

Exact Simulation in a Nutshell

Murray Pollock¹, Adam Johansen & Gareth Roberts

- Overview

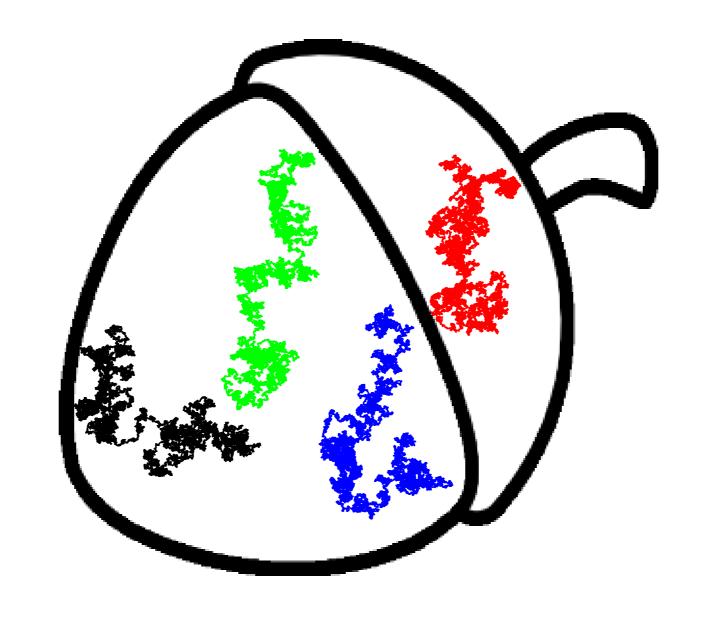
1.1 - The Goal...??? Evaluate with certainty whether or not a given jump diffusion sample path crosses a barrier.

Target Jump Instantaneous Jump Jump Size Initial Value
$$\mathbb{T}^{x}_{0,T}: \mathrm{d}X_{t} = \beta(X_{t-})\,\mathrm{d}t + \sigma(X_{t-})\,\mathrm{d}W_{t} + \mathrm{d}J^{\lambda,\mu}_{t}, \quad t \in [0,T], \ X_{0} = x.$$
Instantaneous Standard Compound Poisson Mean Brownian Motion Process Interval

1.2 - Main Difficulties...??? Sample paths are infinite dimensional random variables. Discretisation schemes introduce error and don't sufficiently characterise sample paths to determine barrier crossing.

1.3 - Applications... Monte Carlo Integration, Option Pricing, Simulating First Hitting Times, Killed Diffusions, Rare Events...

...in a nutshell...



2 - Summary of Key Methodology

2.1 - Exact Algorithm (EA)... A diffusion path space retrospective rejection sampler which characterises entire (accepted) sample paths in the form of a finite dimensional skeleton, composed of the sample path at a finite collection of intermediate points and spatial information.

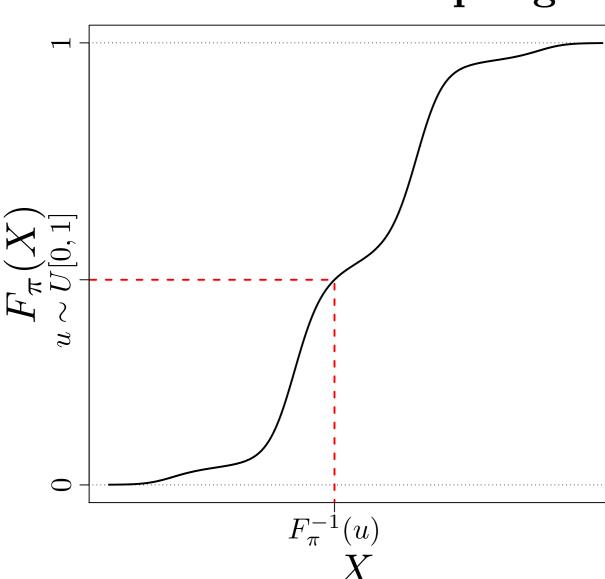
2.2 - ϵ -Strong Simulation (ϵ SS)... Methodology for constructing upper and lower convergent dominating processes (X^{\downarrow}) and X^{\uparrow} , which enfold almost surely sample paths over some finite interval.

2.3 - Sufficient Conditions... $\beta \in C^1$, $\sigma \in C^2$ and strictly positive, λ locally bounded, linear growth and Lipschitz continuity coefficient conditions.

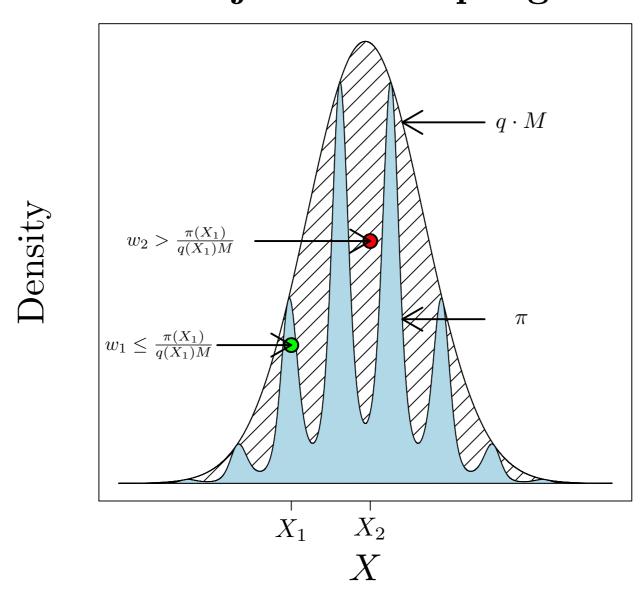
2.4 - Further Details... arXiv 1302.6964 or scan QR code!

3 - Key Ideas

Inversion Sampling



Rejection Sampling



Key Idea: Find and simulate some finite dimensional

auxiliary random variable $F := F(X) \sim \mathbb{F}$, such that an

unbiased estimator of the acceptance probability can be

constructed which can be evaluated using only a finite

4 – With probability $P_{\mathbb{P}_{0,T}^{x}|F}(X)$ accept, else reject and

 $5 - *** Simulate X^c \sim \mathbb{P}_{0,T}^{x,y} | (X^f, F) \text{ as required. } ***$

dimensional subset of the proposal sample path...

Implementable Exact Algorithm

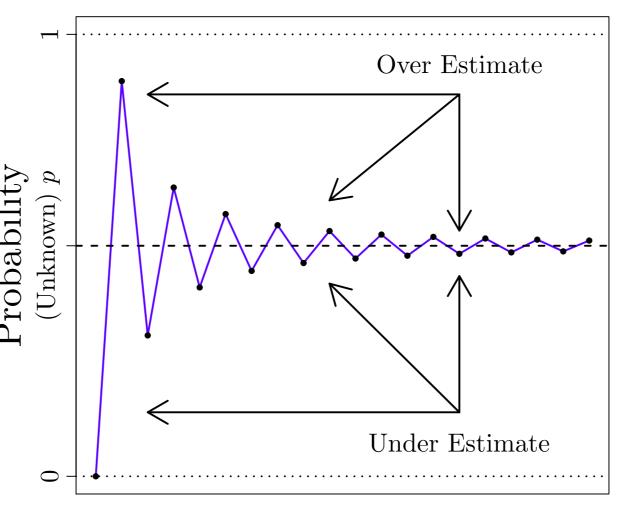
1 – Simulate $X_T := y \sim h$.

3 – Simulate $X^f \sim \mathbb{P}_{0,T}^{x,y} | F$.

2 – Simulate $F \sim \mathbb{F}$.

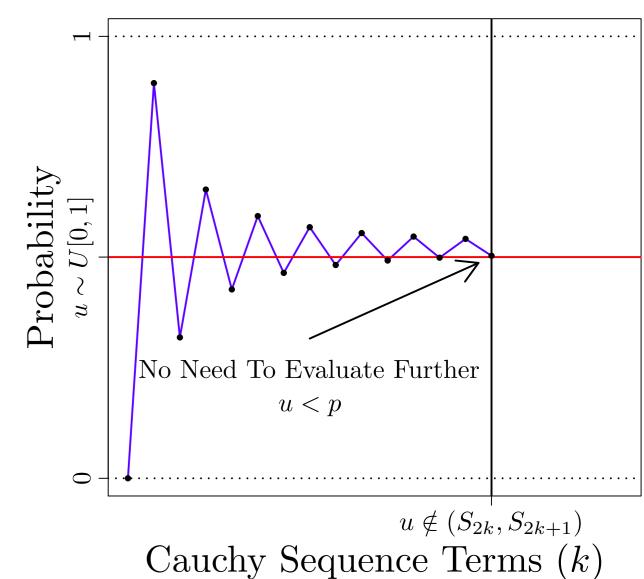
return to 1.

Bernoulli Sampling



Cauchy Sequence Terms (k)

Retro. Bernoulli Sampling



4 - The Exact Algorithm

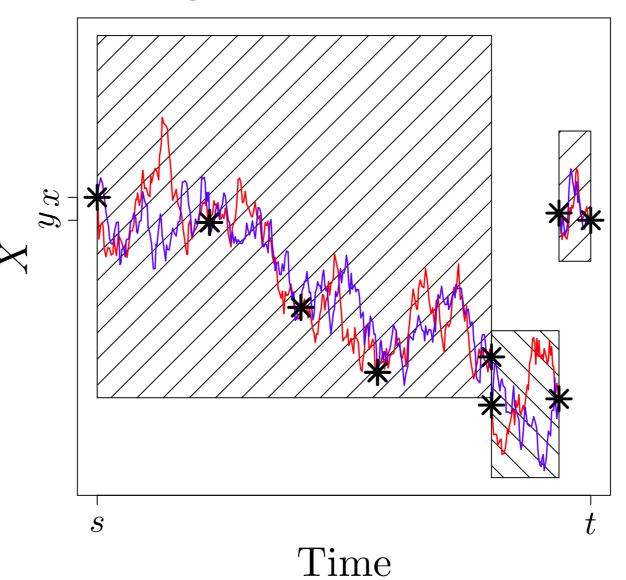
Idealised Exact Algorithm

- 1 Simulate $X \sim \mathbb{P}_{0,T}^{x}$.
- 2 With probability $P_{\mathbb{P}_{0,T}^x}(X) := \frac{1}{M} \frac{\mathrm{d}' \mathbb{F}_{0,T}^x}{\mathrm{d} \mathbb{P}_{0,T}^x}(X) \in [0,1]$ set I = 1.
- $3 X | (I = 1) \sim \mathbb{T}_{0,T}^{x}$

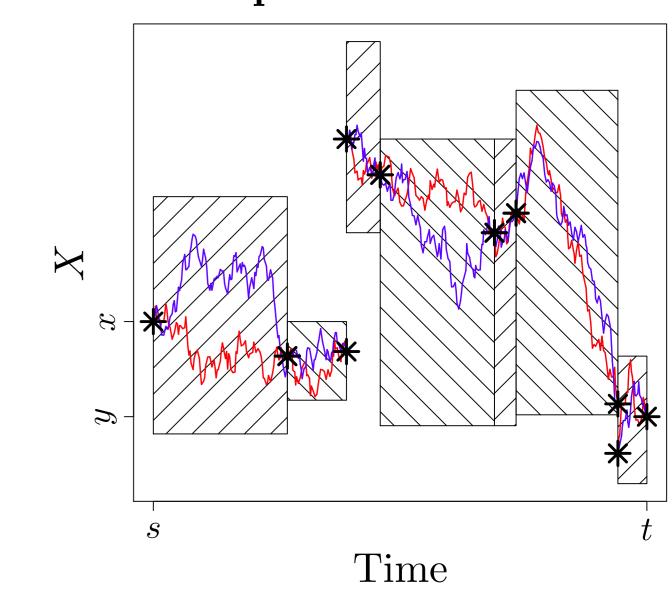
Key Points

- $1 \mathbb{T}_{0,T}^{x}$ target law.
- $2 \mathbb{P}_{0,T}^{x}$ equivalent (+ tractable) proposal law.
- $3 \frac{\mathrm{d}\mathbb{T}_{0,T}^x}{\mathrm{d}\mathbb{P}_{0,T}^x}(X)$ bounded (by $M < \infty$).

"Regular" EA Skeleton

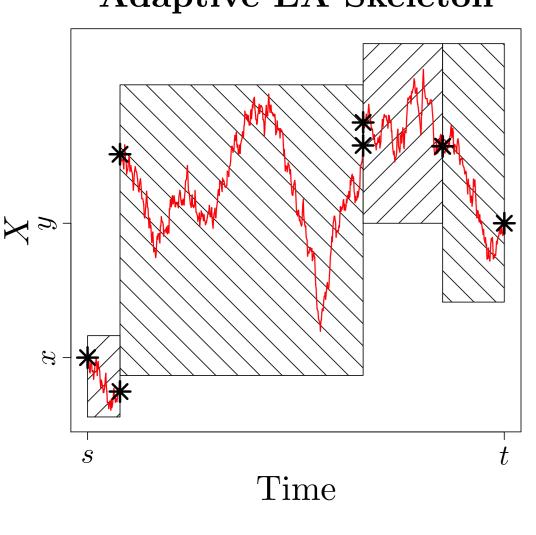


Adaptive EA Skeleton

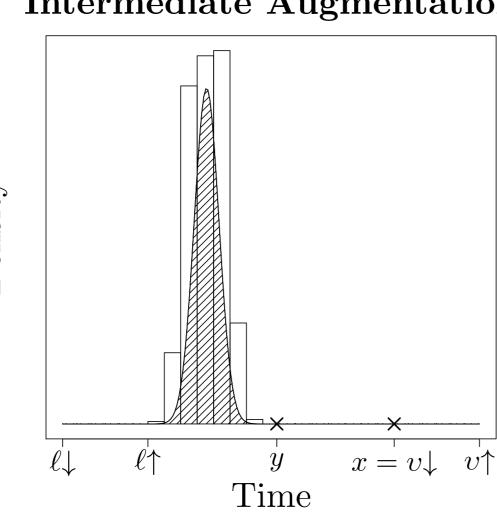


5 - ϵ -Strong Simulation

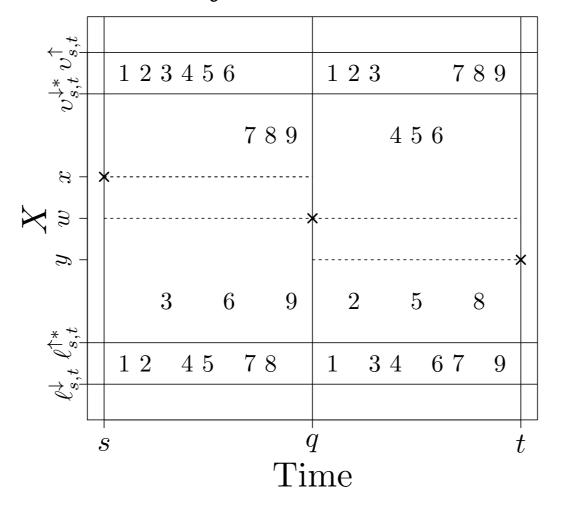
Adaptive EA Skeleton



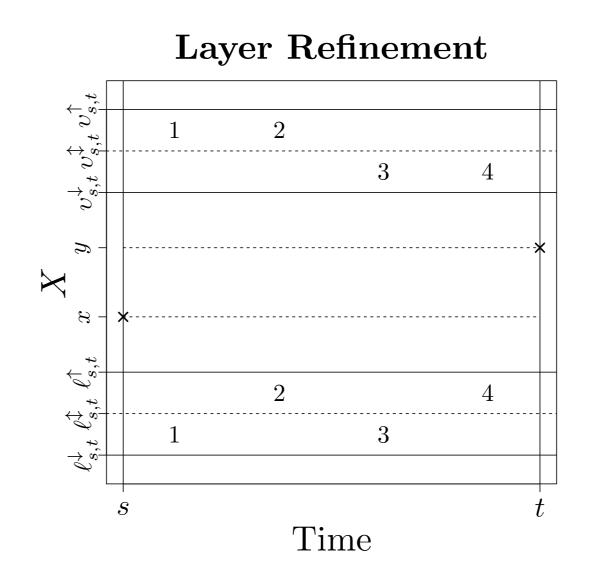
Intermediate Augmentation

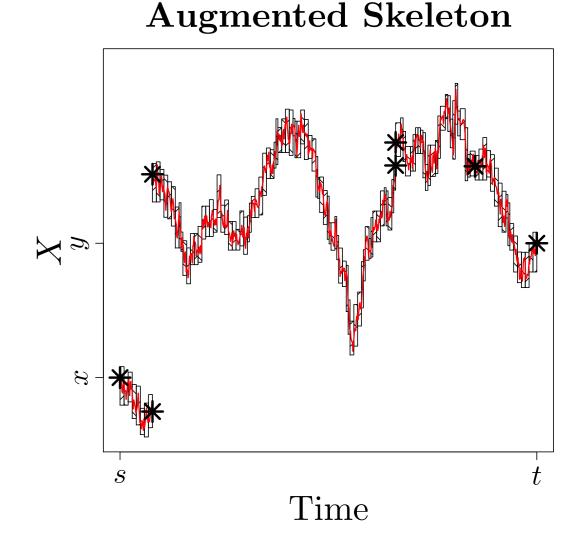


Layer Dissection

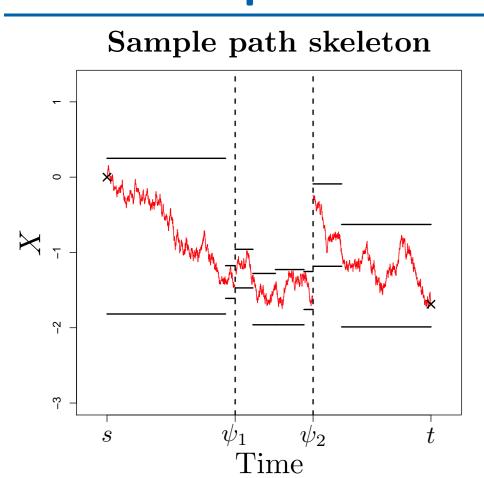


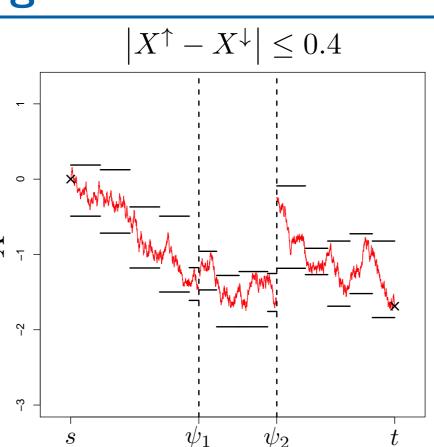
×



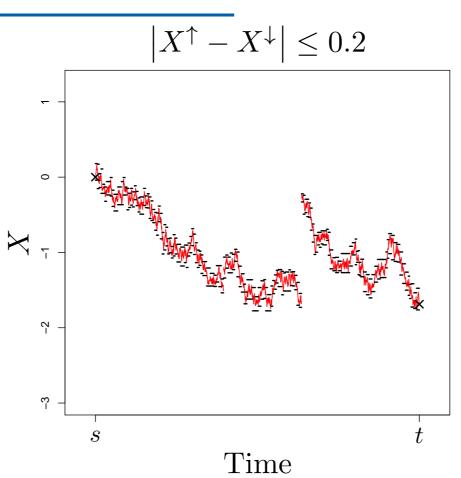


6.1 - Example 1: ϵ -Strong Simulation of Jump Diffusions

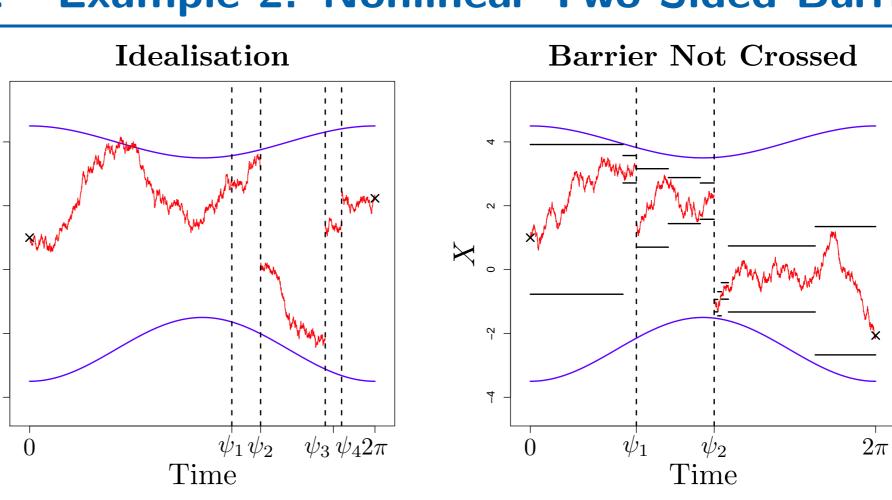


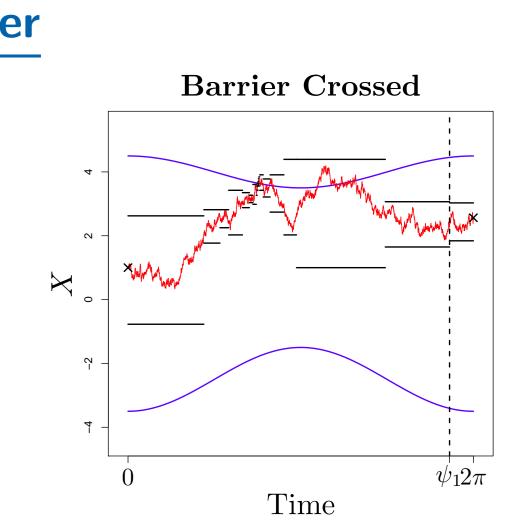


Time

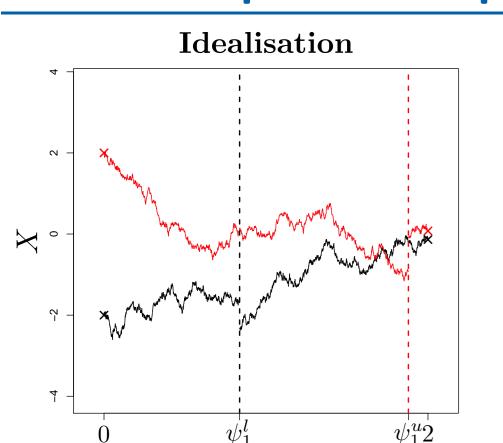


6.2 - Example 2: Nonlinear Two Sided Barrier

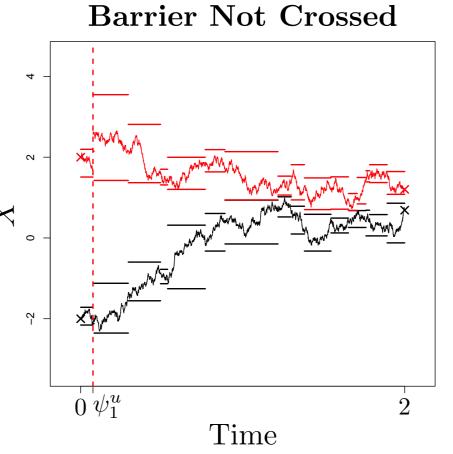


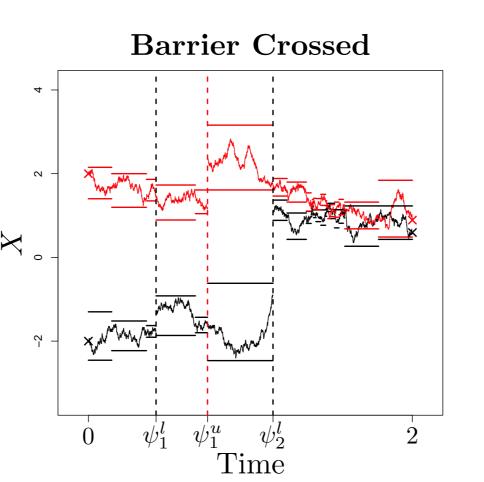


6.3 - Example 3: Jump Diffusion Intersection

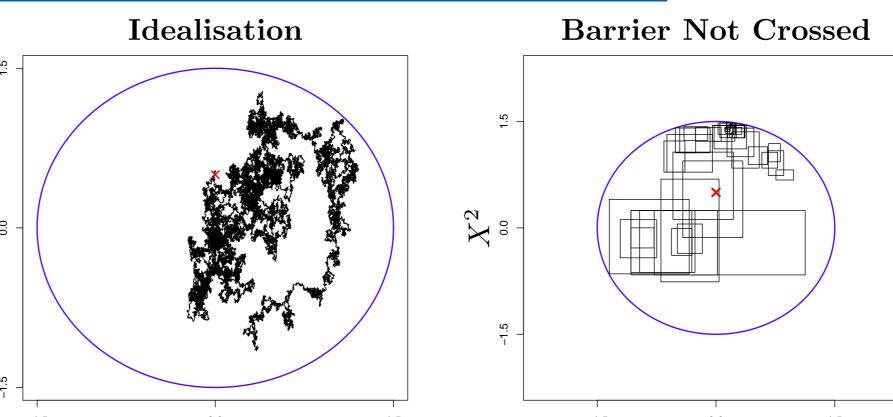


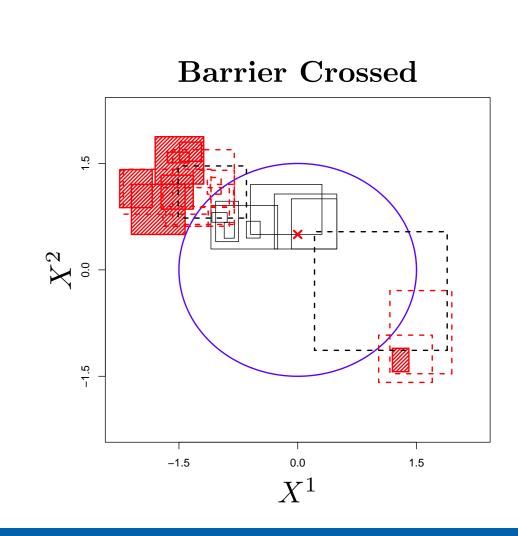
Time





6.4 - Example 4: Circular Barrier





¹ Corresponding & Presenting Author — a: Department of Statistics, University of Warwick, Coventry, UK, CV4 7AL — e: m.pollock@warwick.ac.uk — w: www.warwick.ac.uk/mpollock