Noise-Contrastive Estimation and its Generalizations

Michael Gutmann

https://sites.google.com/site/michaelgutmann

University of Helsinki Aalto University Helsinki Institute for Information Technology

21st April 2016

Problem statement

- ▶ Task: Estimate the parameters θ of a parametric model $p(.|\theta)$ of a d dimensional random vector \mathbf{x}
- Given: Data $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)$ (iid)
- ▶ Given: Unnormalized model $\phi(.|\theta)$

$$\int_{\xi} \phi(\xi; \theta) d\xi = Z(\theta) \neq 1 \qquad p(\mathbf{x}; \theta) = \frac{\phi(\mathbf{x}; \theta)}{Z(\theta)}$$
(1)

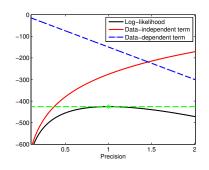
Normalizing partition function $Z(\theta)$ not known / computable.

Why does the partition function matter?

- ► Consider $p(x; \theta) = \frac{\phi(x; \theta)}{Z(\theta)} = \frac{\exp\left(-\theta \frac{x^2}{2}\right)}{\sqrt{2\pi/\theta}}$
- ▶ Log-likelihood function for precision $\theta \ge 0$

$$\ell(\theta) = -n \log \sqrt{\frac{2\pi}{\theta}} - \theta \sum_{i=1}^{n} \frac{x_i^2}{2}$$
 (2)

- Data-dependent (blue) and independent part (red) balance each other.
- ▶ If $Z(\theta)$ is intractable, $\ell(\theta)$ is intractable.



Why is the partition function hard to compute?

$$Z(\theta) = \int_{\xi} \phi(\xi; \theta) d\xi$$

- ▶ Integrals can generally not be solved in closed form.
- In low dimensions, $Z(\theta)$ can be approximated to high accuracy.
- Curse of dimensionality: Solutions feasible in low dimensions become quickly computationally prohibitive as the dimension d increases.

Why are unnormalized models important?

- Unnormalized models are widely used.
- Examples:

```
    models of images
    models of text
    models in physics
    (Markov random fields)
    (neural probabilistic language models)
    (Ising model)
```

- Advantage: Specifying unnormalized models is often easier than specifying normalized models.
- Disadvantage: Likelihood function is generally intractable.

Program

Noise-contrastive estimation

Properties

Application

Bregman divergence to estimate unnormalized models

Framework

Noise-contrastive estimation as member of the framework

Program

Noise-contrastive estimation

Properties

Application

Bregman divergence to estimate unnormalized models

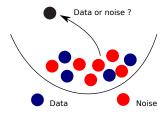
Framework

Noise-contrastive estimation as member of the framework

Intuition behind noise-contrastive estimation

- Formulate the estimation problem as a classification problem: observed data vs. auxiliary "noise" (with known properties)
- Successful classification ≡ learn the differences between the data and the noise
- ▶ differences + known noise properties ⇒ properties of the data

- Unsupervised learning by supervised learning
- We used (nonlinear) logistic regression for classification

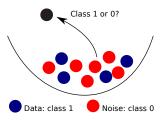


Logistic regression (1/2)

- Let $\mathbf{Y} = (\mathbf{y}_1, \dots \mathbf{y}_m)$ be a sample from a random variable \mathbf{y} with known (auxiliary) distribution $p_{\mathbf{y}}$.
- ▶ Introduce labels and form regression function:

$$P(C = 1|\mathbf{u}; \boldsymbol{\theta}) = \frac{1}{1 + G(\mathbf{u}; \boldsymbol{\theta})} \qquad G(\mathbf{u}; \boldsymbol{\theta}) \ge 0 \qquad (3)$$

- ▶ Determine the parameters θ such that $P(C = 1|\mathbf{u}; \theta)$ is
 - ▶ large for most x_i
 - small for most y_i.



Logistic regression (2/2)

Maximize (rescaled) conditional log-likelihood using the labeled data $\{(\mathbf{x}_1, 1), \dots, (\mathbf{x}_n, 1), (\mathbf{y}_1, 0), \dots, (\mathbf{y}_m, 0)\},\$

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$

For large sample sizes n and m, $\hat{\theta}$ satisfying

$$G(\mathbf{u}; \hat{\boldsymbol{\theta}}) = \frac{m}{n} \frac{\rho_{\mathbf{y}}(\mathbf{u})}{\rho_{\mathbf{x}}(\mathbf{u})}$$
(4)

is maximizing $J_n^{\text{NCE}}(\theta)$. Without any normalization constraints. (proof in appendix)

Noise-contrastive estimation

(Gutmann and Hyvärinen, 2010; 2012)

Assume unnormalized model $\phi(.|\theta)$ is parametrized such that its scale can vary freely.

$$\theta \to (\theta; c)$$
 $\phi(\mathbf{u}; \theta) \to \exp(c)\phi(\mathbf{u}; \theta)$ (5)

- Noise-contrastive estimation:
 - 1. Choose p_y
 - 2. Generate auxiliary data Y
 - 3. Estimate heta via logistic regression with

$$G(\mathbf{u};\boldsymbol{\theta}) = \frac{m}{n} \frac{p_{\mathbf{y}}(\mathbf{u})}{\phi(\mathbf{u};\boldsymbol{\theta})}.$$
 (6)

Noise-contrastive estimation

(Gutmann and Hyvärinen, 2010; 2012)

Assume unnormalized model $\phi(.|\theta)$ is parametrized such that its scale can vary freely.

$$\theta \to (\theta; c)$$
 $\phi(\mathbf{u}; \theta) \to \exp(c)\phi(\mathbf{u}; \theta)$ (5)

- Noise-contrastive estimation:
 - 1. Choose p_y
 - 2. Generate auxiliary data Y
 - 3. Estimate heta via logistic regression with

$$G(\mathbf{u}; \boldsymbol{\theta}) = \frac{m}{n} \frac{\rho_{\mathbf{y}}(\mathbf{u})}{\phi(\mathbf{u}; \boldsymbol{\theta})}.$$
 (6)

► $G(\mathbf{u}; \boldsymbol{\theta}) \to \frac{m}{n} \frac{p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})}$ \Rightarrow $\phi(\mathbf{u}; \boldsymbol{\theta}) \to p_{\mathbf{x}}(\mathbf{u})$

Example

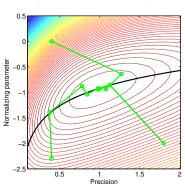
Unnormalized Gaussian:

$$\phi(u; \boldsymbol{\theta}) = \exp(\theta_2) \exp\left(-\theta_1 \frac{u^2}{2}\right), \quad \theta_1 > 0, \ \theta_2 \in \mathbb{R}, \quad (7)$$

▶ Parameters: θ_1 (precision), $\theta_2 \equiv c$ (scaling parameter)

Contour plot of $J_n^{ ext{NCE}}(oldsymbol{ heta})$:

- Gaussian noise with $\nu = m/n = 10$
- ▶ True precision $\theta_1^{\star} = 1$
- Black: normalized models Green: optimization paths



Statistical properties

(Gutmann and Hyvärinen, 2012)

- Assume $p_x = p(.|\theta^*)$
- ► Consistency: As *n* increases,

$$\hat{\boldsymbol{\theta}}_n = \operatorname{argmax}_{\boldsymbol{\theta}} J_n^{\text{NCE}}(\boldsymbol{\theta}),$$
 (8)

converges in probability to θ^{\star} .

▶ Efficiency: As $\nu = m/n$ increases, for any valid choice of p_y , noise-contrastive estimation tends to "perform as well" as MLE (it is asymptotically Fisher efficient).

Validating the statistical properties with toy data

Let the data follow the ICA model x = As with 4 sources.

$$\log p(\mathbf{x}; \boldsymbol{\theta}^{\star}) = -\sum_{i=1}^{4} \sqrt{2} |\mathbf{b}_{i}^{\star} \mathbf{x}| + c^{\star}$$
 (9)

with $c^* = \log |\det \mathbf{B}^*| - \frac{4}{2} \log 2$ and $\mathbf{B}^* = \mathbf{A}^{-1}$.

▶ To validate the method, estimate the unnormalized model

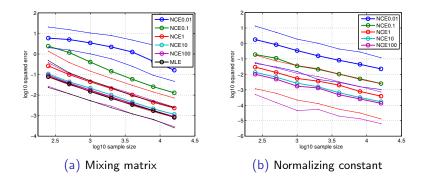
$$\log \phi(\mathbf{x}; \boldsymbol{\theta}) = -\sum_{i=1}^{4} \sqrt{2} |\mathbf{b}_i \mathbf{x}| + c$$
 (10)

with parameters $\theta = (\mathbf{b}_1, \dots, \mathbf{b}_4, c)$.

▶ Contrastive noise p_y : Gaussian with the same covariance as the data.

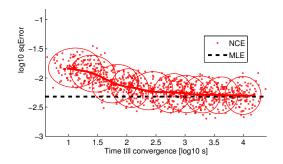
Validating the statistical properties with toy data

- ▶ Results for 500 estimation problems with random **A**, for $\nu \in \{0.01, 0.1, 1, 10, 100\}$.
- MLE results: with properly normalized model



Computational aspects

- ▶ The estimation accuracy improves as *m* increases.
- ► Trade-off between computational and statistical performance.
- ▶ Example: ICA model as before but with 10 sources. n=8000, $\nu \in \{1,2,5,10,20,50,100,200,400,1000\}$. Performance for 100 random estimation problems:



Computational aspects

How good is the trade-off? Compare with

1. MLE where partition function is evaluated with importance sampling. Maximization of

$$J_{\rm IS}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \log \phi(\mathbf{x}_i; \boldsymbol{\theta}) - \log \left(\frac{1}{m} \sum_{i=1}^{m} \frac{\phi(\mathbf{y}_i; \boldsymbol{\theta})}{\rho_{\mathbf{y}}(\mathbf{y}_i)} \right)$$
(11)

2. Score matching: minimization of

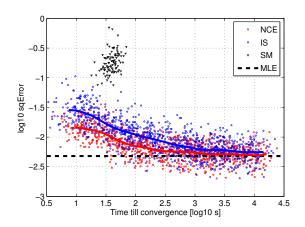
$$J_{\text{SM}}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{10} \frac{1}{2} \Psi_j^2(\mathbf{x}_i; \boldsymbol{\theta}) + \Psi_j'(\mathbf{x}_i; \boldsymbol{\theta})$$
(12)

with
$$\Psi_j(\mathbf{x}; \boldsymbol{\theta}) = \frac{\partial \log \phi(\mathbf{x}; \boldsymbol{\theta})}{\partial x_j}$$
 (here: smoothing needed!)

(see Gutmann and Hyvärinen, 2012, for more comparisons)

Computational aspects

- ▶ NCE is less sensitive to the mismatch of data and noise distribution than importance sampling.
- Score matching does not perform well if the data distribution is not sufficiently smooth.



Application to natural image statistics

- Natural images ≡ images which we see in our environment
- Understanding their properties is important
 - for modern image processing
 - for understanding biological visual systems

Human visual object recognition

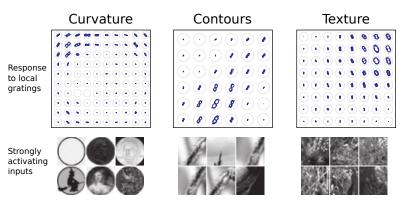
- Rapid object recognition by feed-forward processing
- Computations in middle layers poorly understood
- Our approach: learn the computations from data
- Idea: the units indicate how probable an input image is. (up to normalization)

(Identification Categorization Faces. High-level objects, ... vision Simple I ow-level features vision (edges. ...) (Adapted from Koh and Poggio, Stimulus Neural Computation, 2008)

(Gutmann and Hyvärinen, 2013)

Unnormalized model of natural images

- ▶ Three processing layers (> $2 \cdot 10^5$ parameters)
- ▶ Fit to natural image data $(d = 1024, n = 70 \cdot 10^6)$
- Learned computations: detection of curvatures, longer contours, and texture.



(Gutmann and Hyvärinen, 2013)

Program

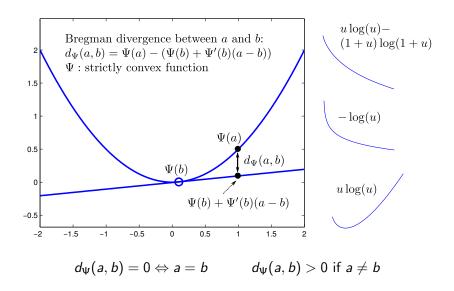
Noise-contrastive estimation
Properties
Application

Bregman divergence to estimate unnormalized models

Framework

Noise-contrastive estimation as member of the framework

Bregman divergence between two vectors a and b



Bregman divergence between two functions f and g

► Compute $d_{\Psi}(f(\mathbf{u}), g(\mathbf{u}))$ for all \mathbf{u} in their domain; take weighted average

$$\tilde{d}_{\Psi}(f,g) = \int d_{\Psi}(f(\mathbf{u}), g(\mathbf{u})) d\mu(\mathbf{u})$$

$$= \int \Psi(f) - \left[\Psi(g) + \Psi'(g)(f - g)\right] d\mu$$
(13)

- ▶ Zero iff f = g (a.e.); no normalization condition on f or g
- Fix f, omit terms not depending on g,

$$J(g) = \int \left[-\Psi(g) + \Psi'(g)g - \Psi'(g)f \right] \mathrm{d}\mu \qquad (15)$$

Estimation of unnormalized models

$$J(g) = \int \left[-\Psi(g) + \Psi'(g)g - \Psi'(g)f \right] \mathrm{d}\mu$$

- ▶ Idea: Choose f, g, and μ so that we obtain a computable cost function for consistent estimation of unnormalized models.
- ▶ Choose $f = T(p_x)$ and $g = T(\phi)$ such that

$$f = g \Rightarrow p_{\mathbf{x}} = \phi \tag{16}$$

Examples:

- $f = p_{x}, g = \phi$ $f = \frac{p_{x}}{\nu p_{y}}, g = \frac{\phi}{\nu p_{y}}$
- ▶ Choose μ such that the integral can either be computed in closed form or approximated as sample average.

(Gutmann and Hirayama, 2011)

Estimation of unnormalized models

(Gutmann and Hirayama, 2011)

- Several estimation methods for unnormalized models are part of the framework
 - Noise-contrastive estimation
 - Poisson-transform (Barthelmé and Chopin, 2015)
 - Score matching (Hyvärinen, 2005)
 - Pseudo-likelihood (Besag, 1975)
- Noise-contrastive estimation:

$$\Psi(u) = u \log u - (1+u) \log(1+u) \tag{17}$$

$$f(\mathbf{u}) = \frac{\nu p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})} \qquad \qquad \mathrm{d}\mu(\mathbf{u}) = p_{\mathbf{x}}(\mathbf{u})\mathrm{d}\mathbf{u} \quad (18)$$

(proof in appendix)

Conclusions

- Point estimation for parametric models with intractable partition functions (unnormalized models)
- Noise contrastive estimation
 - Estimate the model by learning to classify between data and noise
 - Consistent estimator, has MLE as limit
 - Applicable to large-scale problems
- Bregman divergence as general framework to estimate unnormalized models.

Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework

Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework

Proof of Equation (4)

For large sample sizes n and m, $\hat{\theta}$ satisfying

$$G(\mathbf{u}; \hat{\boldsymbol{\theta}}) = \frac{m}{n} \frac{p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})}$$

is maximizing $J_n^{ ext{NCE}}(heta)$,

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$

without any normalization constraints.

Proof of Equation (4)

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$
$$= \frac{1}{n} \sum_{t=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \frac{m}{n} \frac{1}{m} \sum_{t=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right]$$

Fix the ratio $m/n=\nu$ and let $n\to\infty$ and $m\to\infty$. By law of large numbers, $J_n^{\rm NCE}$ converges to $J^{\rm NCE}$,

$$J^{\text{NCE}}(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{x}} \left(\log P(C = 1 | \mathbf{x}; \boldsymbol{\theta}) \right) + \nu \mathbb{E}_{\mathbf{y}} \left(\log P(C = 0 | \mathbf{y}; \boldsymbol{\theta}) \right) \tag{19}$$

With
$$P(C=1|\mathbf{x}; \boldsymbol{\theta}) = \frac{1}{1+G(\mathbf{x}; \boldsymbol{\theta})}$$
 and $P(C=0|\mathbf{y}; \boldsymbol{\theta}) = \frac{G(\mathbf{y}; \boldsymbol{\theta})}{1+G(\mathbf{y}; \boldsymbol{\theta})}$...

... we have

$$J^{\text{NCE}}(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}} \log(1 + G(\mathbf{x}; \boldsymbol{\theta})) + \nu \mathbb{E}_{\mathbf{y}} \log G(\mathbf{y}; \boldsymbol{\theta}) - \nu \mathbb{E}_{\mathbf{y}} \log (1 + G(\mathbf{y}; \boldsymbol{\theta}))$$
(20)

Consider the objective $J^{\text{NCE}}(\theta)$ as a function of G rather than θ ,

Compute functional derivative $\delta \mathcal{J}^{\text{NCE}}/\delta G$,

$$\frac{\delta \mathcal{J}^{\text{NCE}}(G)}{\delta G} = -\frac{p_{\mathsf{x}}(\boldsymbol{\xi})}{1 + G(\boldsymbol{\xi})} + \nu p_{\mathsf{y}}(\boldsymbol{\xi}) \left(\frac{1}{G(\boldsymbol{\xi})} - \frac{1}{1 + G(\boldsymbol{\xi})}\right) \quad (21)$$

$$\frac{\delta \mathcal{J}^{\text{NCE}}(G)}{\delta G} = -\frac{p_{\mathbf{x}}(\xi)}{1 + G(\xi)} + \nu p_{\mathbf{y}}(\xi) \left(\frac{1}{G(\xi)} - \frac{1}{1 + G(\xi)} \right) \quad (22)$$

$$= -\frac{p_{\mathbf{x}}(\xi)}{1 + G(\xi)} + \nu p_{\mathbf{y}}(\xi) \frac{1}{G(\xi)(1 + G(\xi))} \quad (23)$$

$$\stackrel{!}{=} 0 \quad (24)$$

We obtain

$$\frac{\rho_{x}(\xi)}{1 + G^{*}(\xi)} = \nu \rho_{y}(\xi) \frac{1}{G^{*}(\xi)(1 + G^{*}(\xi))}$$

$$G^{*}(\xi)\rho_{x}(\xi) = \nu \rho_{y}(\xi)$$

$$G^{*}(\xi) = \nu \frac{\rho_{y}(\xi)}{\rho_{x}(\xi)}$$

$$= \frac{m}{n} \frac{\rho_{y}(\xi)}{\rho_{x}(\xi)}$$
(25)
$$(26)$$
(27)

Evaluating $\partial^2 \mathcal{J}^{\text{NCE}}/\partial G^2$ at G^* shows that G^* is a maximizer.

Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework

Proof

In noise-contrastive estimation, we maximize

$$J_n^{\text{NCE}}(\boldsymbol{\theta}) = \frac{1}{n} \left(\sum_{i=1}^n \log P(C = 1 | \mathbf{x}_i; \boldsymbol{\theta}) + \sum_{i=1}^m \log \left[P(C = 0 | \mathbf{y}_i; \boldsymbol{\theta}) \right] \right)$$

Sample version of

$$J^{ ext{NCE}}(oldsymbol{ heta}) = \mathbb{E}_{oldsymbol{x}} \left(\log P(oldsymbol{ heta} = 1 | oldsymbol{x}; oldsymbol{ heta})
ight) +
u \mathbb{E}_{oldsymbol{y}} \left(\log P(oldsymbol{ heta} = 0 | oldsymbol{y}; oldsymbol{ heta})
ight)$$

With

$$P(C=1|\mathbf{u};\theta) = \frac{1}{1+G(\mathbf{u};\theta)}$$
 $P(C=0|\mathbf{u};\theta) = \frac{1}{1+1/G(\mathbf{u};\theta)}$

$$J^{\text{NCE}}(\boldsymbol{\theta}) = -\mathbb{E}_{\mathbf{x}} \log(1 + G(\mathbf{x}; \boldsymbol{\theta})) - \nu \mathbb{E}_{\mathbf{y}} \log(1 + 1/G(\mathbf{y}; \boldsymbol{\theta})) \quad (29)$$

where
$$G(\mathbf{u}; \boldsymbol{\theta}) = \frac{\nu p_{\mathbf{y}}(\mathbf{u})}{\phi(\mathbf{u}; \boldsymbol{\theta})}$$
.

The general cost function in the Bregman framework is

$$J(g) = \int \left[-\Psi(g) + \Psi'(g)g - \Psi'(g)f \right] d\mu \tag{30}$$

With

$$\Psi(g) = g \log(g) - (1+g) \log(1+g)$$
 (31)

$$\Psi'(g) = \log(g) - \log(1+g) \tag{32}$$

we have

$$J(g) = \int \left[-g \log(g) + (1+g) \log(1+g) + \log(g)g - \log(1+g)g - \log(g)f + \log(1+g)f \right] d\mu$$

$$(33)$$

$$J(g) = \int \left[\log(1+g) - \log(g)f + \log(1+g)f \right] d\mu$$

$$= \int \left[\log(1+g) + \log(1+1/g)f \right] d\mu$$
(34)

With

$$f(\mathbf{u}) = \frac{\nu p_{\mathbf{y}}(\mathbf{u})}{p_{\mathbf{x}}(\mathbf{u})}$$
 $g(\mathbf{u}) = G(\mathbf{u}; \boldsymbol{\theta})$ $d\mu(\mathbf{u}) = p_{\mathbf{x}}(\mathbf{u})d\mathbf{u}$ (36)

we have

$$J(G(.; \boldsymbol{\theta})) = \int p_{\mathbf{x}}(\mathbf{u}) \log(1 + G(\mathbf{u}; \boldsymbol{\theta})) d\mathbf{u}$$
$$+ \nu p_{\mathbf{y}}(\mathbf{u}) \log(1 + 1/G(\mathbf{u}; \boldsymbol{\theta})) d\mathbf{u}$$
(37)
$$= -J^{\text{NCE}}(\boldsymbol{\theta})$$
(38)