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Inhomogeneous jump di�usion processes

Xt =

∫ t

0
f(s)ds+

∫ t

0
σ(s)dWs +

Nt∑
i=1

Yi, t ≥ 0,

W = {Wt}t≥0 is a standard Brownian motion;

N = {Nt}t≥0 is an inhomogeneous Poisson process with

intensity function λ(·), independent of W ;

(Yi)i≥1 is a sequence of i.i.d. real random variables with

distribution G (either concentrated on Z or absolutely

continuous with respect to Lebesgue), independent of W
and N ;

σ2(·), λ(·) and G are supposed to be known and f(·)
belongs to a certain non-parametric class F .
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The problem we consider

We suppose to observe {Xt}t≥0 at discrete times

0 = t1 < · · · < tn = Tn such that

∆n = max
1≤i≤n

{
|ti − ti−1|

}
↓ 0 as n→∞.

Problem: To estimate the drift function f(·) from the discrete

data (Xti)
n
i=1.

At least two natural questions arise:

1 How much information about the parameter f(·) do we lose

by observing (Xti)
n
i=1 instead of {Xt}t∈[0,Tn]?

2 Can we construct an easier (read: mathematically more

tractable), but equivalent, model from (Xti)
n
i=1?
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General theory of statistical models

The general problem

The statistician has several experiments at his disposal to

estimate a parameter θ. How to compare them?

Experiment 1 7→ E1 =
(
X1, T1, (Pθ)θ∈Θ

)
,

Experiment 2 7→ E2 =
(
X2, T2, (Qθ)θ∈Θ

)
,

First idea (Bohnenblust, Sharpey, Sherman, 1949): E1 is

more informative than E2 if for any bounded loss function L and

any decision ρ2 for the experiment E2 there exists a decision ρ1

for the experiment E1 s.t.

Rθ(E1, L, ρ1) ≤ Rθ(E2, L, ρ2), ∀θ ∈ Θ.

Problem: With this approach E1 and E2 may be non

comparable.
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Distance between statistical models

The notion of de�ciency

Le Cam idea (1964): �How much do we lose if we use the

experiment E1 instead of the experiment E2?�

De�nition

The de�ciency δ
(
E1, E2

)
of E1 with respect to E2 is de�ned as

δ(E1, E2) = inf
K

sup
θ∈Θ
‖KPθ −Qθ‖TV ,

where the in�mum is taken over all �randomizations�.

Remark 1: Markov kernels are special cases of randomizations.

Remark 2: The de�ciency is de�ned for any pair of statistical

models indexed by the same parameter space.
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Distance between statistical models

The Le Cam ∆-distance

Property

Let ε > 0 be �xed. δ(E1, E2) ≤ ε⇐⇒ ∀ bounded loss function L,
∀ decision rule ρ2 on E2, ∃ a decision rule ρ1 on E1 such that

Rθ(E1, L, ρ1) ≤ Rθ(E2, L, ρ2) + ε, ∀θ ∈ Θ.

De�nition

The so called ∆-distance between E1 and E2 is the

pseudometric de�ned by:

∆
(
E1, E2

)
= max

(
δ
(
E1, E2

)
, δ
(
E2, E1

))
.

The experiments E1 and E2 are said to be equivalent if

∆(E1, E2) = 0. Two sequences of statistical models (En1 )n∈N and

(En2 )n∈N are called asymptotically equivalent if

∆(En1 , En2 )→ 0 as n→∞.
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Examples

Examples

Parametric case: estimation of a real parameter θ ∈ Θ ⊂ R.
1 En1 = (Rn,B(Rn), (Pn,θ : θ ∈ Θ)), Pn,θ = ⊗ni=1L

(
N (θ, 1)

)
.

2 En2 = (R,B(R), (Qn,θ : θ ∈ Θ)), Qn,θ = L
(
N (θ, n−1)

)
.

Non parametric case: estimation of a function h : [0, 1]→ R
1 Yi = h(i/n) + σ(i/n)ξi, ξi ∼ N (0, 1), i = 1, . . . , n, i.i.d; h is

an unknown function in H, σ is supposed to be known.

En1 =
(
Rn,B(Rn), (Pn,h : h ∈ H)

)
, Pn,h = L

(
(Y1, . . . , Yn)

)
2 dYt = h(t)dt+ σ(t)√

n
dWt, t ∈ [0, 1], (Wt) SBM.

En2 =
(
C[0, 1], C, (Qn,h : h ∈ H)

)
, Qn,h = LY.
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Non parametric statistical models

Asymptotic equivalence in a non parametric framework

If, for the estimation of a function f , the sequences of
experiments (En1 )n∈N and (En2 )n∈N are asymptotically equivalent

in the Le Cam's sense:

∆(En1 , En2 )→ 0,

then asymptotic properties of any inference problem are the

same for these experiments (rates of convergence, minimax

exact constants) =⇒ it is enough to choose the simplest one

when studying these properties.

Brown and Low (1996): regression and white noise

Nussbaum (1996): density estimation and white noise

+ numerous papers showing the global asymptotic

equivalence between non-parametric experiences

(generalized linear models, time series, di�usion models

without jumps, GARCH model, functional linear regression,

spectral density estimation).
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Inhomogeneous jump di�usion processes

Notations

(D,D): Skorokhod space (càdlàg functions);

P (f,σ2,λG): law of the process {Xt}t∈[0,Tn] on (D,D);

Q
(f,σ2,λG)
n : law of the vector (Xt1 , . . . , Xtn) on (Rn,B(Rn));

P(f,σ2,λG) =
(
D,D,

(
P (f,σ2,λG)

)
f∈F

)
;

Q
(f,σ2,λG)
n =

(
Rn,B(Rn),

(
Q

(f,σ2,λG)
n

)
f∈F

)
.

Remark

P(f,σ2,0) is the experiment associated with the observation of a

trajectory of the process:

Xc
t =

∫ t

0
f(s)ds+

∫ t

0
σ(s)dWs, t ∈ [0, Tn].
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Main result

F : a class of α-Hölder, uniformly bounded functions on R;
di�usion coe�cient σ0 < σ(·) < σ1 such that σ′(·) ∈ L∞(R);
intensity λ(·) ∈ L∞(R).

Theorem (M., 2014)

∆
(
Q(f,σ2,λG)
n ,P(f,σ2,0)

)
→ 0

∆
(
P(f,σ2,λG),Q(f,σ2,λG)

n

)
→ 0

as n→∞,

under either of the following two sets of conditions:

1 Y1 is discrete with support on Z, α ≥ 1
2 and Tn∆n → 0 as

n→∞; in this case the rate of convergence is O(
√
Tn∆n).

2 Y1 admits a density with respect to the Lebesgue measure on

R, α ≥ 1
4 and Tn

√
∆n → 0 as n→∞; in this case the rate

of convergence is O
(
T

1
2
n ∆

1
4
n

)
.
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Main result

Gaussian white model

Recall: The main interest in the Le Cam asymptotic theory lies

in the approximation of general statistical models by simpler

ones =⇒ we can reduce the more complicated model Q
(f,σ2,λG)
n

to a simpler one since P(f,σ2,0) is essentially a Gaussian white

noise model.

Indeed, when σ2(·) = σ2 is constant, the experiment associated

with

dXc
t = f(t)dt+ σdWt, t ∈ [0, Tn]

is equivalent to that associated with

dYu = F (u)du+ εdWu, u ∈ [0, 1],

where F (u) := f(uTn)
Tn

and ε := σT
− 3

2
n .
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Examples

Example (Di�usion + inhomogeneous Poisson process)

Xt =

∫ t

0
f(s)ds+

∫ t

0
σ(s)dWs +Nt.

This is a special case of (1), with Y1 ≡ 1.

Example (Merton model, inhomogeneous in time)

Xt =

∫ t

0
f(s)ds+

∫ t

0
σ(s)dWs +

Nt∑
i=1

Yi, t ≥ 0,

where Yi are Gaussian r.v. N (m,Γ2), Γ > 0. This is a special

case of (2).
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Sketch of the proof

Main ideas

Goal: (Xti)
n
i=1

∆⇐⇒ (Xc
t )t∈[0,Tn].

(Xti)
n
i=1

∆⇐⇒ (Xti −Xti−1)ni=1;

Xti −Xti−1 ∼ Ni ∗
∑P(λi)

j=1 Yj with Ni ∼ N (mi, σ
2
i ), mi =∫ ti

ti−1
f(s)ds, σ2

i =
∫ ti
ti−1

σ2(s)ds, λi =
∫ ti
ti−1

λ(s)ds.

Step 1: Reduce to having in each interval at most one jump

(Bernoulli approximation);

Step 2: Filter it out with an explicit Markov kernel =⇒
reducing ourselves to (Ni)

n
i=1;

Step 3: Apply an argument similar to that in Brown and Low.
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Sketch of the proof

Bernoulli approximation

Let (εi)
n
i=1 be a sequence of Bernoulli independent r.v. with

parameter αi = λie
−λi , then:

Lemma∥∥∥∥ n⊗
i=1

Ni ∗
P(λi)∑
j=1

Yj −
n⊗
i=1

Ni ∗ εiY1

∥∥∥∥
TV

≤ 2

√√√√ n∑
i=1

λ2
i .

Conclusion: ∆
(
(Xti)

n
i=1,⊗ni=1Ni ∗ εiY1

)
= O

(√
Tn∆n

)
.
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Sketch of the proof

Explicit construction of Markov kernels: discrete case

Lemma

De�ne the Markov kernel:

K(x,A) = IA(x− [x]), ∀A ∈ B(R).

For n big enough s.t. |mi| ≤ 1
3 , one has

∥∥∥ n⊗
i=1

K(Ni ∗ εiY1)−
n⊗
i=1

Ni

∥∥∥
TV
≤√√√√2

n∑
i=1

( 6

σi
ϕ
( 1

6σi

)
+ 4Φ

(−1

6σi

))
.

Here Φ stands for the cumulative distribution of a r.v. N (0, 1)
and ϕ for its derivative.
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Sketch of the proof

Continuous case

Lemma

Let 0 < ε < 1 be �xed and βi := 1 + σ1−ε
i . De�ne

Ki(x,A) =


IA(x) if x ∈ [−βi, βi],

1√
2πσ2

i

∫
A e
− y2

2σ2
i dy, otherwise.

For n big enough s.t. |mi| ≤ 1, one has∥∥∥ n⊗
i=1

Ki(Ni ∗ εiY1)−
n⊗
i=1

Ni

∥∥∥
TV
≤√√√√2

n∑
i=1

(
8Φ(−σ−εi ) +

αi|mi|√
2σi

+ 2αi

∫ 2βi

−2βi

G′(y)dy

)

Conclusion: ∆
(
(Xti)

n
i=1,⊗ni=1Ni

)
= O

(
T

1
2
n ∆

1
4
n

)
.
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The parametric space

(F1) supt∈R{|f(t)| : f ∈ F} = B <∞.

(F2) De�ning:

f̄n(t) =

{
f(ti) if ti−1 ≤ t < ti, i = 1, . . . , n;
f(Tn) if t = Tn;

we have

lim
n→∞

sup
f∈F

∫ Tn

0

(f(t)− f̄n(t))2

σ2(t)
dt = 0

(F3) ∀i = 1, . . . , n, let γi and ηi be in [ti−1, ti] and s.t.∫ ti

ti−1

σ2(s)ds = σ2(ηi)(ti−ti−1),

∫ ti

ti−1

f(s)ds = f(γi)(ti−ti−1).

Then we ask:

lim
n→∞

sup
f∈F

n∑
i=1

(f(ti)− f(γi))
2

σ2(ηi)
(ti − ti−1) = 0.
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Conclusion and extensions

Asymptotic framework: n→∞, ∆n → 0, Tn can be �xed or

go to in�nity.

Extension to the case of unknown λ(·) and G(·): Work in

progress.

Extension to the case of unknown σ(·): The statistical
procedures to estimate f generally do not use the knowledge of

σ(·) which is considered as a nuisance parameter. How to

extend our result to the case where σ(·) is unknown is still an

open problem.

Remark: Carter(2007), Asymptotic approximation of

nonparametric regression experiments with unknown variances.



Introduction Comparison of experiments An equivalence result Discussion

References

Lawrence D. Brown and Mark G. Low, Asymptotic

equivalence of nonparametric regression and white noise,

Ann. Statist. 24 (1996).

Andrew V. Carter, Asymptotic approximation of

nonparametric regression experiments with unknown

variances, Ann. Statist. 35 (2007).

Ester Mariucci, Asymptotic equivalence for inhomogeneous

jump di�usion processes and white noise, arXiv preprint

arXiv:1405.0480 (2014).

Michael Nussbaum, Asymptotic equivalence of density

estimation and Gaussian white noise, Ann. Statist. 24

(1996).


	Introduction
	Comparison of experiments
	General theory of statistical models
	Distance between statistical models
	Examples
	Non parametric statistical models

	An equivalence result
	Inhomogeneous jump diffusion processes
	Main result
	Examples
	Sketch of the proof

	Discussion

