MISE):
Decomposition E [[[fm,s = f1] = 1 = Elfm.oJI* +E [lon.s — Elfm.o]IP]
Definition f,, is defined by £ = f*1(_ -
Proposition

Under (A), E[fm.s] = fm and we have

irs m 1 025242
]E[||fm,s_f||2] S ||fm_f||2+m/0 € dv.

~ Charlotte Dion 9/20
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Study of the mean integrated squared error (MISE):
Decomposition E [[[fm,s = f1] = 1 = Elfm.oJI* +E [lon.s — Elfm.o]IP]
Definition f,, is defined by £ = f*1(_ -
Proposition

Under (A), E[fm.s] = fm and we have

irs m 1 025242
E[Hfm,s_.f||2] S ”fm_f”z‘i‘m/o € dv.

Bias term: decreases when m in- Variance term: increases with m
creases, independent of s and s
2 1 2 m ! 025202
in=S1P= o0 [ 15 )P, o[ et
T Ju|>m TN Jo

— Bounded as soon as s is
bounded.
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Finite collections

— We want to choose the best couple (m,s): the one realizing the
bias-variance compromise.

5;:{&:%2, 127 ' <o <2, 1=0,...,P}
g

M= {m :—V’“A keN, 0<m< N}

with 0 < A < 1 a small step to be fixed.

C:={(m,s) e M xS, m?/s* <T}.



Construction of the collection of estimators
Data driven selection method

New criterion extended from the Goldenshluger and Lepski’s method
Consider (m,s) € C.

Penalty function

242

m o
pen(m,s) = Re ,

where k is a numerical constant to be calibrated.
Criterion

r = (Nm’s’_~m’s’ m,s = I7I)
me = o (I = o |~ pon’ )

where (m/, s') A (m,s) := (m' Am,s As).
Selection
(m,s) = arg min {[y, s+ pen(m,s)}.
(m,s)eC

~ Charlotte Dion 11/20



Construction of the collection of estimators
Data driven selection method

New criterion extended from the Goldenshluger and Lepski’s method

Consider (m,s) € C.

Penalty function
m 0282
pen(m,s) = g€

where k is a numerical constant to be calibrated.

Criterion
r = (Nm’s’_Nm’s’ m,s = I7I)
me = max (1Frr = Fontnimo P = pen(n’ ) |

where (m/, s') A (m,s) := (m' Am,s As).

Selection

(m,s) = arg min {[y, s+ pen(m,s)}.
(m,s)eC
Lemma

There is a constant C' depending on ||f|, o, A, and P+ 1 the cardinality of

S, such that:

C'(P+1)
N

-~ Charlotte Dion 11/20
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Construction of the collection of estimators
Data driven selection method

Main non-asymptotic result on the final estimator: oracle type inequality

Theorem (D. (2014))

Under (A), consider the estimator fﬁl‘g, there exists kKo a numerical
constant such that, for all penalty constant k > kKo,

~ C'(P+1
Ellfs— 7P <€t {17 = fulP + pen(m, )} + S EHD

where C > 0 is a numerical constant as soon as k is fized and C' is the
previous constant of Lemma.

Automatic realisation of the bias-penalty compromise.

We choose the two parameters in an adaptive way, thus this gives more
flexibility in the choice of the estimator.

~ Charlotte Dion 12/ 20



Numerical study

o Exact simulation of the processes.

o Discretization, time step ¢, small (500 to 2000 observations).
o Choice of parameters and designs (ex: 7'= 0.3, 10, 100, 300)
e Calibration x = 0.3.

o A =0.08.



Study on simulated data
Study on a neuronal database

Study on simulated data with N =240, T'= 0.3, = 0.00015,
o =0.0135, a = 0.039

10 12 14

00 02 04 06 08

Figure : - 25 estimators fm,g, - the true density f: gamma and mixed gamma

Table : Empirical mean integrated squared error, computed from 100 simulated
data sets

f gamma  f mixed-gamma
fms 0.068 0.038
Oracle 0.041 0.029

~ Charlotte Dion 14/ 20
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Application on a neuronal database

Interspikes interval (ISI) measures: measurements along time of the
membrane potential in volts [V] of one single neuron, between the spikes.

0.015

Depolarization [mV]
0.010

L—JJ,-

Time in record [s]

0.005

0.000

0.00 0.05 0.10 0.15 0.20 0.25 0.30

time

Figure : Left: Membrane potential, right: the 240 observed trajectories

— We consider the observations as independent realizations of
our model.

— Picchini et al. (2010) proves that the Ornstein-Uhlenbeck
model with one random effect fits better the data than without.

Charlotte Dion 15 /20



Study on simulated data
Study on a neuronal database

Parameters values

e T'= 0.3, time step 6 = 0.00015 [s].
o The initial voltage = the resting potential: z; = 0.

e The diffusion coefficient is fixed o = 0.0135 [V/4/s] (estimated in
Picchini et al (2010) )

@ « [s]: time constant of the neuron a = 0.039 [s] (estimated in Lansky
et al (2006))

— ¢; is the local input that neuron receives during the 4B ISL.

— Estimation of f obtained in Picchini et al (2010) under Gaussian
assumption: A(0.278,0.041%).

~ Charlotte Dion 16/ 20
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@ « [s]: time constant of the neuron a = 0.039 [s] (estimated in Lansky
et al (2006))

— ¢; is the local input that neuron receives during the 4B ISL.

— Estimation of f obtained in Picchini et al (2010) under Gaussian
assumption: A(0.278,0.041%).

We although represent the adaptive kernel estimator associate to the r.v.

Zj,T7
N 1 T
Fu(z) = ZE ( = >

where we choose the bandwidth & among a collection, with a data-driven
Lepski’s procedure developed in the article.
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Study on simulated data
Study on a neuronal database

Estimated density f on a neuronal database

o

=
--- Gaussian
----- Gamma

@ - —— Deconvolution
—— Kernel
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Figure : — fﬁ, - fffl,g, - - the density from Picchini et al (2010) A(0.278,0.0412)
and ... the density I'(46.3,0.006)
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Conclusions

@ More precise estimation instead of parametric assumption. Can be
used to simulate the ¢;.

o This new parameter s generalizes the results of Comte et al (2013)
even if T is large.

@ Selection procedure of two parameters which can be adapted in other
cases.

Further works

@ Remark: the procedure can be written with a drift b(x) + ¢; with b
satisfying assumption but not necessary linear.

o Add a new random effect: a.

@ Solve the problem when o(z) # o1 without assuming o(x) < o1.

~ Charlotte Dion 18/ 20
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Thank you for your attention.
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