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Problem statement

» Task: Estimate the parameters 0 of a parametric model p(.|0)
of a d dimensional random vector x

» Given: Data X = (x1,...,X,) (iid)

» Given: Unnormalized model ¢(.|0)

/£ HE0)dE=2(0) #1  p(x0) =

Normalizing partition function Z(€) not known / computable.
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Why does the partition function matter?

_ stan) _ P(-0%)
20 = o

> Log-likelihood function for precision 8 > 0

» Consider p(x;6)
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-100 S~o —— Data-dependent term

» Data-dependent (blue) and
independent part (red)
balance each other.

» If Z(0) is intractable, £(0) -
is intractable. 500
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Why is the partition function hard to compute?

7(0) = [, $(&:6) d¢
> Integrals can generally not be solved in closed form.
> In low dimensions, Z(0) can be approximated to high
accuracy.

» Curse of dimensionality: Solutions feasible in low dimensions
become quickly computationally prohibitive as the dimension
d increases.

Michael Gutmann NCE and its Generalizations 4/27



Why are unnormalized models important?

» Unnormalized models are widely used.

> Examples:
» models of images (Markov random fields)
» models of text (neural probabilistic language models)
» models in physics (Ising model)
>

» Advantage: Specifying unnormalized models is often easier

than specifying normalized models.
» Disadvantage: Likelihood function is generally intractable.
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Program

Noise-contrastive estimation
Properties
Application

Bregman divergence to estimate unnormalized models
Framework
Noise-contrastive estimation as member of the framework
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Intuition behind noise-contrastive estimation

» Formulate the estimation problem as a classification problem:
observed data vs. auxiliary “noise” (with known properties)

» Successful classification = learn the differences between the
data and the noise

» differences + known noise properties = properties of the data

Data or noise ?

» Unsupervised learning by [
supervised learning

. Data

» We used (nonlinear) logistic
regression for classification

X
. Noise
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Logistic regression (1/2)

> Let Y = (y1,...¥Ym) be a sample from a random variable y
with known (auxiliary) distribution py.

> Introduce labels and form regression function:

1

PIC=1u6) = TG 9)

G(u;0) >0 (3)

. Class 1 or 07

» Determine the parameters 6
such that P(C = 1|u; 0) is
> large for most x;
» small for most y;.

[ ) ....

. Data: class 1 . Noise: class 0
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Logistic regression (2/2)

» Maximize (rescaled) conditional log-likelihood using the
labeled data {(x1,1),...,(xn,1),(y1,0),...,(ym,0)},

i=1 i=1

» For large sample sizes n and m, @ satisfying

Gu: ) ””;Eg (4)

is maximizing J;°F(@). Without any normalization
constraints. (proof in appendix)

Michael Gutmann NCE and its Generalizations 10/27



Noise-contrastive estimation

(Gutmann and Hyvérinen, 2010; 2012)

» Assume unnormalized model ¢(.|@) is parametrized such that

its scale can vary freely.

6 — (6;c) ¢(u; 0) — exp(c)p(u; 0)

» Noise-contrastive estimation:

1. Choose py,
2. Generate auxiliary data Y
3. Estimate 0 via logistic regression with

G(u;0) = m py(.u) i
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Noise-contrastive estimation

(Gutmann and Hyvérinen, 2010; 2012)

» Assume unnormalized model ¢(.|@) is parametrized such that
its scale can vary freely.

6 — (6:¢c) ¢(u; 0) — exp(c)p(u; 0) (5)

> Noise-contrastive estimation:
1. Choose py,
2. Generate auxiliary data Y
3. Estimate 0 via logistic regression with

G(u;0) =" ”y(.“) . (6)

=]
-
—~

£
D
~

» G(u;0) — %ggzg = ¢(u;0) — px(u)
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Example

» Unnormalized Gaussian:

2
d(u; 0) = exp (02) exp (—91L;> , 01>0,6,eR, (7)

» Parameters: 6; (precision), 6 = ¢ (scaling parameter)

Contour plot of JY°F(0) :

» Gaussian noise with
v=m/n=10

» True precision 07 =1

Normalizing parameter

» Black: normalized models
Green: optimization paths

Precision
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Statistical properties

(Gutmann and Hyvérinen, 2012)
» Assume py = p(.|0)

» Consistency: As n increases,
6, = argmaxy JY°E(8), (8)

converges in probability to 6*.

» Efficiency: As v = m/n increases, for any valid choice of py,
noise-contrastive estimation tends to “perform as well” as
MLE (it is asymptotically Fisher efficient).
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Validating the statistical properties with toy data

» Let the data follow the ICA model x = As with 4 sources.
log p(x; 0*) = Z\f\b*x|+c (9)

with c* = log |detB*| — % log2 and B* = A~1.

» To validate the method, estimate the unnormalized model
log ¢(x; 0) = Z\f\bx|+c (10)

with parameters @ = (by,..., by, ).

» Contrastive noise py: Gaussian with the same covariance as
the data.
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Validating the statistical properties with toy data

» Results for 500 estimation problems with random A, for
v € {0.01,0.1,1,10,100}.

> MLE results: with properly normalized model
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(a) Mixing matrix (b) Normalizing constant
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Computational aspects

» The estimation accuracy improves as m increases.
» Trade-off between computational and statistical performance.

» Example: ICA model as before but with 10 sources. n = 8000,
v e {1,2,5,10,20, 50,100,200, 400, 1000} .
Performance for 100 random estimation problems:

NCE

log10 sqError

3 . . . . . . .
1 15 2 25 3 3.5 4
Time till convergence [log10 s]
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Computational aspects

How good is the trade-off? Compare with

1. MLE where partition function is evaluated with importance
sampling. Maximization of

Jis(8) = %Z log ¢(x;; ) — log (rln 3 Qb[)(Y(i;z)) (11)
i=1 YA

i=1

2. Score matching: minimization of

n 10

1 1
Jsm(6) = — 3 §\u}(x,-; ) + Vi(x;0)  (12)
i=1 j=1
with V;(x; 0) = %ga#;](,x;m (here: smoothing needed!)

(see Gutmann and Hyvérinen, 2012, for more comparisons)
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Computational aspects

» NCE is less sensitive to the mismatch of data and noise

distribution than importance sampling.
» Score matching does not perform well if the data distribution

is not sufficiently smooth.

NCE

- SM
== =MLE

log10 sgError

-3 L i i
0.5 1 1.5 2 25 3 35 4 45
Time till convergence [log10 s]
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Application to natural image statistics

» Natural images = images which we see in our environment
» Understanding their properties is important

» for modern image processing

» for understanding biological visual systems
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Human visual object recognition

» Rapid object recognition by
feed-forward processing

» Computations in middle
layers poorly understood

» Qur approach: learn the
computations from data

» ldea: the units indicate how
probable an input image is.
(up to normalization)

(Gutmann and Hyvérinen, 2013)
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Unnormalized model of natural images

» Three processing layers (> 2 - 10° parameters)
» Fit to natural image data (d = 1024, n = 70 - 10°)
> Learned computations: detection of curvatures, longer

contours, and texture.
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(Gutmann and Hyvérinen, 2013)
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Program

Bregman divergence to estimate unnormalized models
Framework
Noise-contrastive estimation as member of the framework
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Bregman divergence between two vectors a and b

ulog(u)—
Bregman divergence between a and b: (1 + u)log(1 + u)
2\ du(a,b) =U(a) = (¥ () + ¥'(b)(a — D))
U : strictly convex function
1.5¢
" —log(u)
05F
°l ulog(u)
U(b) + V'(b)(a—b)
-05
2 15 - -05 0 05 1 1.5 2
dy(a,b) =0 a=>b dy(a,b) >0ifa#b
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Bregman divergence between two functions f and g

» Compute dy(f(u), g(u)) for all u in their domain; take
weighted average

du(f.) = [ du((u). g(u))du(u) (13)
= [wh - W) + V@ - ldn (14

» Zero iff f = g (a.e.); no normalization condition on f or g

» Fix f, omit terms not depending on g,

J(g)= / [—V(g)+V'(g)g —V'(g)f|du  (15)
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Estimation of unnormalized models

Jg)=[[-V(e) +V(g)g — V(g)f]du
> Idea: Choose f, g, and pu so that we obtain a computable cost
function for consistent estimation of unnormalized models.

» Choose f = T(px) and g = T(¢) such that

f=g=p=0 (16)
Examples:
> f=p,8=9¢

> f:yp;y’g:%

> ..

» Choose p such that the integral can either be computed in
closed form or approximated as sample average.

(Gutmann and Hirayama, 2011)
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Estimation of unnormalized models
(Gutmann and Hirayama, 2011)

» Several estimation methods for unnormalized models are part
of the framework
> Noise-contrastive estimation
» Poisson-transform (Barthelmé and Chopin, 2015)
» Score matching (Hyvéarinen, 2005)
» Pseudo-likelihood (Besag, 1975)
>

» Noise-contrastive estimation:

V(u) =ulogu— (14 u)log(l+ u) (17)
f(u) = ”Ify((l“‘)) dpu(u) = pe(u)du (18)

(proof in appendix)
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Conclusions

» Point estimation for parametric models with intractable
partition functions (unnormalized models)
> Noise contrastive estimation
» Estimate the model by learning to classify between data and
noise
» Consistent estimator, has MLE as limit
» Applicable to large-scale problems
» Bregman divergence as general framework to estimate
unnormalized models.
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Appendix

Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework
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Maximizer of the NCE objective function
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Proof of Equation (4)

For large sample sizes n and m, ] satisfying

Gl 8) = 20

is maximizing JY<F(0),

INCE(g) = % <Z log P(C = 1]x;;0) + Z log [P(C = 0ly;; 0)])
i=1 i=1

without any normalization constraints.
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Proof of Equation (4)

JNCE(9) = % <Z log P(C = 1]x;; 0) + Z log [P(C =0ly;; 9)])
i=1 i=1

1< m1l <
== ;Iog P(C=1[x;0) + —— tz_:llog[P(C = 0lyi; 0)]

Fix the ratio m/n = v and let n — oo and m — oo. By law of
large numbers, JY°F converges to JN°F,

JNCF(0) = Ex (log P(C = 1]x; 0)) + vE, (log P(C = 0ly; 8)) (19)

With P(C = 1[x;0) = gy and P(C = 0ly; 0) = 2225 .
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.. we have

JNCF(0) = — Exlog(1 + G(x; 0)) + vEy log G(y; 0)—
vEy log (1 + G(y; 9)) (20)

Consider the objective JN°®(8) as a function of G rather than 8,
TNF(G) = — Exlog(1 + G(x)) + vEy log G(y) — vEy log (1 + G(y))
—— [ pu(€) 1081 + G(€))de+

v / Py (€) (log G(€) — log(1 + G(€)))

Compute functional derivative 6 7N /4G,

STNE(G)  pe(€)

1 1
5G 1+ G(€) +rpy(8) <G(£) - 1+G(£)) )
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0JTNH(G) _  px(€)

1 1
56 116G Trpy(E) <G(£) 1+ G(E))
A8 1
i+ 6@ "POEE T c)
20
We obtain
PX(E) 1
1o PRI @)
G*(&)px(&) = vpy(§)
0=
Epy(g)
n PX(E)

Evaluating 82jNCE/8GZ at G* shows that G* is a maximizer.

Michael Gutmann NCE and its Generalizations

(25)
(26)

(27)

(28)

6/10



Maximizer of the NCE objective function

Noise-contrastive estimation as member of the Bregman framework



Proof

In noise-contrastive estimation, we maximize

J’l;rcE(H) = % (Z |og P(C = 1\x;; 9) + Z |og [P(C = 0|y,-; 0)])
i=1 i=1

Sample version of
JNCE(0) = Ex (log P(C = 1]x; 0)) + vE, (log P(C = 0ly; 8))
With
1 1

PE=w0 =15 6we PO M= 10 1cwe)

JNCE(0) = —Exlog(1+ G(x;0)) — vEylog(1+ 1/G(y; 0)) (29)

where G(u;0) = Z)’E’l’;(gg
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The general cost function in the Bregman framework is

J(g) = / [~ V(g) +V'(g)g — V'(g)f]dpu (30)
With
V(g) = glog(g) — (1 +g)log(1 + &) (31)
V'(g) = log(g) — log(1 + g) (32)
we have

J(g) =/ [ —glog(g) + (1+g)log(1+g)

+ log(g)g — log(1 + g)g
— log(g)f + log(1 + g)f|du (33)
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J(g) = [ [log(1+g) — log(g)f + log(1 + g)f]du

[log(1+ g) + log(1 +1/g)f]du

/
/

g(u) = G(u;6)  du(u) = px(u)du
we have

5(G(0)) :/px(u) log(1 + G(u: 0))du

+ vpy(u) log(1+1/G(u; 8))du
_ JNCE(a)
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