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Bayesian Model Choice

◮ Possible models m1, . . . ,ml for data y .

◮ Posterior distribution given data y model mi is

p(θi |y ,mi ) =
p(y |θi ,mi )p(θi |mi )

p(y |mi)

where θi are the parameters for model mi .

◮ The evidence/marginal likelihood for data y given model mi is
the normalising constant of the posterior distribution within
model mi ,

p(y |mi ) =

∫

θi

p(y |θi ,mi )p(θi |mi ) dθi .

◮ The marginal likelihood is often then used to calculate Bayes
factors to compare two competing models, mi and mj ,

BFij =
p(y |mi )

p(y |mj)
=

p(mi |y)

p(mj |y)

p(mj)

p(mi)
.



Estimating the Marginal Likelihood

Estimation of the evidence is non-trivial for most statistical models:

p(y |mi ) =

∫

θi

p(y |θi ,mi )p(θi |mi ) dθi .

and there are a number of approaches proposed (Laplace’s
method, Chib’s method, bridge sampling, annealed importance
sampling, nested sampling, stepping stone sampling... )

Friel and Wyse (2012) for a recent review

This talk is going to concentrate on the form of thermodynamic
integration known as Power Posteriors

Lartillot and Phillippe (2006), Friel and Pettitt (2008)



Power posteriors
Define the power posterior at inverse temperature t by

pt(θ|y) ∝ p(y |θ)tp(θ), t ∈ [0, 1]

with z(y |t) =

∫

θ
p(y |θ)tp(θ)dθ.

Key identity:
d

dt
log(z(y |t)) =

1

z(y |t)

d

dt
z(y |t)

=
1

z(y |t)

∫

θ

d

dt
p(y |θ)tp(θ)dθ

=

∫

θ

p(y |θ)t log(p(y |θ))p(θ)

z(y |t)
dθ

= Eθ|y ,t log(p(y |θ)).

As a result

∫ 1

0
Eθ|y ,t log(p(y |θ)) dt = [ log(z(y |t)) ]10

= log(z(y |1))− log(z(y |0))



[t = 0] p0(θ|y) is the prior and z(y |0) = 1 by assumption
[t = 1] p1(θ|y) is the posterior and z(y |1) is the evidence

and so

∫ 1

0
Eθ|y ,t log(p(y |θ))dt = [ log(z(y |t)) ]10

= log(z(y |1)))

The problem of calculating a |θ|-dimensional integral over the
parameter space to find the marginal likelihood has seemingly
become that of evaluating a 1-dimensional integral over the unit
interval to find the log marginal likelihood.

The catch? The integrand rather than the integrating...



Implementation and errors

◮ Discretise the inverse temperatures

0 = t0 < t1 < . . . < tn = 1.

Lartillot and Phillippe (2006) use uniformly spaced ti
Friel and Pettitt (2008) recommend ti = (i/n)5

◮ For each ti , estimate Eθ|y ,ti log(p(y |θ)) by sampling p(θ|y , ti).

Expensive. Sampling error

◮ Approximate the integral using numerical integration.

Lartillot and Phillippe (2006) use Simpson’s rule
Friel and Pettitt (2008) use the trapezium rule

Cheap. Discretisation error

How do we get the highest accuracy for the least cost?



Reducing discretisation error for the trapezium rule

Exploit the extra information that the gradient of the curve
Eθ|y ,t log(p(y |θ)) is the variance Varθ|y ,t log(p(y |θ)) since

1

z(y |t)

d rz(y |t)

dtr
=

1

z(y |t)

∫

θ

d r

dtr
p(y |θ)tp(θ) dθ

=
1

z(y |t)

∫

θ
log(p(y |θ))rp(y |θ)tp(y |θ)p(θ) dθ

= Eθ|y ,t(log(p(y |θ))
r )

So
d

dt
Eθ|y ,t log(p(y |θ)) =

d

dt

(

1

z(y |t)

dz(y |t)

dt

)

= −

(

1

z(y |t)

dz(y |t)

dt

)2

+
1

z(y |t)

d2z(y |t)

dt2

Lartillot and Phillippe (2006), Friel et al (2014)



IF we knew the curve exactly, we
would have upper and lower
bounds on the integral based on
the function evaluations at the
{ti}. (The trapezium rule is the
average of these two.)

More formally, minimising the
total area of this sum of
rectangles minimises the sum of
symmetrised Kullback-Leibler
distances between the successive
pairs of p(θ|y , ti).

Calderhead and Girolami (2009),
Lefebvre et al (2010), Behrens et

al (2012)
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Can we use the (estimated)
gradient of the curve adaptively
to place the ti to minimise the
area between the two?

Friel et al (2014)

Start with t = 0 and t = 1. We
have estimates of the function
and its derivative at these two
points. Site the next t where the
two tangents meet.

At each step, subdivide the
largest rectangle using the
intersection of tangents.
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We can also use the gradient to improve the numerical integration

Friel et al (2014)

When integrating a function f between points a and b

∫ b

a

f (t)dt = (b − a)

[

f (b) + f (a)

2

]

−
(b − a)3

12
f ′′(c)

where c is some point in [a, b]. The first term is the usual
trapezium rule and the second can be approximated using

f ′′(c) ≈
f ′(b)− f ′(a)

b − a

so

∫ b

a

f (t)dt ≈ (b − a)

[

f (b) + f (a)

2

]

−
(b − a)2

12

[

f ′(b)− f ′(a)
]

Atkinson and Han (2004)

and, in this case, we have (estimated) gradient information cheaply
available via the variance at each t. Quite effective.



Reducing discretisation error for Simpson’s rule

Simpson’s rule is a better (higher order) numerical integration rule
than the trapezium but usually relies on equally spaced function
evaluations

∫ b

a

f (t)dt =
(b − a)

6

[

f (b) + 4f

(

a + b

2

)

+ f (a)

]

−
(b − a)5

180
f (4)(c)

where the error term is evaluated at some c in [a, b].

Atkinson and Han (2004)

Two papers propose adaptive spacings, both via iteratively
bisecting t intervals for which the integral approximation is not
sufficiently unchanged when the discretisation is increased.

Lefebvre et al (2009), Hug et al (2016)

In more detail.....



◮ Start with an initial discretisation 0 = t0 < t1 < . . . < tm = 1
(can be coarse, need not be uniform spacing).

◮ For each of these intervals, say [a, b]
◮ Estimate the function at a, at b and at the quarter-, mid- and

three-quarter- points of [a, b].
◮ Approximate the integrals on [a, b], [a, (a+ b)/2] and

[(a+ b)/2, b] using Simpson’s rule.
◮ Stop if the first approximation is sufficiently close to the sum

of the second two.
◮ Otherwise, bisect [a, b] and repeat the process on

[a, (a+ b)/2] and [(a+ b)/2, b] separately.

It is also possible (and, in their experiments, important) to work on
a transformed scale so that the adaptive algorithm works with a
power law type spacing, using integration by substitution with
λ = t1/q (q = 5 seems to work as well as a tuned q).

Hug et al (2016)



Could we try the same trick as with the trapezium rule and use
derivative information to improve the numerical integration?

∫ b

a

f (t)dt =
(b − a)

6

[

f (b) + 4f

(

a + b

2

)

+ f (a)

]

−
(b − a)5

180
f (4)(c)

where c is some point in [a, b], so plug in

f 4(c) ≈
f 3(b)− f 3(a)

b − a
and in this case

d3

dt3
Eθ|y ,t log(p(y |θ)) = Eθ|y ,t(log(p(y |θ))

4)−

4Eθ|y ,t(log(p(y |θ))
3)Eθ|y ,t(log(p(y |θ)))−

3(Eθ|y ,t(log(p(y |θ))
2))2 +

12Eθ|y ,t(log(p(y |θ))
2)(Eθ|y ,t(log(p(y |θ))))

2 −

6(Eθ|y ,t(log(p(y |θ))))
4

Not pretty, but we could estimate these four moments of
log(p(y |θ)) although it does depend on the quality of the
estimation...



Reducing sampling error

Over and above choosing an appropriate and efficient sampler for
each ti , what other options are there?

Control variates? Want to estimate some E(X ) and there are
{W1, . . . ,Wp} which are known to vary with X : Use

ψ(X ) = X + β1(W1 − E(W1)) + . . .+ βp(Wp − E(Wp))

with the {βi} selected so that Var(ψ(X )) < Var(X ) (e.g. in the
p = 1 case, take β1 = −Cov(X ,W1)/Var(W1)).

Extension to this context? The Controlled thermodynamic integral

∫ 1

0
Eθ|y ,t (log(p(y |θ)) + h(θ|y , t) ) dt

Oates et al (2016a)



Components for constructing h(θ|y , t) come from the ZV world

◮ a (low order) polynomial P in θ with coefficients φ(y , t) plus
derivatives for given φ(y , t): ∇θ(P |φ(y , t)), △θ(P |φ(y , t))

◮ the derivatives of the log power posterior with respect to θ,
∇θ(log(pt(θ|y)))

∗∗ (using derivatives of prior and likelihood)

h(θ|y , t) = −
1

2
△θ(P |φ(y , t))−

1

2
∇θ(P |φ(y , t)).∇θ(log(pt(θ|y)))

It should in theory be possible to choose variance-minimising sets
of coefficients {φ(y , t) AND {ti} jointly, but not adaptively. The
former though can be done post-simulation-pre-estimation using
plug-in estimates of various covariance terms.

Very effective in some of the examples (plus there’s an extension
for the others)

Oates et al (2016b)

** already needed IF using a differential-geometric MCMC
sampling scheme. But if not....



Discussion

◮ Estimating the log marginal likelihood via Power Posteriors in
its basic form is relatively straight-forward but
computationally costly.

◮ To minimise the cost, we want to use as few t values as
possible.

◮ How to choose those t, preferably adaptively?

◮ How to improve on the numerical integration?

◮ How to reduce the sampling variability?

◮ Now let’s up the computational cost and do this for lots of
models, not just one. Are there any savings to be made for
related models, e.g. importance sampling or ...?
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