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I: outline

. strongly degenerate stochastic systems — main result

for m < d, consider d-dim diffusion driven by m-dim Brownian motion
dX: = b(t,Xe)dt + o(Xe)dW: , t>0
with coefficients
b'(t, x) ol (x) ... ob™(x)
b(t,x) = ; , o(x) = :
b(t, x) o (x) ... o9M(x)

for t > 0, x € E: state space (E, &) Borel subset of R? (with some properties)

coefficient smooth, but neither bounded nor globally Lipschitz

assume: unique strong solution exists, has infinite life time in E

aim: ask for Harris properties of (X¢)t>o0 (non homogeneous in time)

when drift is time-periodic and when some Lyapunov function is at hand:
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assumption A

write Ps(x,dy) (0 <s <t < oo, x,y € E) for the semigroup of (X)¢>o0

assumption A: i) the drift is T-periodic in the time argument
b(t,x) = b(ir(t),x) , ir(t):=tmodulo T
ii) we have a Lyapunov function:

V:E — [1,00) &-measurable, and for some compact K:
Po,7V boundedon K, P 7V <V —¢ on E\K

T-periodicity of the drift implies that the semigroup is T-periodic
Ps,t(X7dy) - s+kT,t+kT(Xa d)/) ) k € NO , X, ¥ S E

thus the grid chain (Xk7) is a time homogeneous Markov chain

kENg

Lyapunov condition grants that grid chain will visit K infinitely often
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assumption B

alternative under assumption A: define torus T := [0, T], define E := T x E,

add time as 0-component to the process X:
Xt = (IT(t) N Xt) 5 t 2 s , Y() = (S,X)

X is time homogeneous, (1-+d)-dim, state space (E, &)

assumption B: i) for some U C R? open and containing E, coefficients
(t.x) = b(t,x), x 2 0™(x), 1<i<d, 1<j<m

of SDE are real analytic functions on T x U

ii) there exists some x* € int(E) with the following two properties:

@ x™ is of full weak Hoermander dimension (I explain on the blackboard)

@ x™ is attainable in a sense of deterministic control (cf. next slide)
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def 1

'attainable in a sense of deterministic control’:

in view of control arguments, put the SDE in Stratonovich form
dX: = b(t, X:)dt + o(X:) o dW,

with Stratonovich drift: b(t, x) has components

- ) m d ) il
b'(t,x) = b'(t,x) — %ZZOJ’Z(X) 85)(]. (x) , 1<i<d

definition 1: call x* € int(E) attainable in a sense of deterministic control

if for every starting point x € E we can find some function h : [0, 00) — R™
depending on x and x*, all components h¥(:) in [2., 1< < m,

which drives a deterministic control system
¢ =" solution to  dyr = b(t, ¢:)dt + o(p¢) h(t)dt

from x = ¢ towards x* = lim ¢
t—o0

(control theorem: see Millet and Sanz-Sole 1994)
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thm 1 + cor 1

theorem 1: assume A + B, then

i) (d-dim:) the grid chain (X«7)ken, is positive Harris recurrent
with invariant probability 1 on (E,€)

i) (1+d-dim:) the process X := (ir(t), X )t20 is positive Harris recurrent
with invariant probability 77 on (E, &)

and both invariant measures are related by

1 [T
o= 7/0 ds (es ® pPo,s)

corollary 1: for functions G : E — R in L'(u) and F : E — R in L'(f)

%ZG(XkT) — /u(dy) G(y)
k=1

%/ F(ir(s), Xs) A(ds) — %/0 /\(ds)/E(uPo,s)(dy) F(s.y)

0

Q«-almost surely as n, t — oo, for every choice of a starting point x € E, for
any T-periodic ms A on (R, B(R)), i.e. A([0, T]) < co and A(B) = AN(B + kT)
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ll: example, a stochastic Hodgkin-Huxley system

V membran potential in a neuron, n, m, h gating variables, £ dendritic input

autonomous diffusion (&:):>0 modelling dendritic input, analytic coefficients,
carrying T-periodic deterministic signal t — S(t) encoded in its semigroup

describe temporal dynamics of the neuron by a 5d stochastic system (§HH):
t — (Vt, Neg, My, ht,gt) =: Xt

5d SDE driven by 1d BM with state space E = Rx [0, 1]*xR defined by

dVe = d& — F(Ve ne, me, he)dt

dn; = Jan(Ve)(1 — n:) — Ba(Ve)ne] dt
dm: = [am(Ve)(1 — me) — Bm(Ve)m,] dt
dhy = Jan(Ve)(1 — he) — Ba(Ve)he] dt
dé&: = (S(t) — &) dt + dW,

specific power series F(V/, n, m, h), strictly positive analytic fcts «j(V), 8;(V),
J = n,m, h, see Izhikevich (2007), or Hodgkin and Huxley (1951)
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figure 1

trajectories may look like this (except that simulation here uses CIR type input)

stochastic HH with periodic signal: voltage v(t) function of t; black dotted line indicating periodicity of the semigroup
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the following parameters werde used for signal and CIR : period = 28, ampltude = 5 , sigma = 15, tau = 0.25 , K = 30
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figure 2

or like this (depending on signal and choice of parameters for process (§:):>0)

stochastic HH with periodic signal: voltage v(t) function of t ; black dotted line indicating periodicity of the semigroup
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stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion)
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the following parameters werde used for signal and CIR : period = 28 , ampitude = 9 , sigma = 0.5, tau = 0.75 , K = 30
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chamaeleon property

classical deterministic HH systems with periodic deterministic signal t — g(t):

th = S(t)dt — F(Vt,nt,mt,ht) dt
dn; = Jan(Ve)(1 = n:) — Ba(Ve)ne] dt
dm: = [am(Ve)(1 — me) — Bm(Ve)m,] dt
dhy = Jan(Ve)(1 — he) — Ba(Vi)he] dt

may show — depending on 5() — qualitatively quite different behaviour
(spiking or non-spiking; single spikes or spike bursts, periodic or chaotic
solutions; if periodic, periodicity of output may equal ¢ > 1 periods of input;
see interesting tableau based on numerical solutions in Endler 2012)
proposition 1: 'chamaeleon property’ of (§HH):

the stochastic HH system (X;)o<:<T carrying signal t — S(t) imitates

with positive probability over arbitrarily long (but fixed) time intervals

any deterministic HH with smooth and T-periodic signal S(-) # S(-)

(a consequence of the control theorem)
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counting spikes

the stochastic Hodgkin-Huxley neuron (§HH)
Xe = (Ve,ne,me, he, &), t>0

is a strongly degenerate diffusion with state space E, and we can show
@ all assumptions A + B made above do hold, thus
@ grid chain (X«7)« is positive Harris, invariant probability u on (E, &)
@ process X = (it(t), X¢): positive Harris, invariant probability 7z on (E, &)

Harris recurrence allows to analyze spiking patterns in the neuron via SLLN's:

F = {x=(v,n,m h,{): m> h} (during a spike)
Q@ = {x=(v,n,mh,): m< h} (‘quiet’, or: between spikes)

events in £, count spikes as follows: g9 = 0, then for n=1,2,...

Ta = inf{t >on_1: X¢ € F} (n-th spike beginning)
on = inf{t>7: Xi € Q} (n-th spike ending)
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SLLN’s for HH

using decompositions into iid life periods and SLLN's (here we use Nummelin
splitting in a sequence of "accompanying’ Harris processes with artificial atoms)

we can determine asymptotically a "typical interspike time (ISI)’ for the neuron

in the sense of a distribution function depending on the signal t — 5(t) and
the parameters of the SDE governing stochastic input d&:

proposition 2: (Glivenko-Cantelli) define empirical distribution functions

~ 1<
Fo(t) = > lpglnn—7) , t>0
j=1

then there is a honest distribution function F such that

~

Fi(t)—F(t)] = 0

lim sup
n— oo t>0

we may view F as the distribution function of 'the typical interspike time’

(although successive interspike times have no reason to be independent,
there may be spike bursts, etc.)



111: proof of thm 1, sketch

lIl: proof of theorem 1, sketch of main arguments

back to setting of section |: d-dim SDE driven by m-dim BM, m < d,
dXt = b(t,Xt) dt + O'(Xt) th ) tZ 0

under assumptions A + B: drift T-periodic in time, existence of a Lyapunov
function, analytic coefficients, existence of a point x™ which is of full weak
Hoermander dimension and attainable in a sense of deterministic control

proof of theorem 1 consists of 3 main steps valid under assumptions A + B:
@ control paths do transport weak Hoermander dimension
@ all points in the state space are of full weak Hoermander dimension
@ transition probabilities Py 7(+,) locally admit continuous densities
then continue:

@ rewrite this into a Nummelin minorization condition for the grid chain,
with 'small set’ some neighbourhood of x*

@ do Nummelin splitting in the grid chain (Xir)«
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