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Adiabatic Monte Carlo



E⇡[f ] =

Z
f(q)⇡(q) dq

Computational statistics is all about computing 
expectations with respect to a given target distribution.



High-dimensional target distributions exhibit concentration 
of  measure, which frustrates these computations.



Markov chains provide a generic scheme for  
finding and then exploring the resulting typical set.
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In order to scale to high-dimensional target distributions, 
however, we need efficient exploration of  the typical set.
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Hamiltonian Monte Carlo uses auxiliary momenta and 
density gradients to generate coherent exploration.
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The addition of  momenta defines a Hamiltonian that 
decomposes into a potential energy and kinetic energy.
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The Hamiltonian defines a vector field aligned with the 
typical set from which we can generate exploration.
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In practice we integrate along this vector field only 
approximately, using powerful symplectic integrators.
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The numerical error introduced by the integrator can 
be eliminated with a careful Metropolis correction.
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Adiabatic Monte Carlo

http://arxiv.org/abs/1405.3489



Like any MCMC algorithm, Hamiltonian Monte Carlo 
struggles to explore multimodal target distributions.
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In Bayesian settings the marginal likelihood is  
difficult to estimate from the Markov chain output.
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Both of  these problems are facilitated by interpolating 
between the target and an auxiliary, unimodal distribution.
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To move along the interpolation in practice, however, we 
need to impose a discrete partition of  the interpolation.
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If  the partition is chosen poorly then transitions will be 
difficult, and we are left with a delicate tuning problem.

 0  0.2  0.4  0.6  0.8  1
`

q



If  the partition is chosen poorly then transitions will be 
difficult, and we are left with a delicate tuning problem.

 0  0.2  0.4  0.6  0.8  1
`

q



If  the partition is chosen poorly then transitions will be 
difficult, and we are left with a delicate tuning problem.

 0  0.2  0.4  0.6  0.8  1
`

q



Mirroring Hamiltonian Monte Carlo, Adiabatic Monte Carlo 
generates optimal transitions by making the perk dynamic. 
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The contact Hamiltonian defines a vector field that 
generates efficient motion along the interpolation.
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Because the contact Hamiltonian is invariant to this 
motion, we can also recover the normalizing constant.
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To see the optimality of  adiabatic transitions, consider  

the interpolation of  a unidimensional distribution.
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Adiabatic transitions automatically equilibrate,  

implicitly generating an optimal interpolation partition.
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In theory we can recover the normalizing constant 
exactly.  In practice we can recover it incredibly accurately.



Open Problems



The immediate problem with adiabatic transitions is that 
metastabilities prevent them from being isomorphisms.
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p ⇠ ⇡(p | q)

Fortunately we can readily recover from a metastability by 
resampling the momenta, effectively reheating the system.



We also need to compute the intermediate  
expectations needed to generate each transition.
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Hamiltonian Monte Carlo gives efficient local estimations, 
which can be aggregated together into a global estimator.
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Finally, there is the problem of  correcting for the error 
from numerical approximations to the exact transitions.



We can’t apply a naive Metropolis correction, but  
perhaps we can apply a correction with a swap?
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(qf , pf ) ⇠ ⇡�⇡1(qi, pi) ⇠ ⇡�⇡0

Unfortunately, swapping states doesn’t work because 
discretized perks will not, in general, be aligned.
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