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Setting Statement of the Main Result Sketch of the Proof

p-dimensional Itô process without drift

Stochastic process of the form

Xt = X0 + ∫
t

0
fsdWs

where W is a p-dimensional Brownian motion.

Realized Covariance Matrix:

[X ]np =
n

∑
i=1

∆n
i X ∆n

i X
∗,

where ∆n
i X = X i

n
−X i−1

n
.

The RCV is an estimator for the quadratic variation (in 1)

[X ] = ∫
1

0
fs f

∗
s ds.

[X ]np
P→ [X ] if n →∞.
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[X ]np =
n

∑
i=1

∆n
i X ∆n

i X
∗

What happens if the dimension of the process p and the number of
observations n both are large but of the same order of magnitude? We
investigate the behavior of [X ]np when p →∞, n →∞, and
n/p → c ∈ (0,∞).

High dimensional random matrix theory provides the framework for
this investigation.

We restrict ourselve to processes with volatility process of the form

ft =
m

∑
l=1

Tl1[tl−1,tl)(t) (1)

where 0 = t0 < ⋅ ⋅ ⋅ < tm = 1, and T1, ...,Tm are p × p nonrandom
matrices.
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It is straightforward to show that

[X ]np
d= 1

n

m

∑
l=1

TlYlY
∗
l T

∗
l

where Yl are p × [n(tl − tl−1)] matrices containing i.i.d. N(0,1) variables.

How to analyze [X ]np for p,n →∞ with n/p → c?
High Dimensional Random Matrix Theory: Analyze the limiting
spectral behavior of [X ]np ∶

For a diagonalisable p × p matrix A with real eigenvalues λ1, ..., λp the
spectral distribution FA is defined by the p.d.f.

FA(x) = 1

p
#{i ∶ λi ≤ x}.

In other words, FA(x) is the proportion of eigenvalues of A which are
smaller or equal to x .
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Section 2

Statement of the Main Result
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theorem 2.1

Let [X ]np = 1/n∑l TlYlY
∗
l T

∗
l . Assume

(a) that there is τ0 > 0 such that the largest eigenvalues of TlT
∗
l are

bounded by τ0 for all l , uniformly in p.

(b) for all k > 0 and for all l = (l1, ..., lk) ∈ {1, ...,m}k the existence of
the mixed limiting spectral moments

Mk
l = lim

p→∞

1

p
tr(

k

∏
i=1

TliT
∗
li ) .

Then, the spectral distributions F [X ]np converges weakly to a nonrandom
p.d.f. F , a.s., which will be specified by its moment sequence. The
moments βk of F are of the form

βk =
k

∑
r=1

c r−1 ∑
ν1+...+νr=k

∑
l′∈{1,...,m}k

cr ,ν,l′
r

∏
a=1

Mνa
l(a)

m

∏
l=1

(tl − tl−1)sl,ν,l′ .

8/19 Quadratic Variation of High Dimensional Itô Processes
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Section 3

Sketch of the Proof
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The theorem extends the results of a seminal paper (Y.Q. Yin and P.R.
Krishnaiah, 1983), where the case 1/nTYY ∗T ∗, i.e. T1 = ⋅ ⋅ ⋅ = Tm was
considered.

The authors worked with the assumption that TT ∗ has a limiting
spectral distribution.

In our framework, assuming the existence of LSDs for
T1T

∗
1 , ...,TmT

∗
m is not sufficient.

The existence of all mixed limiting spectral moments implies the
existence of LSDs for T1T

∗
1 , ...,TmT

∗
m.

Additionally, it ensures a nice ’joint spectral behavior’ of
T1T

∗
1 , ...,TmT

∗
m.
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One way to determine limiting spectral distributions:

Moment convergence theorem,

theorem 3.1

Let (Fn) be a sequence of p.d.f.s with finite moments of all orders
βk,n = ∫ xkdFn(x). Assume βk,n → βk for n →∞ for k = 0,1, ... where

(a) βk < ∞ for all k and

(b) ∑∞k=0[β2k(F )]− 1
2k = ∞.

Then, Fn converges weakly to the unique probability distribution function
F with moment sequence (βk)k=0,....

Let λ1 ≤ ... ≤ λp be the eigenvalues of A, then

βk(FA) = 1

p

p

∑
i=1
λki =

1

p
tr(Ak).
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In order to determine F = limF [X ]np it is sufficient to find

lim
p,n→∞

βk(F [X ]np) = lim
p,n→∞

1

p
tr([X ]np)k ,

for k = 1,2, ... .

It holds that
E[1/p tr([X ]np)k −E[1/p tr([X ]np)k]]4

is summable. Therefore, by virtue of Borel-Cantelli Lemma, we have

lim
p,n→∞

1

p
tr([X ]np)k = lim

p,n→∞
E [1

p
tr([X ]np)k] ,

almost surely. Hence

lim
p,n→∞

1

p
tr([X ]np)k = lim

p,n→∞

1

p
∑

l∈{1,...,m}k
E [tr(

k

∏
i=1

TliYliY
∗
li T

∗
li )] ,

where l = (l1, ..., lk).
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Expansion leads to

E[βk(F [X ]np)]

= p−1n−k∑
i, j,l

E

⎡⎢⎢⎢⎢⎢⎢⎣

Tl1, i1i2 Yl1,i2j1
²
∼N(0,1)

Y ∗
l1, j1i3T

∗
l1,i3i4⋯Tlk ,i3k−2i3k−1Ylk ,i3k−1jkY

∗
lk ,jk i3k

T ∗
lk ,i3k i1

⎤⎥⎥⎥⎥⎥⎥⎦

where the summation runs for all i ∈ {1, ...,p}3k ,
l = (l1, ..., lk) ∈ {1, ...,m}k , and ja ∈ [n(tla − tla−1)]

⇒ Combinatorical problem, solution uses graph theory.
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We assign a colored graph to every summand

E [Tl1, i1i2Yl1,i2j1Y
∗
l1, j1i3T

∗
l1,i3i4⋯Tlk ,i3k−2i3k−1Ylk i3k−1jkY

∗
lk ,jk i3k

T ∗
lk ,i3k i1

] .

We choose m colors which correspond to la ∈ {1, ...,m}.

Here an example
for m = 2 and t1 = 1/2 ∶

i=̂{1, ...,p}

j=̂{1, ..., [n/2]}

i1

i2

j1

i3

i4

i5 = i6

j2

i7
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∗
lk ,jk i3k

T ∗
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] .

We choose m colors which correspond to la ∈ {1, ...,m}. Here an example
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Advantage: One can divide the graphs into several categories according
to their shape.
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Example: Summing all summands

E [Tl1, i1i2Yl1,i2j1Y
∗
l1, j1i3T

∗
l1,i3i4⋯Tlk ,i3k−2i3k−1Ylk i3k−1jkY

∗
lk ,jk i3k

T ∗
lk ,i3k i1

]

corresponding to a graph with the shape

i=̂{1, ...,p}

j=̂{1, ..., [n/2]}

i1 = i10

i2 = i9

j1 = j3

i3 = i8

i4

i5 = i6

j2

i7

gives ≈ tr(T1T
∗
1 )tr(T1T

∗
1 T2T

∗
2 ) if green ≙ 1 and red ≙ 2.

Expectation factor E[Yl1,i2j1⋯Y ∗
lk ,jk i3k

] is 1.

1/p2tr(T1T
∗
1 )tr(T1T

∗
1 T2T

∗
2 ) converges to M1

(1)M
2
(1,2).
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Possible directions for future research:

Does the theorem hold without the restriction ∥Tl∥ ≤ τ0 for all l ,p?

Is there a relation between the limiting spectral distribution of [X ]np
and the limiting spectral distribution of the true covariance matrix

(t1 − t0)T1T
∗
1 +⋯ + (tm − tm−1)TmT

∗
m?

For T1 = ... = Tm such a relation exists (Marčenko-Pastur equation),
allowing the construction of consistent spectrum estimators (N. El
Karoui, 2007)
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