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Graphical models

Graphical models

m Graphs useful to represent dependencies between random variables.
m Two main types of graphical models

m Directed acylic graph (DAG); a.k.a. Bayesian networks
m Undirected graph; known as Markov networks. Main topic.
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Graphical models

Graphical models

m Graphs useful to represent dependencies between random variables.
m Two main types of graphical models

m Directed acylic graph (DAG); a.k.a. Bayesian networks
m Undirected graph; known as Markov networks. Main topic.

m Useful in many applications: speech recognition, biological networks
modeling, protein folding problems, etc...

m Some notation: M, space of p x p symmetric matrices. M;{ its
cone of spd elements,

<A’B>F déf ZAUB’LJ’ A, Be Mp.

i<

Yves Atchade University of Warwick



Graphical models

Graphical models

m A parametric graphical model:

m p nodes. A set Y C R.

m Non-zero functions By : Y — R, and B: Y xY — R symmetric.
m Then define {fy,6 € Q},

fo(y) =

1 D
Z0) exp ZejjBO(yj)+ZeijB(yiuyj) )
j=1

i<j

o {9 eEM,: Z(0) < /e*<9’3<y>>de < oo} :
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Graphical models

Graphical models

m Parametric model {fy,0 € Q}.

m The parameter 0 € ) modulates the interaction. Importantly,
6;; = 0 implies conditional independence of y;,y; given remaining
variables.
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Graphical models

Graphical models

m Parametric model {fy,0 € Q}.

m The parameter 0 € ) modulates the interaction. Importantly,
6;; = 0 implies conditional independence of y;,y; given remaining
variables.

m It is often very appealing to assume that 6 is sparse, particularly
when p is large.

m Goal: estimate 6 € Q) from multiple (n) samples from fy, arranged
in a data matrix Z € R"*P,
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Graphical models

Graphical models

m Given a prior IT on 2. Main object of interest:

n

11(d6] 2) o TI(d0) [ | fo(Z:.).
i=1

m Set A the set of graph-skeletons (symmetric 0 — 1 matrices with
diagonal 1). For sparse estimation, we consider priors of the form

TI(d) = ) msT1(d6]5),

dEA

m where TI(d6|0) has support 2(9).
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Graphical models

Graphical models

m Given a prior IT on 2. Main object of interest:

n

11(d6] 2) o TI(d0) [ | fo(Z:.).
i=1

m Set A the set of graph-skeletons (symmetric 0 — 1 matrices with
diagonal 1). For sparse estimation, we consider priors of the form

TI(d) = ) msT1(d6]5),
dEA

m where TI(d6|0) has support 2(9).
m Difficulty with II(-|Z): Either the likelihood is intractable,

m Or Q(9) is a complicated space and prior is intractable.
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Graphical models

Quasi-Bayesian inference

m In large applications, it may be worth exploring less accurate but
faster alternatives.

m Quasi-Bayesian inference is a framework to formulate these
trade-offs.

m Think of Quasi-Bayesian inference as the Bayesian analog of
M-estimation.

m General idea: instead of the model {fo, 0 € Q}, we consider a
"larger pseudo-model” {fy, 6 € Q}.
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Graphical models

Quasi-Bayesian inference

m Pseudo-model: z — fg(z) needs not be a density. Chosen for
computational convenience.

m Larger pseudo-model: €2 C Q. Very useful to build interesting priors
on £2(0).
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Graphical models

Quasi-Bayesian inference

m Pseudo-model: z — fg(z) needs not be a density. Chosen for
computational convenience.

m Larger pseudo-model: €2 C Q. Very useful to build interesting priors
on £2(0).

m Quasi-posterior distributions have been used extensively in the
PAC-Bayesian literature (Catoni 2004).

m ABC is a form of quasi-Bayesian inference.

m Chernozukhov-Hong (J. Econ. 2003). Also popular in Bayesian
semi-parametric inference (Yang & He (AoS 2012), Kato (AoS
2013).
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Asymptotics of quasi-posterior distributions
Consider the quasi-posterior distribution

11(d0] Z) o< qo(Z)I1(d0).
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Graphical models

Asymptotics of quasi-posterior distributions
Consider the quasi-posterior distribution

11(d0] Z) o< qo(Z)I1(d0).

I1(-| Z) is a solution to the problem

in |— 1 Z)u(df) + KL(p|II
iy | [ togan(Z)u(as) + KL

where KL(,u|H fRd log(dp/dIT)dy is the KL-divergence of I1 from .

m Proof is Easy. See e.g. T. Zhang (AoS 2006).

m If gy is good enough for a frequentist M-estimation inference, it is
good enough for a quasi-Bayesian inference— upto the prior.
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Graphical models

Example: binary graphical models

m Binary graphical model. Y = {0,1}. B(z,y) = zy. Here Q = M,,
and
Z(0) s typically intractable .
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Graphical models

Example: binary graphical models

m Binary graphical model. Y = {0,1}. B(z,y) = zy. Here Q = M,,
and
Z(0) s typically intractable .

m There is a very commonly used pseudo-likelihood function to
circumvent the intractable normalizing constant.

n P exp (Zij (‘gjj + 2k eij““»

w2z = TI11I

, 0e M,
i=1;=1 1+exp (ajj + Zk;ﬁj aijik)

n

p
[T #7zi12i ) 0 € My,

i=1j=1

m Note: fé_j]_)(Zij\Zi,,j) depends only on the j-th column of 6.
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Graphical models

Example: binary graphical models

m Then very easy to set up prior of My (9).
m However, dimension of M,, grows fast. Larger than 10°, for p ~ 500.
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Graphical models

Example: binary graphical models

m Then very easy to set up prior of My (9).
m However, dimension of M,, grows fast. Larger than 10°, for p &~ 500.

m We can further simplify the problem by enlarging the parameter
space from M, to RP*P:

n P
a(Z) = H H fé_jj)(zijlzi,—j) 0 € RP*P,

i=1j=1
p n )

= ]I (H f§7j)(ZijZi,_j)> , 0 RV,
j=1 \i=1

m In that case go(Z) factorizes along the columns of 6.
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Graphical models

Example: binary graphical models

m Take p independent sparsity inducing priors on RP, and we get a
posterior on RP*P;

p
11(d6| 2) :H [(d6.;12),

where

n

11(du|2) = [[ £(Zi51 Zi—5) Y msT1(d0)9).

i=1 sen,

m We can sample from the distribution I1;(d6|Z) in parallel.
Potentially huge computing gain.
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Graphical models

Example: binary graphical models

m Very popular method for fitting large graphical models in frequentist
inference.

m Initially introduced by Meinhausen & Buhlmann (AoS 2006), for
Gaussian graphical models.

m See also Ravikumar et al. (AoS 2010) for binary graphical models.
Sun & Zhang (JMLR, 2013) for a scaled-Lasso version.

m Very efficient (divide and conquer). We can fit p = 1000 nodes in
few minutes on large clusters.
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Graphical models

Example: binary graphical models

m Very popular method for fitting large graphical models in frequentist
inference.

m Initially introduced by Meinhausen & Buhlmann (AoS 2006), for
Gaussian graphical models.

m See also Ravikumar et al. (AoS 2010) for binary graphical models.
Sun & Zhang (JMLR, 2013) for a scaled-Lasso version.

m Very efficient (divide and conquer). We can fit p = 1000 nodes in
few minutes on large clusters.

m Loss of symmetry.

m Should we worry about all the simplification involved?
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Graphical models

Example: binary graphical models

m Assume we build the prior IT R? as follows.

I(do) = > msl1(do)s).
SEA,

=11, q%(1—q) %, g=p " u>1.

0,15 ~ { Dirac(0) ifo; =0

Laplace(p) ifd; =1

p = 24+/nlog(p).

m See Castillo et al. (AoS 2015).

Yves Atchade University of Warwick
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Graphical models

Example: binary graphical models

H1: There exists 0, € M, such that the rows of Z are i.i.d. fo,.

m Set
def u
5, @%2 {0,510
1=
the max. degree of 6,.
m For 0 € RP*P  define the norm
def
6] = sup 6]z
1<j<p
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Graphical models

Example: binary graphical models

Theorem (A.A.(2015))
With prior and assumption above, and under some regularity conditions,
define

1 5, log(p)
£(8x) no

Tn,d =

There exists universal constants M > 2, A1 > 0, Ay > 0 such that for p

large enough, and
2
Sx
>A 1
w2 4 (7)) Touto)

. 2 12
E[II ({6 € RP*P: [|6 — b.]| > Morna}|2)] < A T
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Graphical models

Example: binary graphical models

m Gives some guarantee that the method is not completely silly.

m Regularity conditions: restricted smallest eigenvalues of Fisher
information matrix bounded away from 0.

m Minimax rate. Even in full likelihood inference cannot do better in
term of convergence rate.

m Extension to more general class of prior is possible.

m Similar results hold for Gaussian graphical models, and more general
models.
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Computations

Approximate Computations

m How to sample from

(d0|Z) = ¢o(Z) Y ms H ¢(0;)pp,5(d0) 7

m Rather we consider:

p
T1(6,d6|Z) = 75 exp | log qo(Z) + Z d;log d(0;) | 1p,5(d8).

j=1
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Computations

Approximate Computations

m How to sample from

11(d6|12) = go(2) > 75 [ #(6;)1p.5(d0) ?
m Rather we consider:

p
T1(6,d6|Z) = 75 exp | log qo(Z) + Z d;log d(0;) | 1p,5(d8).

j=1

m Issue: for § # ¢, T1(d6|8, Z) and T1(dA|d’", Z) are singular measures.

m We want to avoid transdimensional MCMC techniques
(reversible-jump style MCMC). Poor mixing.

m We propose an approximation method using the Moreau envelops.

Yves Atchade University of Warwick



Computations

Approximate Computations

Suppose h : R? — (—o0, +00] is convex (possibly not smooth).

For v > 0, the Moreau-Yosida approximation of A is:

- 1 2
hy(6) = min h(u)+gllu—6’ll ~

m ). is convex, class C' with Lip. gradient, and h 1T h pointwise as
v — 0.

Well-studied approximation method.

m Leads to the proximal algorithm.

Yves Atchade University of Warwick



Computations

Approximate Computations

m In many cases, h., cannot be computed/evaluated.

m If h=f+ g, and f is smooth, one can use the forward-backward
approximation

~ 1
hy(x) = mi V() u— —u—z|?
7(@) = min | f(2) + (Vf(z),u —2) +g(u) + QVIIU x|
] 57 < hy < h, and has similar properties as h.,.

m ). is easy to compute when g is simple enough.

m Explored by (Pereyra (Stat. Comp. (2015), Schrek et al. (2014)) as
proposal mechanism in MCMC.
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Computations

Figure: Figure showing the function h(z) = —az + log(1 + €**) + b|z| for
a=0.8, b= 0.5 (blue/solid line), and the approximations h. and h.,
(hy < hy), for v € {5,1,0.1}.
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Computations

Approximate Computations

m For v > 0, the Moreau-Yosida approximation of A is:

. 1
hv(e) = 51611]1& h(u) + %Hu — 9”2 .

m Notice that even if dom(h) # RP, h, is still finite everywhere.

m Hence if h(xz) = —logn(x) for some log-concave density 7
7y (x) = ie’hw(“ z € RP
v Z’y ’ )

is an approximation of 7 (assume Z, < c0), and 7, < Lebga.

m We show that 7, converges weakly to 7 as v — 0.
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Computations

Approximate Computations

m Back to I1(+|2).

P
1(6,d0|Z) o wsexp logqg(Z)+Z6jlog¢(0j) s (du),
j=1

d
o mexp |logge(Z) + Y 8;log (0;) — e, (0) | pp.s(du).

j=1

—h(015)

m Leads to 5
I1,(8,d0) o 75 (2777)”5”1/2 e_h”(e“s)dﬁ,

where h.,(-|0) is the forward-backward approx. of h.
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Approximate Computations

115111

I1,(8,d6) oc 75 (2my) 2 e M O19qg.
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Computations

Approximate Computations

115111

11, (5,d) oc 75 (27y) 2

e gy,

m Assume: —logqy(Z) is convex, has L-Lip. gradient, and

1
—loggs(2) > 7 [IVIogas(2)[*.

m Assume: —log ¢ is convex.

Theorem

Take v =70/L, 0 € (0,1/4]. ThenIl, is a well-defined p.m. on
A, x RP, and there exists a finite constant (in p) C such that

ﬂ (ﬁ’yaﬁ) < \/%+ C’Yopa

where (-, -) is the 3-metric between p.m. (metricizes weak convergence).
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Computations

Approximate Computations

m In theory, we get better bound by taking for e.g.

=2
Ll

m However as fL, gets very close to II, sampling from f[7 becomes
hard.

m The theorem above is a worst case analysis. What is the behavior
for typical data realizations?

Yves Atchade University of Warwick
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Computations

Relative Error Structure Recovery
T — gamma_0=0.25 o |
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Figure: Sparse Bayesian linear regression example. p = 500, n = 200.
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Approximate Computations

151l

I, (5,d) oc ms (27y) 2

e~ 1) gy,

m Linear regression: —logqy(Z) = ||Z — X0]|? /20>
m Assume Z ~ N(X0,,0%1,).
m Assume: the sparse prior assumption in Theorem 1.

Take v =~0/L, 70 € (0,1/4]. There exists a finite constant (in p) C
such that

E [ (IL,,11)] < A0 + C (1 +70log(p)) -

Yves Atchade University of Warwick



Computations

Approximate Computations

1311

I, (3,d) oc ms (27y) 2

e @99,

m We can sample from II using “standard” MCMC methods.

m Key advantage: given 6, the comp. of § are conditionally indep.
Bernoulli.

m Given §, do a Metropolis-Langevin approach that takes adv. of the
smoothness of h..

m The gradient of § — h,(6]0) is related to the proximal map of h.
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A Gaussian graphical example

A Gaussian graphical example

m Example: sparse estimation of large Gaussian graphical models.
m We compare the quasi-posterior mean and g-lasso estimator

~ . (1 — Ot) 2

Vglasso = Argmin et |~ logdet 6 + Tr(0S) + )\Z (O{leijl + 5 0;; ,
i,

where S = (1/n)Z'Z.

m We do comparison along:

Zi<j 1{|"9ij‘>0}l{sign(ﬁw):sign(ﬂ”)} )

_ =9l
2oicy Ljoy;1>03

9]l

£ , SEN =

Zi 1 9. 1 i 9. )=si L
and PREC = <j {|192”:\>0}1 {sAgn(ﬂ”) sign(945)} . (3)
i<j ~{|9i;]>0}
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A Gaussian graphical example

19]2]. known Empirical Bayes Glasso

Relative Error (€ in %) 19.2 21.6 63.1
Sensitivity (SEN in %) 68.4 69.0 40.5
Precision (PREC in %) 100.0 100.0 74.9

Table: Table showing the relative error, sensitivity and precision (as defined in
(3)) for Setting (a), with p = 100 nodes. Based on 20 simulation replications.
Each MCMC run is 5 x 10* iterations.
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A Gaussian graphical example

A Gaussian graphical example

19]2]. known Empirical Bayes Glasso

Relative Error (€ in %) 231 26.2 45.2
Sensitivity (SEN in %) 44.6 45.4 87.9
Precision (PREC in %) 100 99.9 56.1

Table: Table showing the relative error, sensitivity and precision (as defined in
(3)) for Setting (b), with p = 500 nodes. Based on 20 simulation replications.
Each MCMC run is 5 x 10* iterations.
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A Gaussian graphical example

19]2-]- known Empirical Bayes Glasso

Relative Error (£ in %) 30.8 35.2 66.9
Sensitivity (SEN in %) 16.3 16.4 6.6
Precision (PREC in %) 99.9 99.8 94.7

Table: Table showing the relative error, sensitivity and precision (as defined in
(3)) for Setting (c), with p = 1,000 nodes. Based on 20 simulation
replications. Each MCMC run is 5 x 10 iterations.
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A Gaussian graphical example

eeeee

Figure: Figure showing the confidence interval bars (obtained from one MCMC
run), for the non-diagonal entries of ¥ in Setting (a). The dots represent the
true values.
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Conclusion

Conclusion

m Quasi-posterior inference is consistent in high-dimensional setting.

m On the approx. computation, how to formalize the trade-off between
good approx. and fast MCMC computation.

m Joint statistical and computational asymptotics.
m Matlab code available from website.
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Conclusion

Conclusion

Quasi-posterior inference is consistent in high-dimensional setting.

On the approx. computation, how to formalize the trade-off between
good approx. and fast MCMC computation.

Joint statistical and computational asymptotics.
Matlab code available from website.

Postdoc opening available at the University of Michigan:

www.stat.lsa.umich.edu/"yvesa
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Conclusion

Conclusion

Quasi-posterior inference is consistent in high-dimensional setting.

On the approx. computation, how to formalize the trade-off between
good approx. and fast MCMC computation.

Joint statistical and computational asymptotics.
Matlab code available from website.

Postdoc opening available at the University of Michigan:
www.stat.lsa.umich.edu/"yvesa

m Thanks for your attention... and patience !
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