Graphical models
Computations
A Gaussian graphical example
Conclusion

High-dimensional Bayesian asymptotics and computation

Aguemon Yves Atchadé

University of Michigan

- 1 Graphical models
- 2 Computations
- 3 A Gaussian graphical example
- 4 Conclusion

- Graphs useful to represent dependencies between random variables.
- Two main types of graphical models
 - Directed acylic graph (DAG); a.k.a. Bayesian networks
 - Undirected graph; known as Markov networks. Main topic.

- Graphs useful to represent dependencies between random variables.
- Two main types of graphical models
 - Directed acylic graph (DAG); a.k.a. Bayesian networks
 - Undirected graph; known as Markov networks. Main topic.
- Useful in many applications: speech recognition, biological networks modeling, protein folding problems, etc...
- Some notation: \mathcal{M}_p space of $p \times p$ symmetric matrices. \mathcal{M}_p^+ its cone of spd elements,

$$\langle A, B \rangle_F \stackrel{\text{def}}{=} \sum_{i \le j} A_{ij} B_{ij}, \quad A, B \in \mathcal{M}_p.$$

- A parametric graphical model:
- p nodes. A set $Y \subset \mathbb{R}$.
- Non-zero functions $B_0: Y \to \mathbb{R}$, and $B: Y \times Y \to \mathbb{R}$ symmetric.
- Then define $\{f_{\theta}, \theta \in \Omega\}$,

$$f_{\theta}(y) = \frac{1}{Z(\theta)} \exp \left(\sum_{j=1}^{p} \theta_{jj} B_0(y_j) + \sum_{i < j} \theta_{ij} B(y_i, y_j) \right),$$

$$\Omega \stackrel{\text{def}}{=} \left\{ \theta \in \mathcal{M}_p : \ Z(\theta) \stackrel{\text{def}}{=} \int e^{-\left\langle \theta, \bar{B}(y) \right\rangle_{\mathsf{F}}} \mathrm{d}y < \infty \right\}.$$

- Parametric model $\{f_{\theta}, \theta \in \Omega\}$.
- The parameter $\theta \in \Omega$ modulates the interaction. Importantly, $\theta_{ij} = 0$ implies conditional independence of y_i, y_j given remaining variables.

- Parametric model $\{f_{\theta}, \theta \in \Omega\}$.
- The parameter $\theta \in \Omega$ modulates the interaction. Importantly, $\theta_{ij} = 0$ implies conditional independence of y_i, y_j given remaining variables.
- \blacksquare It is often very appealing to assume that θ is sparse, particularly when p is large.
- Goal: estimate $\theta \in \Omega$ from multiple (n) samples from $f_{\theta_{\star}}$ arranged in a data matrix $Z \in \mathbb{R}^{n \times p}$.

■ Given a prior Π on Ω . Main object of interest:

$$\Pi(\mathrm{d}\theta|Z) \propto \Pi(\mathrm{d}\theta) \prod_{i=1}^n f_{\theta}(Z_{i\cdot}).$$

■ Set Δ the set of graph-skeletons (symmetric 0-1 matrices with diagonal 1). For sparse estimation, we consider priors of the form

$$\Pi(\mathrm{d}\theta) = \sum_{\delta \in \Delta} \pi_{\delta} \Pi(\mathrm{d}\theta | \delta),$$

• where $\Pi(d\theta|\delta)$ has support $\Omega(\delta)$.

■ Given a prior Π on Ω . Main object of interest:

$$\Pi(\mathrm{d}\theta|Z) \propto \Pi(\mathrm{d}\theta) \prod_{i=1}^{n} f_{\theta}(Z_{i\cdot}).$$

■ Set Δ the set of graph-skeletons (symmetric 0-1 matrices with diagonal 1). For sparse estimation, we consider priors of the form

$$\Pi(\mathrm{d}\theta) = \sum_{\delta \in \Delta} \pi_{\delta} \Pi(\mathrm{d}\theta | \delta),$$

- where $\Pi(d\theta|\delta)$ has support $\Omega(\delta)$.
- Difficulty with $\Pi(\cdot|Z)$: Either the likelihood is intractable,
- lacksquare Or $\Omega(\delta)$ is a complicated space and prior is intractable.

Quasi-Bayesian inference

- In large applications, it may be worth exploring less accurate but faster alternatives.
- Quasi-Bayesian inference is a framework to formulate these trade-offs.
- Think of Quasi-Bayesian inference as the Bayesian analog of M-estimation.
- General idea: instead of the model $\{f_{\theta}, \ \theta \in \Omega\}$, we consider a "larger pseudo-model" $\{\check{f}_{\theta}, \ \theta \in \check{\Omega}\}$.

Quasi-Bayesian inference

- Pseudo-model: $z \mapsto \check{f}_{\theta}(z)$ needs not be a density. Chosen for computational convenience.
- Larger pseudo-model: $\Omega \subseteq \check{\Omega}$. Very useful to build interesting priors on $\check{\Omega}(\delta)$.

Quasi-Bayesian inference

- Pseudo-model: $z \mapsto \check{f}_{\theta}(z)$ needs not be a density. Chosen for computational convenience.
- Larger pseudo-model: $\Omega \subseteq \check{\Omega}$. Very useful to build interesting priors on $\check{\Omega}(\delta)$.
- Quasi-posterior distributions have been used extensively in the PAC-Bayesian literature (Catoni 2004).
- ABC is a form of quasi-Bayesian inference.
- Chernozukhov-Hong (J. Econ. 2003). Also popular in Bayesian semi-parametric inference (Yang & He (AoS 2012), Kato (AoS 2013).

Asymptotics of quasi-posterior distributions

Consider the quasi-posterior distribution

$$\check{\Pi}(\mathrm{d}\theta|Z) \propto q_{\theta}(Z)\Pi(\mathrm{d}\theta).$$

Asymptotics of quasi-posterior distributions

Consider the quasi-posterior distribution

$$\check{\Pi}(\mathrm{d}\theta|Z) \propto q_{\theta}(Z)\Pi(\mathrm{d}\theta).$$

Theorem

 $\check{\Pi}(\cdot|Z)$ is a solution to the problem

$$\min_{\mu \ll \Pi} \left[-\int_{\mathbb{R}^d} \log q_{\theta}(Z) \mu(\mathrm{d}\theta) + \mathsf{KL}(\mu|\Pi) \right],$$

where $\mathit{KL}(\mu|\Pi) \stackrel{\mathrm{def}}{=} \int_{\mathbb{R}^d} \log(\mathrm{d}\mu/\mathrm{d}\Pi) \mathrm{d}\mu$ is the KL-divergence of Π from μ .

- Proof is Easy. See e.g. T. Zhang (AoS 2006).
- If q_{θ} is good enough for a frequentist M-estimation inference, it is good enough for a quasi-Bayesian inference—upto the prior.

■ Binary graphical model. Y = $\{0,1\}$. B(x,y)=xy. Here $\Omega=\mathcal{M}_p$ and

 $Z(\theta)$ is typically intractable .

- \blacksquare Binary graphical model. Y = {0,1}. B(x,y)=xy. Here $\Omega=\mathcal{M}_p$ and
 - Z(heta) is typically intractable .
- There is a very commonly used pseudo-likelihood function to circumvent the intractable normalizing constant.

$$q_{\theta}(Z) = \prod_{i=1}^{n} \prod_{j=1}^{p} \frac{\exp\left(Z_{ij}\left(\theta_{jj} + \sum_{k \neq j} \theta_{jk} Z_{ik}\right)\right)}{1 + \exp\left(\theta_{jj} + \sum_{k \neq j} \theta_{jk} Z_{ik}\right)}, \ \theta \in \mathcal{M}_{p},$$
$$= \prod_{i=1}^{n} \prod_{j=1}^{p} f_{\theta,j}^{(j)}(Z_{ij}|Z_{i,-j}) \ \theta \in \mathcal{M}_{p},$$

Note: $f_{\theta,j}^{(j)}(Z_{ij}|Z_{i,-j})$ depends only on the j-th column of θ .

- Then very easy to set up prior of $\mathcal{M}_p(\delta)$.
- However, dimension of \mathcal{M}_p grows fast. Larger than 10^5 , for $p \approx 500$.

- Then very easy to set up prior of $\mathcal{M}_p(\delta)$.
- However, dimension of \mathcal{M}_p grows fast. Larger than 10^5 , for $p \approx 500$.
- We can further simplify the problem by enlarging the parameter space from \mathcal{M}_p to $\mathbb{R}^{p \times p}$:

$$q_{\theta}(Z) = \prod_{i=1}^{n} \prod_{j=1}^{p} f_{\theta,j}^{(j)}(Z_{ij}|Z_{i,-j}) \quad \theta \in \mathbb{R}^{p \times p},$$

$$= \prod_{j=1}^{p} \left(\prod_{i=1}^{n} f_{\theta,j}^{(j)}(Z_{ij}|Z_{i,-j}) \right), \quad \theta \in \mathbb{R}^{p \times p}.$$

■ In that case $q_{\theta}(Z)$ factorizes along the columns of θ .

■ Take p independent sparsity inducing priors on \mathbb{R}^p , and we get a posterior on $\mathbb{R}^{p \times p}$:

$$\check{\Pi}(\mathrm{d}\theta|Z) = \prod_{j=1}^p \check{\Pi}_j(\mathrm{d}\theta_{\cdot j}|Z),$$

where

$$\check{\Pi}_{j}(\mathrm{d}u|Z) = \prod_{i=1}^{n} f_{\theta,j}^{(j)}(Z_{ij}|Z_{i,-j}) \sum_{\delta \in \Delta_{p}} \pi_{\delta} \Pi(\mathrm{d}\theta|\delta).$$

■ We can sample from the distribution $\check{\Pi}_j(\mathrm{d}\theta|Z)$ in parallel. Potentially huge computing gain.

- Very popular method for fitting large graphical models in frequentist inference.
- Initially introduced by Meinhausen & Buhlmann (AoS 2006), for Gaussian graphical models.
- See also Ravikumar et al. (AoS 2010) for binary graphical models. Sun & Zhang (JMLR, 2013) for a scaled-Lasso version.
- Very efficient (divide and conquer). We can fit p=1000 nodes in few minutes on large clusters.

- Very popular method for fitting large graphical models in frequentist inference.
- Initially introduced by Meinhausen & Buhlmann (AoS 2006), for Gaussian graphical models.
- See also Ravikumar et al. (AoS 2010) for binary graphical models. Sun & Zhang (JMLR, 2013) for a scaled-Lasso version.
- Very efficient (divide and conquer). We can fit p=1000 nodes in few minutes on large clusters.
- Loss of symmetry.
- Should we worry about all the simplification involved?

■ Assume we build the prior $\Pi \mathbb{R}^p$ as follows.

$$\Pi(\mathrm{d}\theta) = \sum_{\delta \in \Delta_p} \pi_\delta \Pi(\mathrm{d}\theta | \delta). \tag{1}$$

$$\pi_{\delta} = \prod_{j=1}^{p} q^{\delta_j} (1-q)^{1-\delta_j}, \ q=p^{-u}, \ u>1.$$

$$heta_j | \delta \sim \left\{ egin{array}{ll} \mathsf{Dirac}(0) & \mathsf{if} \ \delta_j = 0 \ \mathsf{Laplace}(
ho) & \mathsf{if} \ \delta_j = 1 \end{array}
ight., ag{2}$$

 $\rho = 24\sqrt{n\log(p)}.$

■ See Castillo et al. (AoS 2015).

Η

H1: There exists $\theta_{\star} \in \mathcal{M}_p$ such that the rows of Z are i.i.d. $f_{\theta_{\star}}$.

Set

$$s_{\star} \stackrel{\text{def}}{=} \max_{1 \le j \le p} \sum_{i=1}^{p} \mathbf{1}_{\{|\theta_{ij}| > 0\}},$$

the max. degree of θ_{\star} .

For $\theta \in \mathbb{R}^{p \times p}$, define the norm

$$|\!|\!|\!|\theta|\!|\!|\!| \stackrel{\mathrm{def}}{=} \sup_{1 \le j \le p} |\!|\!|\theta_{\cdot j}|\!|\!|_2.$$

Theorem (A.A.(2015))

With prior and assumption above, and under some regularity conditions, define

$$r_{n,d} = \frac{1}{\underline{\kappa}(s_{\star})} \sqrt{\frac{s_{\star} \log(p)}{n}}.$$

There exists universal constants $M>2, A_1>0, A_2>0$ such that for p large enough, and

$$n \ge A_1 \left(\frac{s_\star}{\underline{\kappa}(s_\star)}\right)^2 \log(p),$$

$$\mathbb{E}\left[\check{\Pi}\left(\left\{\theta \in \mathbb{R}^{p \times p}: \left\|\theta - \theta_{\star}\right\| > M_{0}r_{n,d}\right\}|Z\right)\right] \leq \frac{2}{e^{A_{2}n}} + \frac{12}{d}.$$

- Gives some guarantee that the method is not completely silly.
- Regularity conditions: restricted smallest eigenvalues of Fisher information matrix bounded away from 0.
- Minimax rate. Even in full likelihood inference cannot do better in term of convergence rate.
- Extension to more general class of prior is possible.
- Similar results hold for Gaussian graphical models, and more general models.

- 1 Graphical models
- 2 Computations
- 3 A Gaussian graphical example
- 4 Conclusion

■ How to sample from

$$\check{\Pi}(\mathrm{d}\theta|Z) = q_{\theta}(Z) \sum_{\delta \in \Delta_p} \pi_{\delta} \prod_{j: \delta_j = 1} \phi(\theta_j) \mu_{p,\delta}(\mathrm{d}\theta) ?$$

Rather we consider:

$$\check{\Pi}(\delta, d\theta|Z) = \pi_{\delta} \exp \left(\log q_{\theta}(Z) + \sum_{j=1}^{p} \delta_{j} \log \phi(\theta_{j}) \right) \mu_{p,\delta}(d\theta).$$

How to sample from

$$\check{\Pi}(\mathrm{d}\theta|Z) = q_{\theta}(Z) \sum_{\delta \in \Delta_p} \pi_{\delta} \prod_{j: \delta_j = 1} \phi(\theta_j) \mu_{p,\delta}(\mathrm{d}\theta) ?$$

Rather we consider:

$$\check{\Pi}(\delta, d\theta|Z) = \pi_{\delta} \exp \left(\log q_{\theta}(Z) + \sum_{j=1}^{p} \delta_{j} \log \phi(\theta_{j}) \right) \mu_{p,\delta}(d\theta).$$

- Issue: for $\delta \neq \delta'$, $\check{\Pi}(\mathrm{d}\theta|\delta,Z)$ and $\check{\Pi}(\mathrm{d}\theta|\delta',Z)$ are singular measures.
- We want to avoid transdimensional MCMC techniques (reversible-jump style MCMC). Poor mixing.
- We propose an approximation method using the Moreau envelops.

- Suppose $h: \mathbb{R}^p \to (-\infty, +\infty]$ is convex (possibly not smooth).
- For $\gamma > 0$, the Moreau-Yosida approximation of h is:

$$h_{\gamma}(\theta) = \min_{u \in \mathbb{R}^p} \left[h(u) + \frac{1}{2\gamma} ||u - \theta||^2 \right].$$

- h_{γ} is convex, class \mathcal{C}^1 with Lip. gradient, and $h_{\gamma} \uparrow h$ pointwise as $\gamma \to 0$.
- Well-studied approximation method.
- Leads to the proximal algorithm.

- In many cases, h_{γ} cannot be computed/evaluated.
- If h = f + g, and f is smooth, one can use the forward-backward approximation

$$\tilde{h}_{\gamma}(x) = \min_{u \in \mathbb{R}^d} \left[f(x) + \langle \nabla f(x), u - x \rangle + g(u) + \frac{1}{2\gamma} \|u - x\|^2 \right].$$

- $\tilde{h}_{\gamma} \leq h_{\gamma} \leq h$, and has similar properties as h_{γ} .
- lacksquare h_{γ} is easy to compute when g is simple enough.
- Explored by (Pereyra (Stat. Comp. (2015), Schrek et al. (2014)) as proposal mechanism in MCMC.

Figure: Figure showing the function $h(x)=-ax+\log(1+e^{ax})+b|x|$ for a=0.8, b=0.5 (blue/solid line), and the approximations h_γ and \tilde{h}_γ ($h_\gamma \leq \tilde{h}_\gamma$), for $\gamma \in \{5,1,0.1\}$.

■ For $\gamma > 0$, the Moreau-Yosida approximation of h is:

$$h_{\gamma}(\theta) = \min_{u \in \mathbb{R}^p} \left[h(u) + \frac{1}{2\gamma} ||u - \theta||^2 \right].$$

- Notice that even if dom $(h) \neq \mathbb{R}^p$, h_{γ} is still finite everywhere.
- Hence if $h(x) = -\log \pi(x)$ for some log-concave density π

$$\pi_{\gamma}(x) = \frac{1}{Z_{\gamma}} e^{-h_{\gamma}(x)}, \ x \in \mathbb{R}^p,$$

is an approximation of π (assume $Z_{\gamma} < \infty$), and $\pi_{\gamma} \ll \mathsf{Leb}_{\mathbb{R}^d}$.

• We show that π_{γ} converges weakly to π as $\gamma \to 0$.

■ Back to $\check{\Pi}(\cdot|Z)$.

Leads to

$$\check{\Pi}_{\gamma}(\delta, d\theta) \propto \pi_{\delta} (2\pi\gamma)^{\|\delta\|_{1}/2} e^{-h_{\gamma}(\theta|\delta)} d\theta,$$

where $h_{\gamma}(\cdot|\delta)$ is the forward-backward approx. of h.

$$\check{\Pi}_{\gamma}(\delta, d\theta) \propto \pi_{\delta} (2\pi\gamma)^{\frac{\|\delta\|_{1}}{2}} e^{-h_{\gamma}(\theta|\delta)} d\theta.$$

$$\check{\Pi}_{\gamma}(\delta, d\theta) \propto \pi_{\delta} (2\pi\gamma)^{\frac{\|\delta\|_{1}}{2}} e^{-h_{\gamma}(\theta|\delta)} d\theta.$$

■ Assume: $-\log q_{\theta}(Z)$ is convex, has L-Lip. gradient, and

$$-\log q_{\theta}(Z) \ge \frac{1}{2L} \|\nabla \log q_{\theta}(Z)\|^2.$$

• Assume: $-\log \phi$ is convex.

Theorem

Take $\gamma = \gamma_0/L$, $\gamma_0 \in (0, 1/4]$. Then Π_{γ} is a well-defined p.m. on $\Delta_p \times \mathbb{R}^p$, and there exists a finite constant (in p) C such that

$$\beta \left(\check{\Pi}_{\gamma}, \check{\Pi} \right) \le \sqrt{\gamma_0} + C\gamma_0 p,$$

where $\beta(\cdot,\cdot)$ is the β -metric between p.m. (metricizes weak convergence).

■ In theory, we get better bound by taking for e.g.

$$\gamma = \frac{\gamma_0}{Lp}.$$

- However as $\check{\Pi}_{\gamma}$ gets very close to $\check{\Pi}$, sampling from $\check{\Pi}_{\gamma}$ becomes hard.
- The theorem above is a worst case analysis. What is the behavior for typical data realizations?

Figure: Sparse Bayesian linear regression example. p = 500, n = 200.

Approximate Computations

$$\check{\Pi}_{\gamma}(\delta, d\theta) \propto \pi_{\delta} (2\pi\gamma)^{\frac{\|\delta\|_{1}}{2}} e^{-h_{\gamma}(\theta|\delta)} d\theta.$$

- Linear regression: $-\log q_{\theta}(Z) = ||Z X\theta||^2/2\sigma^2$.
- Assume $Z \sim \mathbf{N}(X\theta_{\star}, \sigma^2 I_n)$.
- Assume: the sparse prior assumption in Theorem 1.

Theorem

Take $\gamma = \gamma_0/L$, $\gamma_0 \in (0, 1/4]$. There exists a finite constant (in p) C such that

$$\mathbb{E}\left[\beta\left(\check{\Pi}_{\gamma},\check{\Pi}\right)\right] \leq \sqrt{\gamma_0} + C\left(1 + \gamma_0 \log(p)\right).$$

Approximate Computations

$$\check{\Pi}_{\gamma}(\delta, d\theta) \propto \pi_{\delta} (2\pi\gamma)^{\frac{\|\delta\|_{1}}{2}} e^{-h_{\gamma}(\theta|\delta)} d\theta.$$

- lacktriangle We can sample from $\check{\Pi}$ using "standard" MCMC methods.
- Key advantage: given θ , the comp. of δ are conditionally indep. Bernoulli.
- Given δ , do a Metropolis-Langevin approach that takes adv. of the smoothness of h_{γ} .
- The gradient of $\theta \mapsto h_{\gamma}(\theta|\delta)$ is related to the proximal map of h.

- 1 Graphical models
- 2 Computations
- 3 A Gaussian graphical example
- 4 Conclusion

- Example: sparse estimation of large Gaussian graphical models.
- We compare the quasi-posterior mean and g-lasso estimator

$$\hat{\vartheta}_{\mathrm{glasso}} = \mathrm{Argmin}_{\ \theta \in \mathcal{M}_p^+} \left[-\log \det \theta + \mathrm{Tr}(\theta S) + \lambda \sum_{i,j} \left(\alpha |\theta_{ij}| + \frac{(1-\alpha)}{2} \theta_{ij}^2 \right) \right],$$

where S = (1/n)Z'Z.

We do comparison along:

$$\mathcal{E} = \frac{\|\hat{\vartheta} - \vartheta\|_{\mathsf{F}}}{\|\vartheta\|_{\mathsf{F}}}, \quad \mathsf{SEN} = \frac{\sum_{i < j} \mathbf{1}_{\{|\vartheta_{ij}| > 0\}} \mathbf{1}_{\{\mathsf{sign}(\hat{\vartheta}_{ij}) = \mathsf{sign}(\vartheta_{ij})\}}}{\sum_{i < j} \mathbf{1}_{\{|\vartheta_{ij}| > 0\}}};$$
and
$$\mathsf{PREC} = \frac{\sum_{i < j} \mathbf{1}_{\{|\hat{\vartheta}_{ij}| > 0\}} \mathbf{1}_{\{\mathsf{sign}(\hat{\vartheta}_{ij}) = \mathsf{sign}(\vartheta_{ij})\}}}{\sum_{i < j} \mathbf{1}_{\{|\hat{\vartheta}_{ij}| > 0\}}}. \quad (3)$$

	$artheta_{jj}^2$ known	Empirical Bayes	Glasso
Relative Error (\mathcal{E} in $\%$)	19.2	21.6	63.1
Sensitivity (SEN in $\%$)	68.4	69.0	40.5
Precision (PREC in %)	100.0	100.0	74.9

Table: Table showing the relative error, sensitivity and precision (as defined in (3)) for Setting (a), with p=100 nodes. Based on 20 simulation replications. Each MCMC run is 5×10^4 iterations.

	ϑ_{jj}^2 known	Empirical Bayes	Glasso
Relative Error (\mathcal{E} in $\%$)	23.1	26.2	45.2
Sensitivity (SEN in $\%$)	44.6	45.4	87.9
Precision (PREC in %)	100	99.9	56.1

Table: Table showing the relative error, sensitivity and precision (as defined in (3)) for Setting (b), with p=500 nodes. Based on 20 simulation replications. Each MCMC run is 5×10^4 iterations.

	ϑ_{jj}^2 known	Empirical Bayes	Glasso
Relative Error (\mathcal{E} in $\%$)	30.8	35.2	66.9
Sensitivity (SEN in $\%$)	16.3	16.4	6.6
Precision (PREC in %)	99.9	99.8	94.7

Table: Table showing the relative error, sensitivity and precision (as defined in (3)) for Setting (c), with p=1,000 nodes. Based on 20 simulation replications. Each MCMC run is 5×10^4 iterations.

Figure: Figure showing the confidence interval bars (obtained from one MCMC run), for the non-diagonal entries of ϑ in Setting (a). The dots represent the true values.

- 1 Graphical models
- 2 Computations
- 3 A Gaussian graphical example
- 4 Conclusion

Conclusion

- Quasi-posterior inference is consistent in high-dimensional setting.
- On the approx. computation, how to formalize the trade-off between good approx. and fast MCMC computation.
- Joint statistical and computational asymptotics.
- Matlab code available from website.

Conclusion

- Quasi-posterior inference is consistent in high-dimensional setting.
- On the approx. computation, how to formalize the trade-off between good approx. and fast MCMC computation.
- Joint statistical and computational asymptotics.
- Matlab code available from website.
- Postdoc opening available at the University of Michigan: www.stat.lsa.umich.edu/~yvesa

Conclusion

- Quasi-posterior inference is consistent in high-dimensional setting.
- On the approx. computation, how to formalize the trade-off between good approx. and fast MCMC computation.
- Joint statistical and computational asymptotics.
- Matlab code available from website.
- Postdoc opening available at the University of Michigan: www.stat.lsa.umich.edu/~yvesa
- Thanks for your attention... and patience!

