Harris recurrence for strongly degenerate stochastic systems, with application to stochastic Hodgkin-Huxley models

Reinhard Höpfner, Universität Mainz and Eva Löcherbach, Université Cergy-Pontoise and Michele Thieullen, Université Paris VI

DYNSTOCH Warwick 10.09.2014

talk based on

Michele Thieullen, Eva Löcherbach, Reinhard Höpfner

- Transition densities for strongly degenerate time inhomogeneous random models. arXiv:1310.7373
- Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input. arXiv:1311.3458
- A general scheme for ergodicity in strongly degenerate stochastic systems. Ongoing work.

I: strongly degenerate stochastic systems - main result

for m < d, consider d-dim diffusion driven by m-dim Brownian motion

$$dX_t = b(t, X_t) dt + \sigma(X_t) dW_t$$
, $t \ge 0$

with coefficients

$$b(t,x) = \begin{pmatrix} b^{1}(t,x) \\ \vdots \\ b^{d}(t,x) \end{pmatrix} , \quad \sigma(x) = \begin{pmatrix} \sigma^{1,1}(x) & \dots & \sigma^{1,m}(x) \\ \vdots & & \vdots \\ \sigma^{d,1}(x) & \dots & \sigma^{d,m}(x) \end{pmatrix}$$

for $t \geq 0$, $x \in E$: state space (E, \mathcal{E}) Borel subset of \mathbb{R}^d (with some properties)

coefficient smooth, but neither bounded nor globally Lipschitz $\underline{\text{assume:}} \text{ unique strong solution exists, has infinite life time in } E$

<u>aim</u>: ask for Harris properties of $(X_t)_{t\geq 0}$ (non homogeneous in time) when drift is time-periodic and when some Lyapunov function is at hand:

write $P_{s,t}(x, dy)$ $(0 \le s < t < \infty, x, y \in E)$ for the semigroup of $(X_t)_{t \ge 0}$

assumption A: i) the drift is *T*-periodic in the time argument

$$b(t,x) = b(i_T(t),x)$$
 , $i_T(t) := t \text{ modulo } T$

ii) we have a Lyapunov function:

assumption A

$$\left\{ \begin{array}{l} V: E \to [1,\infty) \quad \mathcal{E}\text{-measurable, and for some compact } \mathcal{K}\colon \\ P_{0,\mathcal{T}}V \ \ \text{bounded on } \mathcal{K} \ , \ P_{0,\mathcal{T}}V \leq V - \varepsilon \ \ \text{on } E \setminus \mathcal{K} \end{array} \right.$$

T-periodicity of the drift implies that the semigroup is T-periodic

$$P_{s,t}(x,dy) = P_{s+kT,t+kT}(x,dy)$$
, $k \in \mathbb{N}_0, x, y \in E$

thus the grid chain $(X_{kT})_{k \in \mathbb{N}_0}$ is a time homogeneous Markov chain Lyapunov condition grants that grid chain will visit K infinitely often

alternative under assumption A: define torus $\mathbb{T}:=[0,T]$, define $\overline{E}:=\mathbb{T}\times E$, add time as 0-component to the process X:

$$\overline{X}_t := (i_T(t), X_t), t \geq s, \overline{X}_0 = (s, x)$$

 \overline{X} is time homogeneous, (1+d)-dim, state space $(\overline{E},\overline{\mathcal{E}})$

assumption B: i) for some $U \subset \mathbb{R}^d$ open and containing E, coefficients

$$(t,x) \rightarrow b^{i}(t,x), x \rightarrow \sigma^{i,j}(x), 1 \leq i \leq d, 1 \leq j \leq m$$

of SDE are real analytic functions on $\mathbb{T} \times U$

assumption R

- ii) there exists some $x^* \in int(E)$ with the following two properties:
 - \bullet x^* is of <u>full weak Hoermander dimension</u> (I explain on the blackboard)
 - x^* is attainable in a sense of deterministic control (cf. next slide)

'attainable in a sense of deterministic control':

def 1

in view of control arguments, put the SDE in Stratonovich form

$$dX_t = \widetilde{b}(t, X_t) dt + \sigma(X_t) \circ dW_t$$

with Stratonovich drift: $\widetilde{b}(t,x)$ has components

$$\widetilde{b}^{i}(t,x) = b^{i}(t,x) - \frac{1}{2} \sum_{\ell=1}^{m} \sum_{i=1}^{d} \sigma^{j,\ell}(x) \frac{\partial \sigma^{i,\ell}}{\partial x^{j}}(x) , \quad 1 \leq i \leq d$$

<u>definition 1:</u> call $x^* \in \operatorname{int}(E)$ attainable in a sense of deterministic control if for every starting point $x \in E$ we can find some function $\dot{\mathbf{h}} : [0, \infty) \to \mathbb{R}^m$ depending on x and x^* , all components $\dot{\mathbf{h}}^\ell(\cdot)$ in L^2_{loc} , $1 \le \ell \le m$, which drives a deterministic control system

$$\varphi = \varphi^{h,x,x^*}$$
 solution to $d\varphi_t = \widetilde{b}(t,\varphi_t)dt + \sigma(\varphi_t)\dot{h}(t)dt$

from $x = \varphi_0$ towards $x^* = \lim_{t \to \infty} \varphi_t$

(control theorem: see Millet and Sanz-Sole 1994)

- i) (d-dim:) the grid chain $(X_{kT})_{k\in\mathbb{N}_0}$ is positive Harris recurrent with invariant probability μ on (E,\mathcal{E})
- ii) (1+d-dim:) the process $\overline{X}:=\left(\,i_{T}(t)\,,\,X_{t}\,
 ight)_{t\geq0}$ is positive Harris recurrent with invariant probability $\overline{\mu}$ on $(\overline{E},\overline{\mathcal{E}})$

and both invariant measures are related by

$$\overline{\mu} = \frac{1}{T} \int_0^T ds \left(\epsilon_s \otimes \mu P_{0,s} \right)$$

<u>corollary 1:</u> for functions $G: E \to \mathbb{R}$ in $L^1(\mu)$ and $F: \overline{E} \to \mathbb{R}$ in $L^1(\overline{\mu})$

$$\frac{1}{n} \sum_{k=1}^{n} G(X_{kT}) \longrightarrow \int \mu(dy) G(y)$$

$$\frac{1}{t} \int_{0}^{t} F(i_{T}(s), X_{s}) \Lambda(ds) \longrightarrow \frac{1}{T} \int_{0}^{T} \Lambda(ds) \int_{F} (\mu P_{0,s})(dy) F(s, y)$$

 Q_x -almost surely as $n, t \to \infty$, for every choice of a starting point $x \in E$, for any T-periodic ms Λ on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, i.e. $\Lambda([0, T]) < \infty$ and $\Lambda(B) = \Lambda(B + kT)$

II: example, a stochastic Hodgkin-Huxley system

V membran potential in a neuron, n, m, h gating variables, ξ dendritic input autonomous diffusion $(\xi_t)_{t\geq 0}$ modelling dendritic input, analytic coefficients, carrying $\underline{T$ -periodic deterministic signal $t\to S(t)$ encoded in its semigroup describe temporal dynamics of the neuron by a 5d stochastic system (ξHH) :

$$t \longrightarrow (V_t, n_t, m_t, h_t, \xi_t) =: X_t$$

<u>5d SDE driven by 1d BM</u> with state space $E = \mathbb{R} \times [0,1]^3 \times \mathbb{R}$ defined by

$$dV_t = \frac{d\xi_t}{-F(V_t, n_t, m_t, h_t)} dt$$

$$dn_t = [\alpha_n(V_t)(1 - n_t) - \beta_n(V_t)n_t] dt$$

$$dm_t = [\alpha_m(V_t)(1 - m_t) - \beta_m(V_t)m_t] dt$$

$$dh_t = [\alpha_h(V_t)(1 - h_t) - \beta_h(V_t)h_t] dt$$

$$d\xi_t = (S(t) - \xi_t) dt + dW_t$$

specific power series F(V, n, m, h), strictly positive analytic fcts $\alpha_j(V)$, $\beta_j(V)$, j = n, m, h, see Izhikevich (2007), or Hodgkin and Huxley (1951)

figure 1

trajectories may look like this (except that simulation here uses CIR type input)

stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t

stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion)

the following parameters werde used for signal and CIR: period = 28, amplitude = 5, sigma = 1.5, tau = 0.25, K = 30

or like this (depending on signal and choice of parameters for process $(\xi_t)_{t\geq 0}$)

figure 2

stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t

stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion)

the following parameters werde used for signal and CIR: period = 28, amplitude = 9, sigma = 0.5, tau = 0.75, K = 30

chamaeleon property

classical deterministic HH systems with periodic deterministic signal $t \to \widetilde{S}(t)$:

$$dV_t = \widetilde{S}(t)dt - F(V_t, n_t, m_t, h_t) dt$$

$$dn_t = [\alpha_n(V_t)(1 - n_t) - \beta_n(V_t)n_t] dt$$

$$dm_t = [\alpha_m(V_t)(1 - m_t) - \beta_m(V_t)m_t] dt$$

$$dh_t = [\alpha_h(V_t)(1 - h_t) - \beta_h(V_t)h_t] dt$$

may show – depending on $S(\cdot)$ – qualitatively quite different behaviour (spiking or non-spiking; single spikes or spike bursts, periodic or chaotic solutions; if periodic, periodicity of output may equal $\ell \geq 1$ periods of input; see interesting tableau based on numerical solutions in Endler 2012)

proposition 1: 'chamaeleon property' of (ξHH) :

the stochastic HH system $(X_t)_{0 \le t \le T}$ carrying signal $t \to S(t)$ imitates with positive probability over arbitrarily long (but fixed) time intervals any deterministic HH with smooth and T-periodic signal $\widetilde{S}(\cdot) \ne S(\cdot)$

(a consequence of the control theorem)

$$X_t = (V_t, n_t, m_t, h_t, \xi_t) \quad , \quad t \geq 0$$

is a strongly degenerate diffusion with state space E, and we can show

- all assumptions A + B made above do hold, thus
- grid chain $(X_{kT})_k$ is positive Harris, invariant probability μ on (E, \mathcal{E})
- process $\overline{X} = (i_T(t), X_t)_t$ positive Harris, invariant probability $\overline{\mu}$ on $(\overline{E}, \overline{\mathcal{E}})$

Harris recurrence allows to analyze spiking patterns in the neuron via SLLN's:

$$F := \{x = (v, n, m, h, \zeta) : m > h\}$$
 (during a spike)

$$Q := \{x = (v, n, m, h, \zeta) : m < h\}$$
 ('quiet', or: between spikes)

events in \mathcal{E} , count spikes as follows: $\sigma_0 \equiv 0$, then for n = 1, 2, ...

$$\tau_n := \inf\{t > \sigma_{n-1} : X_t \in F\}$$
 (*n*-th spike beginning)

$$\sigma_n := \inf\{t > \tau_n : X_t \in Q\}$$
 (*n*-th spike ending)

using decompositions into iid life periods and SLLN's (here we use Nummelin splitting in a sequence of 'accompanying' Harris processes with artificial atoms) we can determine asymptotically a 'typical interspike time (ISI)' for the neuron in the sense of a distribution function depending on the signal $t \to S(t)$ and the parameters of the SDE governing stochastic input $d\xi_t$

proposition 2: (Glivenko-Cantelli) define empirical distribution functions

$$\widehat{F}_n(t) = \frac{1}{n} \sum_{j=1}^n 1_{[0,t]} (\tau_{j+1} - \tau_j) \quad , \quad t \geq 0$$

then there is a honest distribution function F such that

SLLN's for HH

$$\lim_{n\to\infty} \sup_{t>0} \left| \widehat{F}_n(t) - F(t) \right| = 0$$

we may view F as the distribution function of 'the typical interspike time'

(although successive interspike times have no reason to be independent, there may be spike bursts, etc.)

III: proof of theorem 1, sketch of main arguments

back to setting of section I: d-dim SDE driven by m-dim BM, m < d,

$$dX_t = b(t, X_t) dt + \sigma(X_t) dW_t , t \ge 0$$

under assumptions A + B: drift T-periodic in time, existence of a Lyapunov function, analytic coefficients, existence of a point x^* which is of full weak Hoermander dimension and attainable in a sense of deterministic control

proof of theorem 1 consists of 3 main steps valid under assumptions A + B:

- control paths do transport weak Hoermander dimension
- all points in the state space are of full weak Hoermander dimension
- transition probabilities $P_{0,T}(\cdot,\cdot)$ locally admit continuous densities then continue:
 - rewrite this into a Nummelin minorization condition for the grid chain, with 'small set' some neighbourhood of x*
 - do Nummelin splitting in the grid chain $(X_{kT})_k$

Arnold, Kliemann (1987): ... degenerate diffusions. Stochastics 21 DeMarco (2011): Smoothness and asymptotic estimates of densities for SDE with locally smooth coefficients ..., Ann. Appl. Probab. 21 Endler (2012): Periodicities in the Hodgkin-Huxley model ..., Master th. Mainz Hodgkin, Huxley (1952): A quantitative description of ion currents and its application to ... in nerve membranes. J. Physiol. 117 Izhikevich (2007): Dynamical systems in neuroscience ... MIT Press Kusuoka, Strook (1985): Applications of the Malliavin calculus, Part II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 Millet, Sanz-Sole (1994): A simple proof of the support theorem for diffusion processes. Sem. Proba. Strasb. 28 Nualart (1995): The Malliavin calculus and related topics. Springer Nummelin (1978): A splitting technique for Harris chains. ZW 43 Nummelin (1985): General irreducible Markov chains ... Cambridge 1985 Meyn, Tweedie (1992/1993): Stability of Markovian processes I+II+III. AAP Sussmann (1966): Orbits of families of vector fields ... TAMS 180 Strook, Varadhan (1972): On the support of diffusion processes ... Proc. 6th Berkeley Symp. Math. Statist. Prob. III. Univ. California Press

