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Wright-Fisher SDE

aX: = ﬂg(Xt)dt T Xt(1 = Xt)th, Xo=x, t>0.

The infinitesimal drift, up(x), encapsulates directional forces such as
natural selection, migration, mutation, . ..
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Population genetic Motivation |: Demographic inference

Given a sample of DNA sequences obtained in the present-day,
what can we infer about the demographic history of the population?

Example (Gutenkunst et al., 2009)
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Population genetic Motivation II: Time-series analysis of selection

Given a sample of genetic data obtained over several generations,
what can we infer about the strength of natural selection?

Example (Biston betulaeria; Mathieson & McVean, 2013)
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Inference from diffusion processes

@ Like many interesting diffusions, the transition function of the
Wright-Fisher diffusion is unknown.
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Wright-Fisher diffusion is unknown.
@ Inference typically proceeds by
@ Model-discretization such as an Euler approximation:

Xevar | (Xi = 2) ~ N(po(2)dt, 0*(2)at),

@ ...followed by (sequential) Monte Carlo simulation (or numerical
solution of Kolmogorov PDEs, or spectral expansions, .. .)
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Inference from diffusion processes

@ Like many interesting diffusions, the transition function of the
Wright-Fisher diffusion is unknown.
@ Inference typically proceeds by
@ Model-discretization such as an Euler approximation:

Xevar | (Xi = 2) ~ N(po(2)dt, 0*(2)at),

@ ...followed by (sequential) Monte Carlo simulation (or numerical
solution of Kolmogorov PDEs, or spectral expansions, .. .)

@ But—discretization introduces a bias we would like to remove.

Three sentence summary

@ There exist so-called exact algorithms for simulating diffusions
without discretization error, even if the transition density is
unknown.

@ They can perform poorly when there are entrance boundaries.
@ | will outline how to fix these problems. s/bs




Exact algorithm

Outline

9 Overview of the exact algorithm
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Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional
diffusion X = (X; : t > 0) on R satisfying

aX: = Mg(Xt)dt—F O’(Xt)th, Xo=x, 0<t<T.
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Exact algorithm (EA)—one-dimensional bridge version

Goal: return exact bridge samples from the one-dimensional
diffusion X = (X; : t > 0) on R satisfying

aX: = Mg(Xt)dt—F O’(Xt)th, Xo=x, 0<t<T.

@ Reduce the problem to unit diffusion coefficient via the Lamperti
transform X; — Y;:
X[ 1
Y: = / —du,
a(u)
S0 now we work with

(dYi=ap(Yo)dt+dW,,  Yo=y, 0<t<T.




Exact algorithm
0@0000000

(dYi=ap(Y)dt+dB,  Yo=y, 0<t<T.|

Exact algorithm (EA)

@ Now we can consider a rejection algorithm using Brownian
bridge paths as candidates.

If Qy is the target law (of Y) and W), is the law of a Brownian
motion then we need

dQ,
aw,

(Y)

to provide the rejection probability
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Exact algorithm (EA)

@ Now we can consider a rejection algorithm using Brownian
bridge paths as candidates.

If Qy is the target law (of Y) and W), is the law of a Brownian
motion then we need

dQy .\ T i g s
CNWy(Y)_exp{/o ag(Yt)dYt—z/o oze(Yt)dl‘}

to provide the rejection probability, by the Girsanov theorem.
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(dYi=ap(Y)dt+dB,  Yo=y, 0<t<T.|

Exact algorithm (EA)

@ Now we can consider a rejection algorithm using Brownian
bridge paths as candidates.

If Qy is the target law (of Y) and W), is the law of a Brownian
motion then we need

dQy .\ T i g s
mVVy(Y)—eXp{/O ag(Yt)dYt—z/o Oée(Yt)dt}

to provide the rejection probability, by the Girsanov theorem.

@ Such a rejection algorithm is impossible: it requires simulation
of complete (infinite-dimensional) Brownian sample paths!
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(dYi=ap(Y)dt+dB;,  Yo=y, 0<t<T.|

Exact algorithm (EA)

© Key observation: The Radon-Nikodym derivative can be put in
the form

dQ, U
m(y) x eXp{—/O ¢(Ys)d3} <1,

where ¢(-) := 1[a2(-) + aj())] + C.
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(dYi=ap(Y)dt+dB;,  Yo=y, 0<t<T.|

Exact algorithm (EA)

© Key observation: The Radon-Nikodym derivative can be put in
the form

dQ, U
m(y) x eXp{—/O ¢(Ys)d3} <1,

where ¢(-) := 1[a2(-) + aj())] + C.

Assume we can arrange for ¢ > 0. Then the right-hand side is
the probability that a Poisson point process of unit rate on
[0, T] x [0, 00) has no points under the graph of { — ¢(Ys).
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g%‘%yy(Y ocexp{ fo sts} 1.

Exact algorithm (EA)

© A proposed Brownian
path should be
rejected if a simulated
Poisson point process
has any points under
its graph.

o(Y)
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Exact algorithm (EA)

© A proposed Brownian
path should be
rejected if a simulated
Poisson point process
has any points under
its graph.
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Retrospective sampling

Exact algorithm (EA) for simulating a bridge from Yy to Y7
@ Simulate a Brownian bridge ( Y;)o<i<7 from Yy to Yr.
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@ Simulate a Poisson point process of unit rate on [0, T] x [0, co).
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4

@ We still need an infinite-dimensional Brownian path.
© The Poisson point process has unbounded intensity.

A\
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@ Exploit retrospective sampling; switch the order of simulation!
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Retrospective sampling

Exact algorithm (EA) for simulating a bridge from Yy to Y7
@ Simulate a Poisson point process of unit rate on [0, T] x [0, o).
© Simulate the Brownian bridge at the times of the Poisson points.

© Accept if all points are in the epigraph of t — ¢(Y;), otherwise
returnto 1.

@ We still need an infinite-dimensional Brownian path.
© The Poisson point process has unbounded intensity.
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Retrospective sampling

Exact algorithm (EA) for simulating a bridge from Yy to Y7
@ Simulate a Poisson point process of unit rate on [0, T] x [0, o).
© Simulate the Brownian bridge at the times of the Poisson points.

© Accept if all points are in the epigraph of t — ¢(Y;), otherwise
returnto 1.

@ We still need an infinite-dimensional Brownian path.
© The Poisson point process has unbounded intensity.

@ Exploit retrospective sampling; switch the order of simulation!

© Assume ¢ is bounded, ¢ < K (for now), and use Poisson
thinning (“EA1”).
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Exact algorithm (EA1); Beskos & Roberts (2005)
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Exact algorithm (EA1); Beskos & Roberts (2005)

@ Simulate a Poisson point process on [0, T] x [0, K].
@ Simulate the Brownian bridge at the times of the Poisson points.

K oo
d ++#+
0O T
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Exact algorithm (EA1); Beskos & Roberts (2005)

@ Simulate a Poisson point process on [0, T] x [0, K].
@ Simulate the Brownian bridge at the times of the Poisson points.
© If any of the former are beneath any of the latter, return to 1.

K oo
d ++#+
0O T
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Exact algorithm (EA)

@ Output of the algorithm is a set of skeleton points of the bridge.

@ Any further points can be filled in by further draws from the
Brownian bridge—no further reference to the target law, Qy, is
necessary!
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Exact algorithm (EA)

@ Output of the algorithm is a set of skeleton points of the bridge.

@ Any further points can be filled in by further draws from the
Brownian bridge—no further reference to the target law, Qy, is
necessary!

5(0) = Jla3() +aj()] + C.

@ This function ¢ is important.

@ The assumption ¢ < K is restrictive, but it can in fact be relaxed

(“EA2”, Beskos et al., 2006).
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Exact algorithm (EA)

@ Output of the algorithm is a set of skeleton points of the bridge.

@ Any further points can be filled in by further draws from the
Brownian bridge—no further reference to the target law, Qy, is
necessary!

5(0) = Jla3() +aj()] + C.

@ This function ¢ is important.

@ The assumption ¢ < K is restrictive, but it can in fact be relaxed
(“EA2”, Beskos et al., 2006).

@ There have been many further refinements to this algorithm
(multidimensions, jumps, killing, reflection, . ..):
Beskos et al. (2006, 2008, 2012), Casella & Roberts (2008, 2011),
Chen & Huang (2013), Etoré & Martinez (2013), Giesecke & Smelov
(2013), Gongalves & Roberts (2013), Mousavi & Glynn (2013),
Blanchet & Murthy (2014), Pollock et al. (2014). 15
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@ The exact algorithm will be less efficient wherever ¢(X;) is very
large—unavoidable when the diffusion travels through a region
where the drift (or its derivative) is very large.
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@ The exact algorithm will be less efficient wherever ¢(X;) is very
large—unavoidable when the diffusion travels through a region
where the drift (or its derivative) is very large.

Example: Entrance boundary at 0

@ “A diffusion at x will almost
surely not hit 0 before hitting
any b > x. A diffusion started
at 0 will enter (0, o0) in finite
time.”

@ If 02(x) = 1, then ¢ explodes
at the boundary.
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motion is a poor mimic of the target diffusion.

19/38



Exact algorithm
00000000e

@ Large ¢ is a symptom of a poor likelihood ratio, i.e. Brownian
motion is a poor mimic of the target diffusion.

@ |dea: Replace Brownian motion with a different candidate
process—one with an entrance boundary.

19/38



Exact algorithm
00000000e

@ Large ¢ is a symptom of a poor likelihood ratio, i.e. Brownian
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@ But: the exact algorithms rely heavily on our knowledge about
Brownian bridges:
e The distribution of bridge coordinates.
e The distribution of the minimum, my, and its time, t,,.
e The distribution of bridge coordinates conditioned on (mr, tm).
e The ability to sample from these distributions exactly.
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@ Large ¢ is a symptom of a poor likelihood ratio, i.e. Brownian
motion is a poor mimic of the target diffusion.

@ |dea: Replace Brownian motion with a different candidate
process—one with an entrance boundary.

@ But: the exact algorithms rely heavily on our knowledge about
Brownian bridges:

The distribution of bridge coordinates.

The distribution of the minimum, my, and its time, t,,.

The distribution of bridge coordinates conditioned on (mr, ty).

The ability to sample from these distributions exactly.

(]

® © o

Question. Does there exist a diffusion:
@ with infinitesimal variance equal to 1,
@ with an entrance boundary, and such that
@ the finite-dimensional distributions of its bridges are known, and
@ which can be simulated exactly, and
@ (bonus) whose extrema are well characterized?

19/38
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Bessel process

@ Infinitesimal v Drift B(y) = (6 — 1)/(2y),
variance 1? variance o2(y) = 1.
@ Entrance
boundary?
@ Finite-
dimensional
distributions?

@ Exact
simulation?

@ Distributions
of extrema?
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Bessel process

@ Infinitesimal
variance 1?

@ Entrance
boundary?

@ Finite-
dimensional
distributions?

@ Exact
simulation?

@ Distributions
of extrema?

v Drift 5(y) = (6 = 1)/(2y),
variance o2(y) = 1.

v’ Zero is an entrance boundary when § > 2.

V Py (X t) =

T—t T L(~=)h
T e_<2(2tT)+2t();'—t)+2T(}'/ft—t)> C)b(Goe)
2H(T—-1) Yz 2
b (*5z)

where v = 2( + 1), is the transition density
of the (squared) Bessel bridge.
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Bessel process

@ Infinitesimal v Drift B(y) = (6 —1)/(2y),
variance 1? variance o2(y) = 1.

@ Entrance v Zero is an entrance boundary when § > 2.
boundary?

o g.inite- ' I v ,O(y70)_>(z77')(X; t) =

imensiona (2T T n () ()
distributions? WTft)e ( 20T +2t(T—t)+2T(T—t)>II(\/7g)—_t)2,
vi~r2

where v = 2( + 1), is the transition density
of the (squared) Bessel bridge.

@ Exact v’ € Z>p: radial part of a §-dimensional
simulation? Brownian motion.
d € R>o: See Makarov & Glew (2010).

@ Distributions
of extrema?
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Bessel process

@ Infinitesimal v Drift 8(y) = (6 — 1)/(2y),
variance 1? variance o2(y) = 1.
@ Entrance v Zero is an entrance boundary when § > 2.
boundary?
o g.inite- ' I v ,O(y70)_>(z77')(X; t) =
imensiona 2T, x h (L) (X
distributions? WTft)e_< 2tTt+2t(TT_t)+2T(}7/'t—l‘)> ) ((T—t)z)

where v = 2( + 1), is the transition density
of the (squared) Bessel bridge.

@ Exact v’ € Z>p: radial part of a §-dimensional
simulation? Brownian motion.
d € R>o: See Makarov & Glew (2010).

@ Distributions (/) Partly.
of extrema?
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Bessel-EA

@ Exact simulation from a diffusion with law Q, using the Bessel
process (law Bf, > Qy) is possible by the following:

Under regularity conditions (similar to EA), Q, is the marginal
distribution of Y when

(Y. 9) ~ (B o L)| {® C epigraph [5(¥)] }

where L is the law of a Poisson point process ¢ of unit rate on
[0, T] x [0, >0),and

Hu) := Slod(w) — F2(u) + af(u) — F/(w)] + C.

22/38
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Outline of proof.

Similar to the Brownian case: regularity conditions permit a
Girsanov transformation and rearrangement so that

dQy T

Fll0 ocexp{—/o ¢(Y,)dt} <1,
provides the rejection probability for sampling from the conditional
law

(IB%f, ® ]L)‘ {CD C epigraph [5( Y)} } . O
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Outline of proof.

Similar to the Brownian case: regularity conditions permit a
Girsanov transformation and rearrangement so that

dQy T

Fll0 ocexp{—/o ¢(Y,)dt} <1,
provides the rejection probability for sampling from the conditional
law

(IB%f, ® ]L)‘ {CD C epigraph [5( Y)} } . O

So what?

@ We have just replaced one candidate process for another, the
only substantial difference the appearance of

Hu) 1= Z[03(u) — B(u) + () — F/(u)] + C.

instead of

8(u) = 2[03(u) + ah(w)] + C.

23/38
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Example: A population growth model.

@ A diffusion (X;)o<t<7 with drift and diffusion coefficients

w(X) = kX, o2(x) = x + wx®,

commenced from Xy = xp and grown to X7 = xv.
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Example: A population growth model.

@ A diffusion (X;)o<t<7 with drift and diffusion coefficients

w(X) = kX, o2(x) = x + wx®,

commenced from Xy = xp and grown to X7 = xv.

@ The population has not died out, so we can condition the
process on non-absorption at 0.

@ Conditioning and Lamperti transforming leads to new drift
_ vyl _ Vw
a(y) = \/Etanh { . ] > coth [vwy]
w— 2K tanh [@}

VW { _cosh’ 2 [@]’

with an entrance boundary at 0.
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Example: A population growth model.
@ What does the drift look like at the boundary?

3
a(y):ngO(y) asy — 0.
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Example: A population growth model.
@ What does the drift look like at the boundary?

3
a(y):ngO(y) asy — 0.

0—1

@ Compare with the Bessel process: Bly)=——-

2y
So we should choose § = 4 for our candidate process.

25
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Example: A population growth model.
@ What does the drift look like at the boundary?

a(y):iJrO(y) asy — 0.

2y
; d—1
@ Compare with the Bessel process: By)=— -
So we should choose § = 4 for our candidate process.
o(u)
% 5 10
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Example: A population growth model.

@ ¢ is (tightly) bounded (by K say), while ¢ is unbounded as
y—0.
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Example: A population growth model.

@ ¢ is (tightly) bounded (by K say), while ¢ is unbounded as
y—0.
@ Hence we can use the following Bessel-EA to return skeleton
bridges:
@ Simulate a Poisson point process on [0, T] x [0, K].
@ Simulate a Bessel bridge of dimension § = 4 at the times of the
Poisson points.
© If any of the former are beneath any of the latter, return to 1.
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Results

Bessel-EA1 Yo=yto Yoi5=1,0w0=3.
Poisson Skeleton Random  Total
K y Attempts points points variables Time (s)
1.0 10.0 1.1 0.2 0.2 1.9 0
1.0 1.0 1.0 0.2 0.2 1.9 0
1.0 0.25 1.0 0.2 0.2 2.0 0
1.0 0.15 1.0 0.2 0.2 2.0 1
1.0 0.1 1.1 0.2 0.2 2.0 1
1.0 0.025 1.0 0.2 0.2 2.0 0

Brownian-EA (“EA2”)

Poisson Skeleton Random  Total

K y Attempts points points variables Time (s)
1.0 10.0 1.0 0.1 0.1 7.3 0
1.0 1.0 1.1 0.1 0.1 7.4 0
1.0 0.25 1.2 1288.6 420.6 3846.1 6
1.0 0.15 14 75311 6174 16921.4 16
1.0 0.1 DNF DNF DNF DNF DNF
1.0 0.025 DNF DNF DNF DNF DNF
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Results

Bessel-EA1 Yo=y1t0o Yoi5=1,w=23.
Poisson Skeleton Random  Total

K y Attempts points points variables Time (s)
10.0 10.0 5.2 14.1 6.8 56.4 1
10.0 1.0 3.0 7.9 4.9 36.4 1
10.0 0.25 2.3 6.1 4.4 30.8 1
10.0 0.15 2.2 6.0 4.3 30.3 0
10.0 0.1 2.2 5.9 4.4 30.4 0
10.0 0.025 2.1 5.8 4.3 29.6 1

Brownian-EA (*EA2”)

Poisson Skeleton Random  Total

K y Attempts points points variables Time (s)
10.0 10.0 5.0 9.8 4.8 40.9 0
10.0 1.0 29 5.9 3.6 29.8 0
10.0 0.25 2.6 81.4 10.7 201.9 0
10.0 0.15 29 23052.1 1981.9 52056.9 52
10.0 0.1 DNF DNF DNF DNF DNF

10.0  0.025 DNF DNF DNF DNF DNF
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by a Bessel process?
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When is the singularity in the drift at an entrance boundary matched
by a Bessel process?
Here’s a partial answer.

Theorem.
Suppose we have a diffusion Y satisfying the requirements of EA1.
Then the diffusion Y* obtained by conditioning this process on

{Tp < Ty}, can be simulated via Bessel-EA1 with § = 3.

Ouitline of proof.

@ Deduce regularity requirements for Bessel-EA1 from the
assumptions of EA1.

@ Compute the conditioned drift o*(y) by bare hands, using a
Doob h-transform.

@ We find ¢*(u) is bounded iff § = 3 (among all possible
§>2). O
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Example: The Wright-Fisher diffusion with natural selection

@ The frequency X; € [0, 1] of a gene in a large population
evolves according to
aX; = "}/Xt(1 = Xt)dt + Xt(1 = Xt)th, Xo=x, t>0.
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@ The frequency X; € [0, 1] of a gene in a large population
evolves according to
aX; = ’7Xt(1 = Xt)dt + Xt(1 = Xt)th, Xo=x, t>0.
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Example: The Wright-Fisher diffusion with natural selection

@ The frequency X; € [0, 1] of a gene in a large population

evolves according to
aX; = ’7Xt(1 = Xt)dt + Xt(1 = Xt)th, Xo=x, t>0.

@ - parametrizes the selective advantage of this gene.

@ A gene is observed to be at frequency Xy = xp and X7 = x7.
What do its sample paths look like?

@ 0 is absorbing so we should condition the diffusion not to have
hit0 (To > T).
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Example: The Wright-Fisher diffusion with natural selection

@ The frequency X; € [0, 1] of a gene in a large population

evolves according to
aX; = ’7Xt(1 = Xt)dt + Xt(1 = Xt)th, Xo=x, t>0.

@ - parametrizes the selective advantage of this gene.

@ A gene is observed to be at frequency Xy = xp and X7 = x7.
What do its sample paths look like?

@ 0 is absorbing so we should condition the diffusion not to have
hit0 (To > T).

@ Conditioning and Lamperti transforming leads to new drift

a(y) = %’y sin(y) coth [’y sin2 (%ﬂ — cot(y).

(Schraiber et al., 2013)

v

31/38



Wright-Fisher diffusion
0®0000

Example: The Wright-Fisher diffusion.
@ What does the drift look like at the boundary?

3
a(y):5+0(y) asy — 0.
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Example: The Wright-Fisher diffusion.
@ What does the drift look like at the boundary?

3
a(y):5+0(y) asy — 0.
@ So we should again choose § = 4 for our candidate process.

d(u)

00 pi
u

@ Problem: ¢(u) is still unbounded as u — 7. This leaves us with
only an approximately exact algorithm.
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Ongoing work to fix this issue

In the spirit of (Brownian)-EA2, conditioning on the maximum of a
Bessel bridge would solve the problem:
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Wright-Fisher diffusion
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Ongoing work to fix this issue

In the spirit of (Brownian)-EA2, conditioning on the maximum of a
Bessel bridge would solve the problem:
@ Simulate the maximum My (and the time, ty, it is attained) of a
Bessel bridge from Yy to Y7.

© Use another version of the Wright-Fisher diffusion as our
candidate process.

33/38



Wright-Fisher diffusion
000®00

The Wright-Fisher diffusion with mutation but no selection

aX; = [91 (1 = Xt) — 92Xt]dt -+ Xt(1 = Xt)th, Xo=x, t>0.
The transition density has eigenfunction expansion

X y t Z qm(t Z Bmx D91+/,92+m—/(y)7
—_—

=0 B|nom|al PMF Beta density

where gn(t) is the transition function of a certain pure death process
on N (related to Kingman’s coalescent).
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The Wright-Fisher diffusion with mutation but no selection

aX; = [91 (1 = Xt) — 92Xt]dt -+ Xt(1 = Xt)th, Xo=x, t>0.
The transition density has eigenfunction expansion

X y t Z qm(t Z Bmx D91+/,92+m—/(y)7
—_—

=0 B|nom|al PMF Beta density

where gn(t) is the transition function of a certain pure death process
on N (related to Kingman’s coalescent).

@ This is a known infinite mixture of beta random variables.
Convenient for simulation!
@ Simulate M ~ {gm(t) : m=0,1,...}.
(a realization of Kingman’s coalescent with mutation, time t).
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where gn(t) is the transition function of a certain pure death process
on N (related to Kingman’s coalescent).
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The Wright-Fisher diffusion with mutation but no selection

aX; = [91 (1 = Xt) — 92Xt]dt -+ Xt(1 = Xt)th, Xo=x, t>0.
The transition density has eigenfunction expansion

X y t Z qm(t Z Bmx D91+/,92+m—/(y)7
—_—

=0 B|nom|al PMF Beta density

where gn(t) is the transition function of a certain pure death process
on N (related to Kingman’s coalescent).

@ This is a known infinite mixture of beta random variables.

@ Simulate M ~ {gm(t) : m=0,1,...}.

(a realization of Kingman’s coalescent with mutation, time t).
@ Simulate L ~ Binomial(M, x).
© Return Y ~ Beta(61 + L,6, + M — L).
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Issues

Mixture weights are known only as an infinite series:

X} RCE: 1ok A 3, N ) PR
m!(k — m)IT(6 + m)
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Proposition (Jenkins & Spano, in preparation).

The coefficients of the ancestral process of Kingman’s coalescent,
{gm(t): m=0,1,...},

can be rearranged in such a way that this distribution can be

simulated exactly.
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@ ltis possible to simulate efficiently from several diffusions with a
finite entrance boundary, without discretization error.
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Summary
[ le]

@ ltis possible to simulate efficiently from several diffusions with a
finite entrance boundary, without discretization error.
@ Candidate diffusions other than Brownian motion:
e Bessel process
e Wright-Fisher diffusion
suggest the potential for further generalizing the exact
algorithms.
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Jenkins, P. A. “Exact simulation of the sample paths of a diffusion
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Thank you for listening! |

38/38



	Main Talk
	Introduction
	Overview of the exact algorithm
	Bessel-EA
	Wright-Fisher diffusion
	Summary


