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p-dimensional It6 process without drift

Stochastic process of the form
t
X, = Xo + f f.dW,
0

where W is a p-dimensional Brownian motion.
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p-dimensional It6 process without drift

Stochastic process of the form
t
X, = Xo + f f.dW,
0

where W is a p-dimensional Brownian motion.

Realized Covariance Matrix:

[X]5 = 3 ATX AIX",
i=1

where A,nX IXL‘ —Xﬂ.

@ The RCV is an estimator for the quadratic variation (in 1)
1
(X]1- [ 6t ds.

o [X]n5 [X]if n— oo,
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[(X]p= Y ATXATX
i=1

What happens if the dimension of the process p and the number of
observations n both are large but of the same order of magnitude? We
investigate the behavior of [X]] when p — 0o, n — oo, and

n/p— ce€(0,00).
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[(X]p= Y ATXATX
i=1

What happens if the dimension of the process p and the number of
observations n both are large but of the same order of magnitude? We
investigate the behavior of [X]] when p — 0o, n — oo, and

n/p— ce€(0,00).

@ High dimensional random matrix theory provides the framework for
this investigation.

@ We restrict ourselve to processes with volatility process of the form

m

ft = Z Tll[tl—lxtl)(t) (1)
/=1

where 0 =tg<---<tp =1, and Ty,..., T, are p x p nonrandom
matrices.
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It is straightforward to show that

M3

1 * *
[X] gg nYiY T,

n
P

T
K

where Y] are p x [n(t; - t;_1)] matrices containing i.i.d. A(0,1) variables.
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where Y] are p x [n(t; - t;_1)] matrices containing i.i.d. A(0,1) variables.
How to analyze [X]} for p,n — oo with n/p — c?
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It is straightforward to show that

M3

1 * *
(X1, g - Y Y T,

T
K

where Y] are p x [n(t; - t;_1)] matrices containing i.i.d. A(0,1) variables.
How to analyze [X]} for p,n — oo with n/p — c?
High Dimensional Random Matrix Theory: Analyze the limiting

spectral behavior of [X]7:
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It is straightforward to show that

d

M3

[X]

S|

Y T!

n
P

Il
—-

where Y] are p x [n(t; - t;_1)] matrices containing i.i.d. A(0,1) variables.
How to analyze [X]} for p,n — oo with n/p — c?

High Dimensional Random Matrix Theory: Analyze the limiting
spectral behavior of [X]7:
For a diagonalisable p x p matrix A with real eigenvalues Ay, ..., A\, the
spectral distribution F” is defined by the p.d.f.

FA(x) = l#{i s A < x}
p

In other words, FA(X) is the proportion of eigenvalues of A which are
smaller or equal to x.
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Statement of the Main Result

Let [X]5=1/n¥, T)Y,Y T[. Assume

(a) that there is 19 > 0 such that the largest eigenvalues of T, T} are
bounded by 1y for all I, uniformly in p.

(b) for all k>0 and for all | = (I, ..., lg) € {1,...,m}* the existence of
the mixed limiting spectral moments

1 k
M/ = lim tr(H T, T,j).

p=eo P \iz1
Then, the spectral distributions F (XTp converges weakly to a nonrandom
p.d.f. F, a.s., which will be specified by its moment sequence. The
moments [ of F are of the form

k . m
Be=>c ¥ > Crww [IME TI(t = tig) e
r=1 =1 =1

vit...tvr=k Ve{l,....m}k
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Sketch of the Proof

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R.
Krishnaiah, 1983), where the case 1/n TYY*T* ie. Ty =---= T, was
considered.
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Sketch of the Proof

The theorem extends the results of a seminal paper (Y.Q. Yin and P.R.
Krishnaiah, 1983), where the case 1/n TYY*T* ie. Ty =---= T, was
considered.

@ The authors worked with the assumption that TT* has a limiting
spectral distribution.

@ In our framework, assuming the existence of LSDs for
T1T{, ..., Tm T} is not sufficient.

@ The existence of all mixed limiting spectral moments implies the
existence of LSDs for T1 T, ..., T, Ty,

@ Additionally, it ensures a nice 'joint spectral behavior’ of
LTy, .. ThT).
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Sketch of the Proof

One way to determine limiting spectral distributions:
Moment convergence theorem,

theorem 3.1

Let (F,) be a sequence of p.d.f.s with finite moments of all orders
Brn = | x¥dF,(x). Assume Bk, — Bk for n — oo for k = 0,1,... where

(a) Bk < oo for all k and
(b) XiZolBak(F)] % =

Then, F,, converges Weak/y to the unique probability distribution function
F with moment sequence (Bk)k-=o....-
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Sketch of the Proof

One way to determine limiting spectral distributions:
Moment convergence theorem,

theorem 3.1

Let (F,) be a sequence of p.d.f.s with finite moments of all orders
Brn = | x¥dF,(x). Assume Bk, — Bk for n — oo for k = 0,1,... where

(a) Bk < oo for all k and
(b) XiZolBak(F)] % =

Then, F,, converges Weak/y to the unique probability distribution function
F with moment sequence (Bk)k-=o....-

Let A\; <... <A, be the eigenvalues of A, then

Bi(FA) = Z A= tr(Ak
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Sketch of the Proof

[x]

In order to determine F = lim FIXI5 it is sufficient to find

lim B(FX) = lim ltr([X]")k,

p,n—00 p,n—c0 p p

for k=12 ....
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Sketch of the Proof

[x]

In order to determine F = lim FIXI5 it is sufficient to find

lim B(FX) = lim ltr([X]")k,

p,n—00 p,n—c0 p p

for k=12 ....
It holds that
E[1/p tr([X]p)* - E[L/p tr([X]p) ]])*

is summable.
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Sketch of the Proof

In order to determine F = lim FIXI5 it is sufficient to find

lim B(FX) = lim ltr([X]Z)k,

p,n—o0 p,n—co p

for k=12 ....
It holds that

E[1/p tr([X]p)* - E[1/p tr([X]p) 11"

is summable. Therefore, by virtue of Borel-Cantelli Lemma, we have

lim ltr([ ])k: lim E[ ([X]g)k]7

p,n—00 p p,n—>00

almost surely.
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Sketch of the Proof

In order to determine F = lim FIXI5 it is sufficient to find

lim B (FYB) = tim Le((x])%,

p,n—o0 p,n—co p

for k=12 ....
It holds that
E[1/p tr([X]p)* = E[1/p tr([X]7)*]]*
is summable. Therefore, by virtue of Borel-Cantelli Lemma, we have

lim ltr([ ])k: lim E[ ([X]g)k]7

p,n—>oop pn—)OO
almost surely. Hence
1 P | d -
lim —tr([X]7)= lim — >  Eltr|[]T,Y, YT ||
m}k

p,n—o0 p p,n—o0 p le{1 i1

where I = (I, ..., lx).
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Sketch of the Proof

Expansion leads to

E[Bx(FXJ)]

* *
Jifs /1 i3ia” T/ky’Sk—Q’Sk—l y/ka’3k—1Jk Ylk Jk ik le,i3ki1

—1 —k
ZE Th i1 i Y/17lzj1 yll,
——

il
~N(0,1)

where the summation runs for all i€ {1,..., p}3X,
1= (/1,...,/k) € {1,...,m}k, and j, € [ ( 1, — b, 1)]
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Sketch of the Proof

Expansion leads to

E[Bx(FXJ)]

Jifs /1 i3ia” T/k7i3k—2i3k 1 y/k i3k—1Jk Ylk,1k13k Ik,l3kl1

—1 —k
ZE Th i1 i Y/17lzj1 yll,
——

il
~N(0,1)

where the summation runs for all i € {1,..., p}3,

I= (/17 ey /k) € {17 sey m}kv and ja € [n(tla - tla—l)]
= Combinatorical problem, solution uses graph theory.
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Sketch of the Proof

We assign a colored graph to every summand

* * * *
E [ T/1, i1k Y/1,i2j1 Yll,jl i3 7—Il,i3 i T/k1i3k—2 i3k-1 Y/k i3k—1Jjk Ylk k3K T/k,iskh] :

We choose m colors which correspond to I, € {1,..., m}.
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Sketch of the Proof

We assign a colored graph to every summand

* * * *
E [ T/1, i1k Y/1,I'2j1 Yll,jl i3 7—Il,i3 i T/k1i3k—2 i3k-1 Y/k i3k—1Jjk Ylk k3K T/k,iskh] :

We choose m colors which correspond to I, € {1,...,m}. Here an example
for m=2and t; =1/2:

g1 J2
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Sketch of the Proof

We assign a colored graph to every summand

* * * *
E [ T/1, i1k Y/1,I'2j1 Yll,jl i3 7—Il,i3 i T/k1i3k—2 i3k-1 Y/k i3k—1Jjk Ylk k3K T/k,iskh] :

We choose m colors which correspond to /, € {1,..., m}. Example for
m=2and t; =1/2:
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Sketch of the Proof

We assign a colored graph to every summand

: T/k,

* *
E [ T/1, i1 Y/1J2J'1 Yll,j1i3 Tll, i3k—213k—1 Y/k'3k 1k Ylk

i3i4 k3K T/k7’3k’1:| :

We choose m colors which correspond to /, € {1,..., m}. Example for
m=2and t; =1/2:

i2{1,....,p}

i1, [nf2]}

Advantage: One can divide the graphs into several categories according
to their shape.
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Sketch of the Proof

Example: Summing all summands
* * * *
E [Th, i ip Y/1J2j1 Yll,j1i3 Tll,i3i4"' T/k,iSk—2i3k—1 Wk’ék—ljk Ylk,jki3k le,iskil]

corresponding to a graph with the shape

i#1, .., [n/2]}

gives » tr( Ty Ty )tr( Ty T To T ) if green 21 and red 2 2.
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Example: Summing all summands
* * * *
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Sketch of the Proof

Example: Summing all summands
* * * *
E [Th, i ip Y/1J2j1 Yll,j1i3 Tll,i3i4"' T/k,iSk—2i3k—1 Wk’ék—ljk Ylk,jki3k le,iskil]

corresponding to a graph with the shape

i#1, .., [n/2]}

gives » tr( Ty Ty )tr( Ty T To T ) if green 21 and red 2 2.
@ Expectation factor E[ Y}, i, Yy ;. ]is 1.
o 1/p*tr(Ti T{)tr(Ty Ty To T;) converges to My MZ, 5.
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Sketch of the Proof

Possible directions for future research:

@ Does the theorem hold without the restriction | ;|| < 7o for all /, p?

n

@ Is there a relation between the limiting spectral distribution of [X]}

and the limiting spectral distribution of the true covariance matrix

(tl — to)Tl Tl* + e 4 (tm — tm_l)TmT,:?
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Sketch of the Proof

Possible directions for future research:
@ Does the theorem hold without the restriction | T;| < 7o for all /, p?

@ Is there a relation between the limiting spectral distribution of [X]}

and the limiting spectral distribution of the true covariance matrix

(tl — to)Tl Tl* + e 4 (tm — tm_l)TmT,:?

@ For Ty =... = T, such a relation exists (Mar&enko-Pastur equation),
allowing the construction of consistent spectrum estimators (N. El
Karoui, 2007)
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