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Model of periodic signal disturbed by noise whose variance is
periodic

dζt = f (t, θ)dt + σ(t)dWt , t ≥ 0, (1)

where

1 f (·, ·) : R× R 7→ R is continuous, periodic in the first variable
with period P;

2 σ(·) : R 7→ R is continuous periodic with the same period P;

3 W = {Wt , t ≥ 0} is a standard Brownian motion;

4 θ ∈ Θ is an unknown parameter, Θ is a compact of R.
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Our target is

1 Estimation of the unknown parameter θ when we observe a
continuous observation along the interval [0,T ]

2 Estimation of the unknown parameter θ when we observe a
discrete observation along the interval [0,T ].

We are going to use the maximum of likelihood method for the
first estimation and the maximum of contrast for the second.

Then we show the consistency of these estimators.
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Application, ξt such that dζt = dξt
ξt

, however

ζt − ζ0 6= ln(ξt)− ln(ξ0).

So ξt is the solution of the geometric linear SDE

dξt = f (t, θ)ξtdt + σ(t)ξtdWt , (2)

and the estimation of the drift component in the model (1) is
identical to this estimation in the model (2 ).

The equations of this type appear in several areas :

1 Finance (Karatzas and Shreve, 1991; Klebaner, 2006)
(Black-Scholes-Merton model);

2 Mechanic (Has’minskii, 1980 ; Jankunas and Khas’minskii,
1997)
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In the continuous case, for the parametric estimation several works
are available (See for instance, Ibragimov and Has’minskii, 1981;
Kutoyants, 1984...)

However it’s difficult to obtain a complete observation of the
sample path. So problem of discretization are considered.

On the drift estimation for a diffusion process, Le Breton (1976)
has shown that maximum likelihood estimators based on the
discrete schemas has asymptotically the same behaviour as the
maximum likelihood estimators based on the continuous
observation.
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Kasonga (1988) has used the least square method to show the
consistency of a estimators based on the discrete schemas.

The case of ergodic diffusion models is studied in Dacunha-Castelle
and Florens-Zmirou (1986), Florens-Zmirou (1989).

Using maximum contrast and for small variance diffusion models,
Genon-Catalot (1990) has shown, under some classical
assumptions, asymptotic results. Harison (1996) has used this
method to estimate the drift parameter for one-dimentional
nonstationary Gaussian diffusion models.

In these works σ(t) is assumed to be positive.
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Maximum likelihood estimation



Introduction Maximum likelihood estimation Maximum contrast estimation Simulation

Likelihood and convergence in probability

Likelihood and convergence in probability

Recall that ζt is given by

dζt = f (t, θ)dt + σ(t)dWt , t ≥ 0.

To define the likelihood function we can use Theorem 7.18 of
Liptser and Shiryaev (2001).
We apply this theorem to the next two processes

dζθt = f (t, θ)dt + σ(t)dWt , (3)

dηt = σ(t)dWt . (4)
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Likelihood and convergence in probability

Under the condition

sup
t∈[0,P]

∣∣∣∣ f (t, θ)

σ(t)

∣∣∣∣ 1{σ(t) 6=0} <∞,

these two processes fulfil the conditions of this Theorem 7.18. So
µTθ ∼ νT , where

µTθ := L(ζθt , 0 ≤ t ≤ T ), νT := L(ηt , 0 ≤ t ≤ T ).

In addition, the conditions of the Corollary which follows this
Theorem 7.18 are satisfied and we have P-a.s.

dµθ
dν

(ζθ) = exp

(∫ T

0

f (s, θ)

σ2(s)
1{σ(s) 6=0}dζ

θ
s −

1

2

∫ T

0
ρ2(s, θ)ds

)
where ρ(s, θ) := f (s,θ)

σ(s) 1{σ(s) 6=0}.
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Likelihood and convergence in probability

Denote the likelihood function

LT (θ) := exp

(∫ T

0

f (s, θ)

σ2(s)
1{σ(s) 6=0}dζ

θ
s −

1

2

∫ T

0
ρ2(s, θ)ds

)
.(5)

Using the assumptions under f (·, ·) and σ(·) there exist θ̂T such
that

LT (θ̂T ) = arg sup
θ∈Θ

LT (θ).

To show the convergence in Pθ of this estimator :
first we check that the log-likelihood is a contrast in the sense of
Dacunha-Castelle and Duflo, 1983 (Definition 3.2.7) and then we
apply a version of (Theorem 3.2.4, Dacunha-Castelle and Duflo,
1983, see also Theorem 5.7 of van der Vaart, 2005 ).



Introduction Maximum likelihood estimation Maximum contrast estimation Simulation

Likelihood and convergence in probability

For α ∈ Θ let
ΛT (α) := log(LT (α))

ΛT (α) =
1

T

∫ T

0

ρ(s, α)

σ2(s)
1{σ(s)6=0}dζ

θ
s −

1

2T

∫ T

0

f 2(s, θ)

σ2(s)
1{σ(s)6=0}ds

=
1

T

∫ T

0

(
ρ(s, α)ρ(s, θ)− 1

2
ρ2(s, α)

)
ds +

1

T

∫ T

0
ρ(s, α)dWs ,

Take T = nP, Λn(α) converges Pθ-p.s. to the contrast function

K (θ, α) := − 1

P

∫ P

0

(
ρ(s, α)ρ(s, θ)− 1

2
ρ2(s, θ)

)
ds
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Likelihood and convergence in probability

Recall now Theorem 3.2.4 of Dacunha-Castelle and Duflo.

Theorem 1

Let (Ω,F , (Fx)x>0, (Pθ)θ∈Θ) be a probability space, assume that
the next two conditions are fulfilled

1 Θ is a compact of R, the functions α 7→ Λn(α), α 7→ K (θ, α)
are continuous;

2 for all ε > 0, there exists η > 0 such that

lim
n→∞

Pθ

(
sup

|α−α′|<η

∣∣Λn(α)− Λn(α′)
∣∣ > ε

)
= 0.

Then the maximum contrast estimator θ̂n is consistent in θ.

θ̂n
Pθ→ θ.
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Likelihood and convergence in probability

Λn(α)− Λn(α′) =

1

2T

∫ T

0

(
ρ(s, α)− ρ(s, α′)

) (
2ρ(s, θ)− ρ(s, α)− ρ(s, α′)

)
ds

+
1

T

∫ T

0
(ρ(s, α)− ρ(s, α′))dWs

The absolute value of the first term of this equality is bounded by
a multiple of η where |α− α′| ≤ η. We show that the second term
converges in mean to 0 when n→∞.
So

θ̂n
Pθ→ θ.
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Convergence in the case f (t, θ) = θf (t)

Convergence in the case f (t, θ) = θf (t)

Now consider the particular case f (t, θ) = θf (t) so ζt is given by
this equation

dζt = θf (t)dt + σ(t)dWt , t ∈ [0,T ].

For the function f (·) non-parametric estimators are provided in
(Ibragimov and Has’minskii, 1981; Dehay and El Waled, 2013).

For the parameter θ we are going to give the expression of its
estimator and establish its convergence : convergence almost sure,
mean square convergence, asymptotic normality and the
asymptotic efficiency when T → ∞.
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Convergence in the case f (t, θ) = θf (t)

Thanks to (5) the likelihood function in this case is

LT (θ) :=
dµθ
dν

(ζθ) = exp

(
θ

∫ T

0

f (s)

σ2(s)
1{σ(s) 6=0}dζs −

θ2

2

∫ T

0
ρ2(s)ds

)
.

So the MLE is

θ̂T :=

∫ T
0

f (s)
σ2(s)

1{σ(s)6=0}dζs∫ T
0 ρ2(s)ds

.

Remark
When we observe a continuous trajectory of ξt defined in (2) on
[0,T ]

dξt = θf (t)ξtdt + σ(t)ξtdWt .

Then the conditions of the Theorem 7.18 and the Corollary which
follows it are satisfied and we deduce that the MLE θ̂T is defined as

θ̂T :=

∫ T
0

f (s)
σ2(s)ξs

1{σ(s)6=0}dξs∫ T
0 ρ2(s)ds

.
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Convergence in the case f (t, θ) = θf (t)

When ζs = ζθs
dζθt = θf (t)dt + σ(t)dWt .

Hence we can write θ̂T as :

θ̂T = θ +

∫ T
0 ρ(s)dWs∫ T
0 ρ2(s)ds

= θ +
VT

JT
.
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Convergence in the case f (t, θ) = θf (t)

Here we show that θ̂T is unbiased, moreover we get the almost
sure convergence, mean square convergence, the asymptotic
normality and the asymptotic efficiency.

Almost sure convergence

Theorem 2

θ̂T converges almost surely to θ.
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Convergence in the case f (t, θ) = θf (t)

Proof.

JT =

∫ nP

0
ρ2(s)ds = n

∫ P

0
ρ2(s)ds ⇒ lim

T→∞

JT
T

=
1

P

∫ P

0
ρ2(s)ds.

VT = VnP =
n−1∑
k=0

∫ (k+1)P

kP
ρ(s)dWs =

n−1∑
k=0

∫ P

0
ρ(s)dW

(kP)
s ,

where W
(kP)
u := WkP+u −WkP . As

lim
n→∞

1

n

n−1∑
k=0

∫ P

0
ρ(s)dW

(kP)
s = E

[∫ P

0
ρ(s)dW

(kP)
s

]
= 0 Pθ − p.s.

we deduce the convergence
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Convergence in the case f (t, θ) = θf (t)

As

L
(∫ T

0
ρ(s)dWs

)
= N

(
0,

∫ T

0
ρ2(s)ds

)
and θ̂T−θ =

∫ T
0 ρ(s)dWs∫ T
0 ρ2(s)ds

,

we deduce that

L
(
θ̂T − θ

)
= N

(
0,

1∫ T
0 ρ2(s)ds

)
.

So we get the mean square convergence as well as the asymptotic
normality.

Mean square convergence, asymptotic normality

Theorem 3

θ̂T converges in mean square to θ, and θ̄T =
√
T (θ̂T − θ) is

asymptotically normal.
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Convergence in the case f (t, θ) = θf (t)

Asymptotic efficiency of θ̂T

To justify the relevance of this estimator we see if it is
asymptotically efficient. In order to show the asymptotic efficiency
we use the Hájek-Le Cam inequality (see Kutoyants 1984, van der
Vaart 1998 for further details).

We show firstly that the family P
(T )
θ is locally asymptotically

normal (see Definition 1.2.1 in Kutoyants 1984 ).

Proposition 1

P
(T )
θ is locally asymptotically normal.
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Convergence in the case f (t, θ) = θf (t)

Proof.

After computation we get

dP
(T )
θ+ΦTu

dP
(T )
θ

(ζT ) = exp

{
u∆T (ζT )− 1

2
u2

}
where

ΦT :=

(∫ T

0
ρ2(s)1{σ(s)6=0}ds

)− 1
2

,

∆T (ζT ) :=

(∫ T

0
ρ2(s)ds

)− 1
2
∫ T

0
ρ(s)dWs .

Theorem 4

The estimator θ̂T is asymptotically efficient for the square error
(see Definition 1.2.2 in Kutoyants 1984).
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Maximum contrast estimation
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Definition of the contrast

Definition of the contrast

dζt = f (t, θ)dt + σ(t)dWt .

First, we discretize the interval [0,T ] in the following way.

Let ti := i∆n, i ∈ 0 · · · n − 1, where ∆n = T
n .

Following Genon-Catalot (1990) we can approximate the likelihood
of this process by the next function

Ln(θ, ζ) := Ln(θ) =
n−1∑
i=0

f (ti , θ)(ζti+1−ζti )−
1

2

n−1∑
i=0

f 2(ti , θ)∆n. (6)

Assume that T = n∆n = NnP, P = pn∆n fixed, pn ∈ N,
T = n∆n →∞ , ∆n → 0 when n→∞.
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Definition of the contrast

To show the consistency of the maximum contrast estimator we
firstly show that Un(α) := Ln(α)

n∆n
is a contrast where α ∈ Θ.

That is to show that Un(α) converges in Pθ to some real contrast
function K (θ, α), where

K (θ, α) := − 1

2P

∫ P

0
(f (s, θ)− f (s, α))2 ds +

1

2P

∫ P

0
f 2(s, θ)ds.
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Definition of the contrast

To prove this convergence we use the next two results

Lemma 1

For a continuous periodic function f (·, ·) defined on [0,T ]×Θ
where Θ is a compact of R we have

lim
n→∞

1

n∆n

n−1∑
i=0

f 2(ti , θ)∆n =
1

P

∫ P

0
f 2(t, θ)dt. (7)

lim
n→∞

1

n∆n

n−1∑
i=0

f (ti , α)

∫ ti+1

ti

f (t, θ)dt =
1

P

∫ P

0
f (t, α)f (t, θ)dt.

(8)
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Definition of the contrast

Theorem 5

Under the above conditions and for σ(s) 6= 0 if there exists an s
such that f (s, θ) 6= f (s, α) then Un(α) is a contrast.

To prove that Un(α) converges in Pθ to K (θ, α) we prove the
convergence in mean square
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Definition of the contrast

Proof.

K (θ, α) is a contrast function which has a strict maximum for
α = θ

K (θ, θ) =
1

2P

∫ P

0
f 2(s, θ)ds.

Eθ

[
|Un(α)− K (θ, α)|2

]
= |Eθ [Un(α)]− K (θ, α)|2 + varθ (Un(α))

Using (7) and (8) one can show that

lim
n→∞

Eθ [Un(α)] = K (θ, α),

lim
n→∞

varθ (Un(α)) = 0.
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Definition of the contrast

Now we apply again Theorem 3.2.4 of Dacunha-Castelle and Duflo

Corollary 1

In our case the two conditions of this theorem are fulfilled.

Proof.

1 The functions Un(α), K (θ, α) are continuous .

2 for all ε > 0, there exists η > 0 such that

lim
n→∞

Pθ

(
sup

|α−α′|<η

∣∣∣∣Ln(α)− Ln(α′)

n∆n

∣∣∣∣ > ε

)
= 0.
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Study of the case f (t, θ) = θf (t), σ(t) = 1

Study of the case f (t, θ) = θf (t), σ(t) = 1

Consider f (t, θ) = θf (t), σ(t) = 1. So we have the next model

dζt = θf (t)dt + dWt . (9)

In the discrete case, let’s make again the next discretization of the
interval [0,T ]. {ζti} i = 0, · · · , n − 1, where ti = i∆n.

Then we have the next contrast

Ln(θ) =
n−1∑
i=0

θf (ti )(ζti+1 − ζti )−
n−1∑
i=0

θ2f 2(ti )∆n.
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Study of the case f (t, θ) = θf (t), σ(t) = 1

The estimator of θ can be explicitly written as

θ̂n =

∑n−1
i=0 f (ti )(ζti+1 − ζti )∑n−1

i=0 f 2(ti )∆n

. (10)

Therefore

θ̂n = θ + θRn +
1

∆n

∑n−1
i=0 f (ti )∑n−1
i=0 f 2(ti )

(Wti+1 −Wti )

where

Rn :=

∑n−1
i=0 f (ti )

∫ ti+1

ti
(f (t)− f (ti ))dt∑n−1

i=0 f 2(ti )∆n

.

Proposition 2

The estimator θ̂n is asymptotically unbiased.
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Study of the case f (t, θ) = θf (t), σ(t) = 1

Mean square convergence

Theorem 6

Assume that n∆n goes to ∞ when n goes to ∞, then the
estimator θ̂n converges in mean square to θ. Moreover if f (·) is
continuously derivable then we have

lim
n→∞

n∆nE
[
|θ̂n − θ|2

]
=

(
1

P

∫ P

0
f 2(t)dt

)−1

.
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Study of the case f (t, θ) = θf (t), σ(t) = 1

Proof.

E
[
|θ̂n − θ|2

]
=

(
E[θ̂n − θ]

)2
+ var(θ̂n)

= θ2R2
n +

1∑n−1
i=0 f 2(ti )∆n

.

To finish the proof we use the next lemma

Lemma 2

Under the above conditions on f (·) and T we have

lim
n∆n→∞

1

n∆n

n−1∑
i=0

f 2(ti )∆n =
1

P

∫ P

0
f 2(t)dt.
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Study of the case f (t, θ) = θf (t), σ(t) = 1

Asymptotic normality

Theorem 7

Assume that f (·) is continuously derivable and that n∆3
n goes to 0

when n goes to ∞ then
√
n∆n(θ̂n − θ) converges in law to

N
(
0, σ2

)
, where

σ2 =

(
1

P

∫ P

O
f 2(t)dt

)−1

.

Therefore

lim
n→∞

√
n∆n

σ
(θ̂n − θ)

L∼ N (0, 1).
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Simulation
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T = nP = 1000 sample size , P = 1, f (t) = cos(2πt), σ(t) = 1,
δ = 10−2 discretization step, θ = 0.
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Figure: Boxplot of the values of the estimator θ̂n from 100 repetitions
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Figure: Boxplot of the values of the estimator θ̂n from 1000 repetitions
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For θ = 1, δ = 10−3
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●
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Figure: Boxplot of the values of the estimator θ̂n from 1000 repetitions
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θ̄n :=
√
n∆n(θ̂n−θ), lim

n→∞

√
n∆n(θ̂n−θ) ∼ N

(
0,

P∫ P
0 ρ2(s)ds

)
in law .
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Figure: Histogram θ̄n, θ = 0 from 1000 repetitions
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Figure: Histogram of θ̄n, θ = 1 from 1000 repetitions
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