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Flapper skate’s depth profile

Cecilia Pinto’s PhD project:

Estimating the probability of
recolonization of endangered
marine species integrating
demographic and movement
parameters.

School of Biological Sciences,
University of Aberdeen
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Flapper skate’s depth profile
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Flapper skates’ depth profiles
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Flapper skates’ depth profiles

pressure levels every
two minutes - depth
(metres)
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Flapper skates’ depth profiles [\f\f

Skate 7967 male juvenile 12 months T:2541f€i50SS
Skate 7972 male adult 6 months T=127360
Skate 7968 female adult 6 months T=107891
Skate 8828 male adult 12 days T=11404
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Flapper skates’ depth profiles
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Flapper skates’ depth profiles
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Skate 7972

Skate 7967
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Flapper skates’ depth profiles f\[\f

BioSS
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High-frequency time series [\/'\f

BioSS

High-frequency time series exhibit sample ACF that persists for
a long time [i.e., long memory processes]

Modelling strategy 1: fractional differentiation (d)

(1-B)dy, = e, e, OMO; o,9)
© [(k-d
(1-B)dy, = 2 -

k=0 [(k+1) I'(-d)
-0.5<d<0.5
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High-frequency time series [\/'\f

BioSS

High-frequency time series exhibit sample ACF that persists for
a long time [i.e., long memory processes]

Modelling strategy 1: fractional differentiation
ARFIMA(p,d,q)

©(B)(1-B)dy, = 8(B)e,  -0.5<d<0.5

¢(B) = 1-9,B-...-¢,BP;  By=y,; j=1,...p

6(B) = 1+6,B+...+6,B
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High-frequency time series [\/'\f
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Modelling strategy 2: non-linear time series with structural
breaks produce realizations that appear to
have long memory

“structural change” and “long memory” are
effectively different labels for the same
phenomenon

structural changes can be modelled as
stochastic regime switching

e.g., Markov switching autoregressive
models (non-Normal and non-linear
models)
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Markov switching autoregressive models [\f\f

BioSS
({yds {x¢)
{x}: m-state hidden Markov chain
S={1,2,...,m}
P(X=1l X.1=0) = Y, O<y;; <1 [1,) O Sy
=1 1 momy
{y4: conditional autoregressive process of order p
Yi= Mo T Py Yer T Pop)Yio T oo T @p)Yip T € e, OMO; Ayy?)
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Non-homogeneous Markov switching autoregressive models

rt - [ytj,i ](mxm)

Yii = P&l Xeq=))

Z:(Zp+1, - ’Zt’ ey ZT),

G:[Gj,i]

logit( i) = InC i/ V)

t exp(z:a;;)
VT 1 Y exp(zay)

IZ]

0<y;<l Dij0S,; 0t=2,...,T
Z=(Zy 100000 Z4p)’ [ t=p+1,...,T
[aj,i]:(aj,i,O’aj,i,b""aj,i,n) [ 1,) O Sy

04,j O Sy
Vi -

T1+ 2. exp(z:q;;)

IZ]



Non-homogeneous Markov switching autoregressive models

M=V i Jmxm) Yii = P=I1] Xe.17))
0< Y, <1 i,y dSy;, 0Ot=2,...,T

At each time t:
Categorical covariate D, defined on d categories

Gh= [ghj,i ](mxm) ghj,i = P(X=I1| X..1=J, D=h)
d h=1,...d 0Oi,j0Sy; 0Ot=2,....,T
M=2Ghx [(D=h)

h=1
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Prior specification

4N,
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p(G") = [1P(G)
Ghj. ~D (')

Mo O (e e),

Apy LG (% *),

p(P) = ﬁ ﬁp(cp,-(i)),

ji=1i=1

iy TN #),

Ghj-: (ghj,lighj,Z""’ghj,m)

for all j=1,...,m and h=1,...,d

forall i=1,....m

forall i=1,....m

for all i=1,...,m and j=1,...,p
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Gibbs sampling [\f\f

BioSS
* Mgy < Normal for all I=1,...,m
* Ay <« Gamma for all I=1,...,m
* ¢y, — Normal for all iI=1,...,m and j=1,...,p
« G".  Dirichlet for all j=1,...,m and h=1,...,d

J.

sample permutation

(X4,..X7) « forward filtering — backward sampling algorithm
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Label switching [\f\f

BioSS

lteration k = 1,...,L: Burn-in
lteration k = L+1,...,L+M: Posterior mode

{u*, A*, @*, G*}=arg max p(u®, AW, @), GX)
lteration k=L+M+1,..., L+M+N: Permutations

n*=arg min [|n,(u®, A&, @), GX) - (u*, A*, @*, G¥)|

n,0H

&
K AR K GEKY=n*(u® AK ok GK
(&), AR @M GK) = n*(u®), A, @k GI)
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Bayesian inference [\f\f

BioSS

3 steps: model choice
variable selection
parameter estimation and hidden chain reconstruction

m=1,....4,p=0,...,6; 3 covariates = 224 competing models
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Bayesian inference [\/'\f

BioSS

3 steps: model choice
variable selection
parameter estimation and hidden chain reconstruction

m=1,....4,p=0,...,6; 3 covariates = 224 competing models
MU=V, Jimsm) Yii = P(X=1] X.4=))
3 covariates: Solar cycle S s {0; 1}

Lunar cycle L, |, U {0; 1}

Lunar phase L, |, U{1; 2; 3; 4}

Indicator D, d U {1,2,4,8,16}

G" =[9"; Iimxm) gh;= P(x=i| X.4=j, D=h) T Gh x I(D=h)



Bayesian inference [\/'\f

BioSS

3 steps: model choice
variable selection
parameter estimation and hidden chain reconstruction

m=1,....4,p=0,...,6; 3 covariates = 224 competing models
Pragmatic alternative:

[1] best(m;p), with d=1
[2] best combination of covariates = 35 competing models
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Bayesian inference [\/'\f

BioSS

Model choice and variable selection: Bayes factors

In(marginal likelihood) computed by the method of Chib (2001)

Skate 7967 (ma; ju;12 months) m=2;p=4; L,
Skate 7972 (ma; ad; 6 months) m=2;p=3; L,
Skate 7968 (fe; ad; 6 months)  m=2;p=3; L,;L,

Skate 8828 (ma; ad; 12 days) m=2;p=4, L,;L,;S
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Results
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Skate 7972

time lag

ACF of the residuals



Results [\/\f

BioSS
Skate 7972 - observations in state 1
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State 1 (68,337 visits, 54%) = low variability (rest ing, horizontal movement, slow ascending
and descending)

State 2 (59,019 visits, 46%) = high variability (fas t ascending and descending)



Meters

Results

BioSS
Skate 7972 - subseries[50001:50500] Observations in state 1 (blue) and 2 (red)
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Extending the model [\/'\J’
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({yd {x)

State-dependent autoregressive orders:

P=(PwuPoes Prn)

{x}: m-state hidden Markov chain

{yg: conditional autoregressive process of order p,,

Ye= Moy ¥ PuipYer T PopYe2 T - T Pp )Yep T & e, UMO; Ay
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Extending the model [\/\f
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Markov switching ARCH noises:
er = /h; uy u, MO; 1)

_ 2 2 2
he = nNg + dypers + Axp€ia + ... + Agiig

Local stationarity of each state-dependent ARCH process:

n(l) > O, Gl(i),...,dq(i)ZO;

q
jzzluj(i)sl
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Extending the model [\/'\J’
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Markov switching ARCH noises:

e = \/H[ U+ ut DW(O, 1)
2 2 2

N =Ng + A€ + A€z + ... + Oq.()€tq

with state-dependent autoregressive orders:

q=(ds dz--s O

[auxiliary variable MCMC method]
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Extending the model [\/'\J’
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Model and variable selection:

Bayesian Information Criterion (BIC)
Deviance Information Criterion (DIC)

on a single subspace.
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Extending the model [\/\f

BioSS

Model and variable selection:

Bayesian Information Criterion (BIC)
Deviance Information Criterion (DIC)

on a single subspace.

Algorithm:

From Gibbs sampling to ...
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Summary f\/'\f
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Biologgers applied to animals produce long memory processes
due to a non-linear dynamics.

Flapper skate’s depth profile can be modelled effciently

by Markov switching autoregressive models with a
non-Homogeneous Markov chain, where the time-varying
transition probabilities depend on the dynamics of categorical
covariates.

Depth values can be classiefied into two regimes representing
two different classes of skates’ behaviours.
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