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Graphical models

Graphs useful to represent dependencies between random variables.

Two main types of graphical models

Directed acylic graph (DAG); a.k.a. Bayesian networks
Undirected graph; known as Markov networks. Main topic.

Useful in many applications: speech recognition, biological networks
modeling, protein folding problems, etc...

Some notation: Mp space of p× p symmetric matrices. M+
p its

cone of spd elements,

〈A,B〉F
def
=
∑
i≤j

AijBij , A, B ∈Mp.
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Graphical models

A parametric graphical model:

p nodes. A set Y ⊂ R.

Non-zero functions B0 : Y → R, and B : Y × Y → R symmetric.

Then define {fθ, θ ∈ Ω},

fθ(y) =
1

Z(θ)
exp

 p∑
j=1

θjjB0(yj) +
∑
i<j

θijB(yi, yj)

 ,

Ω
def
=

{
θ ∈Mp : Z(θ)

def
=

∫
e−〈θ,B̄(y)〉

Fdy <∞
}
.
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Graphical models

Parametric model {fθ, θ ∈ Ω}.
The parameter θ ∈ Ω modulates the interaction. Importantly,
θij = 0 implies conditional independence of yi, yj given remaining
variables.

It is often very appealing to assume that θ is sparse, particularly
when p is large.

Goal: estimate θ ∈ Ω from multiple (n) samples from fθ? arranged
in a data matrix Z ∈ Rn×p.
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Graphical models

Given a prior Π on Ω. Main object of interest:

Π(dθ|Z) ∝ Π(dθ)

n∏
i=1

fθ(Zi·).

Set ∆ the set of graph-skeletons (symmetric 0− 1 matrices with
diagonal 1). For sparse estimation, we consider priors of the form

Π(dθ) =
∑
δ∈∆

πδΠ(dθ|δ),

where Π(dθ|δ) has support Ω(δ).

Difficulty with Π(·|Z): Either the likelihood is intractable,

Or Ω(δ) is a complicated space and prior is intractable.
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Quasi-Bayesian inference

In large applications, it may be worth exploring less accurate but
faster alternatives.

Quasi-Bayesian inference is a framework to formulate these
trade-offs.

Think of Quasi-Bayesian inference as the Bayesian analog of
M-estimation.

General idea: instead of the model {fθ, θ ∈ Ω}, we consider a
”larger pseudo-model” {f̌θ, θ ∈ Ω̌}.
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Quasi-Bayesian inference

Pseudo-model: z 7→ f̌θ(z) needs not be a density. Chosen for
computational convenience.

Larger pseudo-model: Ω ⊆ Ω̌. Very useful to build interesting priors
on Ω̌(δ).

Quasi-posterior distributions have been used extensively in the
PAC-Bayesian literature (Catoni 2004).

ABC is a form of quasi-Bayesian inference.

Chernozukhov-Hong (J. Econ. 2003). Also popular in Bayesian
semi-parametric inference (Yang & He (AoS 2012), Kato (AoS
2013).
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Asymptotics of quasi-posterior distributions

Consider the quasi-posterior distribution

Π̌(dθ|Z) ∝ qθ(Z)Π(dθ).

Theorem

Π̌(·|Z) is a solution to the problem

min
µ�Π

[
−
∫
Rd

log qθ(Z)µ(dθ) + KL(µ|Π)

]
,

where KL(µ|Π)
def
=
∫
Rd log(dµ/dΠ)dµ is the KL-divergence of Π from µ.

Proof is Easy. See e.g. T. Zhang (AoS 2006).

If qθ is good enough for a frequentist M-estimation inference, it is
good enough for a quasi-Bayesian inference– upto the prior.

Yves Atchade University of Warwick
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Example: binary graphical models

Binary graphical model. Y = {0, 1}. B(x, y) = xy. Here Ω =Mp

and
Z(θ) is typically intractable .

There is a very commonly used pseudo-likelihood function to
circumvent the intractable normalizing constant.

qθ(Z) =

n∏
i=1

p∏
j=1

exp
(
Zij

(
θjj +

∑
k 6=j θjkZik

))
1 + exp

(
θjj +

∑
k 6=j θjkZik

) , θ ∈Mp,

=
n∏
i=1

p∏
j=1

f
(j)
θ·j

(Zij |Zi,−j) θ ∈Mp,

Note: f
(j)
θ·j

(Zij |Zi,−j) depends only on the j-th column of θ.
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Example: binary graphical models

Then very easy to set up prior of Mp(δ).

However, dimension ofMp grows fast. Larger than 105, for p ≈ 500.

We can further simplify the problem by enlarging the parameter
space from Mp to Rp×p:

qθ(Z) =

n∏
i=1

p∏
j=1

f
(j)
θ·j

(Zij |Zi,−j) θ ∈ Rp×p,

=

p∏
j=1

(
n∏
i=1

f
(j)
θ·j

(Zij |Zi,−j)

)
, θ ∈ Rp×p.

In that case qθ(Z) factorizes along the columns of θ.
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Example: binary graphical models

Take p independent sparsity inducing priors on Rp, and we get a
posterior on Rp×p:

Π̌(dθ|Z) =

p∏
j=1

Π̌j(dθ·j |Z),

where

Π̌j(du|Z) =

n∏
i=1

f
(j)
θ·j

(Zij |Zi,−j)
∑
δ∈∆p

πδΠ(dθ|δ).

We can sample from the distribution Π̌j(dθ|Z) in parallel.
Potentially huge computing gain.

Yves Atchade University of Warwick
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Example: binary graphical models

Very popular method for fitting large graphical models in frequentist
inference.

Initially introduced by Meinhausen & Buhlmann (AoS 2006), for
Gaussian graphical models.

See also Ravikumar et al. (AoS 2010) for binary graphical models.
Sun & Zhang (JMLR, 2013) for a scaled-Lasso version.

Very efficient (divide and conquer). We can fit p = 1000 nodes in
few minutes on large clusters.

Loss of symmetry.

Should we worry about all the simplification involved?

Yves Atchade University of Warwick
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Example: binary graphical models

Assume we build the prior Π Rp as follows.

Π(dθ) =
∑
δ∈∆p

πδΠ(dθ|δ). (1)

πδ =
∏p
j=1 q

δj (1− q)1−δj , q = p−u, u > 1.

θj |δ ∼
{

Dirac(0) if δj = 0
Laplace(ρ) if δj = 1

, (2)

ρ = 24
√
n log(p).

See Castillo et al. (AoS 2015).
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Example: binary graphical models

H

H1: There exists θ? ∈Mp such that the rows of Z are i.i.d. fθ? .

Set

s?
def
= max

1≤j≤p

p∑
i=1

1{|θij |>0},

the max. degree of θ?.

For θ ∈ Rp×p, define the norm

|||θ||| def
= sup

1≤j≤p
‖θ·j‖2.

Yves Atchade University of Warwick
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Example: binary graphical models

Theorem (A.A.(2015))

With prior and assumption above, and under some regularity conditions,
define

rn,d =
1

κ(s?)

√
s? log(p)

n
.

There exists universal constants M > 2, A1 > 0, A2 > 0 such that for p
large enough, and

n ≥ A1

(
s?

κ(s?)

)2

log(p),

E
[
Π̌
({
θ ∈ Rp×p : |||θ − θ?||| > M0rn,d

}
|Z
)]
≤ 2

eA2n
+

12

d
.
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Example: binary graphical models

Gives some guarantee that the method is not completely silly.

Regularity conditions: restricted smallest eigenvalues of Fisher
information matrix bounded away from 0.

Minimax rate. Even in full likelihood inference cannot do better in
term of convergence rate.

Extension to more general class of prior is possible.

Similar results hold for Gaussian graphical models, and more general
models.

Yves Atchade University of Warwick



Graphical models
Computations

A Gaussian graphical example
Conclusion

1 Graphical models

2 Computations

3 A Gaussian graphical example

4 Conclusion

Yves Atchade University of Warwick



Graphical models
Computations

A Gaussian graphical example
Conclusion

Approximate Computations

How to sample from

Π̌(dθ|Z) = qθ(Z)
∑
δ∈∆p

πδ
∏

j: δj=1

φ(θj)µp,δ(dθ) ?

Rather we consider:

Π̌(δ, dθ|Z) = πδ exp

log qθ(Z) +

p∑
j=1

δj log φ(θj)

µp,δ(dθ).

Issue: for δ 6= δ′, Π̌(dθ|δ, Z) and Π̌(dθ|δ′, Z) are singular measures.

We want to avoid transdimensional MCMC techniques
(reversible-jump style MCMC). Poor mixing.

We propose an approximation method using the Moreau envelops.

Yves Atchade University of Warwick
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Approximate Computations

Suppose h : Rp → (−∞,+∞] is convex (possibly not smooth).

For γ > 0, the Moreau-Yosida approximation of h is:

hγ(θ) = min
u∈Rp

[
h(u) +

1

2γ
‖u− θ‖2

]
.

hγ is convex, class C1 with Lip. gradient, and hγ ↑ h pointwise as
γ → 0.

Well-studied approximation method.

Leads to the proximal algorithm.

Yves Atchade University of Warwick
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Approximate Computations

In many cases, hγ cannot be computed/evaluated.

If h = f + g, and f is smooth, one can use the forward-backward
approximation

h̃γ(x) = min
u∈Rd

[
f(x) + 〈∇f(x), u− x〉+ g(u) +

1

2γ
‖u− x‖2

]
.

h̃γ ≤ hγ ≤ h, and has similar properties as hγ .

hγ is easy to compute when g is simple enough.

Explored by (Pereyra (Stat. Comp. (2015), Schrek et al. (2014)) as
proposal mechanism in MCMC.

Yves Atchade University of Warwick
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Figure: Figure showing the function h(x) = −ax+ log(1 + eax) + b|x| for
a = 0.8, b = 0.5 (blue/solid line), and the approximations hγ and h̃γ
(hγ ≤ h̃γ), for γ ∈ {5, 1, 0.1}.
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Approximate Computations

For γ > 0, the Moreau-Yosida approximation of h is:

hγ(θ) = min
u∈Rp

[
h(u) +

1

2γ
‖u− θ‖2

]
.

Notice that even if dom(h) 6= Rp, hγ is still finite everywhere.

Hence if h(x) = − log π(x) for some log-concave density π

πγ(x) =
1

Zγ
e−hγ(x), x ∈ Rp,

is an approximation of π (assume Zγ <∞), and πγ � LebRd .

We show that πγ converges weakly to π as γ → 0.
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Approximate Computations

Back to Π̌(·|Z).

Π̌(δ, dθ|Z) ∝ πδ exp

log qθ(Z) +

p∑
j=1

δj log φ(θj)

µp,δ(du),

∝ πδ exp

log qθ(Z) +

d∑
j=1

δj log φ(θj)− ιΘδ(θ)︸ ︷︷ ︸
−h(θ|δ)

µp,δ(du).

Leads to
Π̌γ(δ, dθ) ∝ πδ (2πγ)

‖δ‖1/2 e−hγ(θ|δ)dθ,

where hγ(·|δ) is the forward-backward approx. of h.

Yves Atchade University of Warwick
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Approximate Computations

Π̌γ(δ, dθ) ∝ πδ (2πγ)
‖δ‖1

2 e−hγ(θ|δ)dθ.

Assume: − log qθ(Z) is convex, has L-Lip. gradient, and

− log qθ(Z) ≥ 1

2L
‖∇ log qθ(Z)‖2.

Assume: − log φ is convex.

Theorem

Take γ = γ0/L, γ0 ∈ (0, 1/4]. Then Πγ is a well-defined p.m. on
∆p × Rp, and there exists a finite constant (in p) C such that

β
(
Π̌γ , Π̌

)
≤ √γ0 + Cγ0p,

where β(·, ·) is the β-metric between p.m. (metricizes weak convergence).

Yves Atchade University of Warwick
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Approximate Computations

In theory, we get better bound by taking for e.g.

γ =
γ0

Lp
.

However as Π̌γ gets very close to Π̌, sampling from Π̌γ becomes
hard.

The theorem above is a worst case analysis. What is the behavior
for typical data realizations?
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Figure: Sparse Bayesian linear regression example. p = 500, n = 200.
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Approximate Computations

Π̌γ(δ, dθ) ∝ πδ (2πγ)
‖δ‖1

2 e−hγ(θ|δ)dθ.

Linear regression: − log qθ(Z) = ‖Z −Xθ‖2/2σ2.

Assume Z ∼ N(Xθ?, σ
2In).

Assume: the sparse prior assumption in Theorem 1.

Theorem

Take γ = γ0/L, γ0 ∈ (0, 1/4]. There exists a finite constant (in p) C
such that

E
[
β
(
Π̌γ , Π̌

)]
≤ √γ0 + C (1 + γ0 log(p)) .

Yves Atchade University of Warwick



Graphical models
Computations

A Gaussian graphical example
Conclusion

Approximate Computations

Π̌γ(δ, dθ) ∝ πδ (2πγ)
‖δ‖1

2 e−hγ(θ|δ)dθ.

We can sample from Π̌ using “standard” MCMC methods.

Key advantage: given θ, the comp. of δ are conditionally indep.
Bernoulli.

Given δ, do a Metropolis-Langevin approach that takes adv. of the
smoothness of hγ .

The gradient of θ 7→ hγ(θ|δ) is related to the proximal map of h.

Yves Atchade University of Warwick
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A Gaussian graphical example

Example: sparse estimation of large Gaussian graphical models.

We compare the quasi-posterior mean and g-lasso estimator

ϑ̂glasso = Argmin
θ∈M+

p

[
− log det θ + Tr(θS) + λ

∑
i,j

(
α|θij |+

(1− α)
2

θ2ij

)]
,

where S = (1/n)Z′Z.

We do comparison along:

E =
‖ϑ̂− ϑ‖F
‖ϑ‖F

, SEN =

∑
i<j 1{|ϑij |>0}1{sign(ϑ̂ij)=sign(ϑij)}∑

i<j 1{|ϑij |>0}
;

and PREC =

∑
i<j 1{|ϑ̂ij |>0}1{sign(ϑ̂ij)=sign(ϑij)}∑

i<j 1{|ϑ̂ij |>0}
. (3)
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A Gaussian graphical example

ϑ2
jj known Empirical Bayes Glasso

Relative Error (E in %) 19.2 21.6 63.1
Sensitivity (SEN in %) 68.4 69.0 40.5
Precision (PREC in %) 100.0 100.0 74.9

Table: Table showing the relative error, sensitivity and precision (as defined in
(3)) for Setting (a), with p = 100 nodes. Based on 20 simulation replications.
Each MCMC run is 5× 104 iterations.
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A Gaussian graphical example

ϑ2
jj known Empirical Bayes Glasso

Relative Error (E in %) 23.1 26.2 45.2
Sensitivity (SEN in %) 44.6 45.4 87.9
Precision (PREC in %) 100 99.9 56.1

Table: Table showing the relative error, sensitivity and precision (as defined in
(3)) for Setting (b), with p = 500 nodes. Based on 20 simulation replications.
Each MCMC run is 5× 104 iterations.
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A Gaussian graphical example

ϑ2
jj known Empirical Bayes Glasso

Relative Error (E in %) 30.8 35.2 66.9
Sensitivity (SEN in %) 16.3 16.4 6.6
Precision (PREC in %) 99.9 99.8 94.7

Table: Table showing the relative error, sensitivity and precision (as defined in
(3)) for Setting (c), with p = 1, 000 nodes. Based on 20 simulation
replications. Each MCMC run is 5× 104 iterations.
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Figure: Figure showing the confidence interval bars (obtained from one MCMC
run), for the non-diagonal entries of ϑ in Setting (a). The dots represent the
true values.

Yves Atchade University of Warwick



Graphical models
Computations

A Gaussian graphical example
Conclusion

1 Graphical models

2 Computations

3 A Gaussian graphical example

4 Conclusion

Yves Atchade University of Warwick



Graphical models
Computations

A Gaussian graphical example
Conclusion

Conclusion

Quasi-posterior inference is consistent in high-dimensional setting.

On the approx. computation, how to formalize the trade-off between
good approx. and fast MCMC computation.

Joint statistical and computational asymptotics.

Matlab code available from website.

Postdoc opening available at the University of Michigan:

www.stat.lsa.umich.edu/~yvesa

Thanks for your attention... and patience !
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