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Motivation for coupling particle filters
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Hidden Markov models

X" X' X2 I XT

Figure: Graph representation of a general hidden Markov model.

(X}): initial pg, transition fy. (Y;) given (X¢): measurement gy.
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Hidden Markov models

m How to estimate/predict the latent process (X;) given the
observations (Y;) and a fixed parameter 07

m How to estimate the parameter 67
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Example: Hidden Autoregressive

m Hidden process X; = AX;_1 + &, where ; ~ Ny(0, ),
Xo ~ Ny(0,1).

- Aij — Q‘i*ﬂ‘H for z,] cl:d.

m Observations Y; = X; + n;, where n; ~ Ny(0,1).

taken from Guarniero, Johansen & Lee, 2015.
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Example: Phytoplankton—Zooplankton
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Figure: A time series of 365 observations generated according to a
phytoplankton—zooplankton model.
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Example: Phytoplankton—Zooplankton

Hidden process (X;) = (o, pt, 2t).

At each (integer) time, ay ~ N (o, 02).

m Given oy,

e = 4Pt — CPt2

dt tPt t<t,

dZt 2
a = ecpizy — Mz — MgZy -

Observations: log ¥y ~ N (log py, 07).

m Initial distribution: (log po, log z0) ~ N (p0, o8).

Unknown parameters: 6 = (110, 00, fta, Oas Ty, C, €, M, My).
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Particle filter
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Particle filter
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Particle filter
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Particle filter

Pierre E. Jacob Coupling Particle Systems 7/ 56



Particle filter
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Particle filter
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Particle filter
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Particle filter

At step t = 0,
Sample 2§ ~ pg(dxg), forall k€ 1: N.
Set wf = N1 forall ke 1:N.

At step t > 1,

Sample ancestors a}N ~ r(da'N | wk). + resamplin
p t =1 pling

Sample 2f ~ fo(dz; | xﬁl) forallke1:N.

Compute wF = go(y; | zF), forallk € 1: N,
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Particle filter, rewritten

At step t = 0,
Sample U¥,, compute zf = M (U%,,0), for all k € 1: N.
Setw’SzN‘l,for allkel: N.

At step t > 1,

Sample ancestors a}V ~ r(da'N | wly). < resampling

Sample U}’%t, compute zf = F(x}* 1,UFt,G), forallkel:N.

Compute wf = gg(y; | 2¥), forall k € 1: N.
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Output

m Approximation of the filtering distributions

vee{l,....T} p(dai|yrs,0)

by

vee{1,....,TY pN(dzi|yi,0) Zw s (dy).

m Approximation of the likelihood function £(0) = p(y1.7|0)
by
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m Particle filters are increasingly used as parts of
encompassing algorithms.
e.g. Particle MCMC, Iterated Filtering

m Some of these algorithms compare the outputs of multiple
particle filters.

m Better algorithms can be obtained by correlating particle
filters.

i.e. correlation helps comparison.
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Example: approximation of the likelihood

independent common transport
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Figure: Estimates of the log-likelihood obtained by particle filters, in a
hidden auto-regressive model, T' = 100 observations, N = 64 particles.

See Pitt & Malik, 2011, Lee 2008.
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Example: finite difference

A simple estimator of V/(0) = Vlog L(0) is:

— IOgﬁN y1.T7 0+ h —IOgﬁN y1.T 0—h
i) - 8z 101) g (s 0~ 1)

The two log-likelihood estimators can be obtained using
independent particle filters given 8 + h and 6 — h. ..

... but if we could positively correlate the two log-likelihood
estimators, the variance of V/(0) would be smaller.
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Example: finite difference
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Figure: Standard deviation of @(9), for some 0, in a hidden
auto-regressive model, T' = 100 observations, N = 128 particles.
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Example: finite difference
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Figure: Same but in dimension 5.
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Example: finite

difference
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Figure: Same but in dimension 10.
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Example: Metropolis-Hastings

Assume we can compute the target density m(6|y1.7) pointwise.

1: Set some (),
2: for i =2 to M do
3:  Propose 0* ~ q(.|9(i—1))'
4:  Compute the ratio:
: m(0%)p(yr7)0%)  q(00V]6%)

(0% min < ’ W(Q(Z_l))p(y1:T|0(Z_1)) q(e*‘e(z_l))
5. Set #) = #* with probability a, otherwise set §() = g1,
6: end for
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Example: particle Metropolis-Hastings

Assume we can run a particle filter to get p (y1.7|6).

. Set some ) and sample p (y1.7|0M).

: for i =2 to M do

Propose 6* ~ ¢(-|0%~Y) and sample p" (y1.7]0%).
Compute the ratio:

: ()N (yrr]6*)  q(80V|6*)
o = min ( "7 (0G=1)pN (y1.7[001) ¢(0*]0G—D)

o

Set () = §* with probability «, otherwise set #(?) = 9(i—1),
6: end for

Andrieu, Doucet & Holenstein, 2010.
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Example: particle Metropolis-Hastings

m The acceptance ratio involves a ratio of particle filter
estimators:

i ﬂ-(e*)PN (?JI:TW*) q(g(i—l)w*)
= 1 N = - - .
« = min ( (0N (y1.7|00-1)) q(6*|6G=1)

m If we positively correlate p™ (y1.7]0*) and p" (y1.7|600~1),
the ratio of estimators becomes more precise.

Deligiannidis, Doucet, Pitt & Kohn, 2015: epic improvements
for the case large T' / small N.
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Outline

How to couple two particle filters
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Coupled particle filter

By coupled particle filters we mean ...
m two particle systems, (wf, )N and (@fF, F)Y_,,

m conditioned on 0 and 6 respectively,

m using common random numbers Uy, and Ur for the initial
and propagation steps.

One still has the freedom to choose a “coupled resampling”
scheme.
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Coupled particle filter

At step t = 0,
Sample U}Q, and compute, for all k € 1: N,

ak = M(U%,,0) and & = M(U%,,0).

Set wf = N~tand w§ = N~! forallke1l:N.
At step t > 1,

Sample ancestors:
(ag,ar) ~ 7(|lwpy, w). < coupled resampling
Sample Ullflt, and compute, forallk € 1: N,
k
k a k ~k
Ty = F(:Btt—l’UF,tve) and Iy = (% 1?UF1‘70)'

Compute wf = g(y; | 2F,0) and wF = g(y; | ¥, 0).
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Coupled resampling

Given two particle systems, (w®, %)Y | and (@%, #5)N_ ...

m We want (?) to sample a'*V and a'*V in {1,..., N} such
that

Yk Vi P(a® =j) =w’ and P(@* = j) = @,

m Equivalently, we want to sample (a¥, &k){y:l from a
probability matrix P such that

Pl=w and PT1=1w.

Independent resampling corresponds to P = w @’ . What else?
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Transport resampling

m Suppose that we want to sample a couple (a, a), from some
probability matrix P, such that the resampled particles, ¢
and 7%, are as similar as possible.

m Similarity can be encoded by a distance d on the space of x.

m The expected distance between 2% and #%, conditional
upon the particles, is given by

N N

E|d(z*,3%)| =3 P d(a',#).

i=1j=1
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Transport resampling

m Introduce J (w, @), the set of matrices satisfying
Pl=w and PT1=1w.
m Compute D = (d(xi,:ﬁj))” 1, for a cost of O(N?).

m Optimal transport problem: solving

pP* mf Z Z P;;D;j.

=1j5=1
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Transport resampling

m Sampling from the optimal P* minimizes the expected
distance between the two sets of particles, under the
marginal constraint.

m (Which is not exactly the same as maximizing the
correlation between e.g. likelihood estimators).

m Computing P* requires O(N?3) operations, but efficient
approximations have been proposed (Cuturi 2013 and
following work) in O(N?).

m The cost is linear in the dimension of x, and independent of
the model.
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Index-matching resampling

m At the initial step,
af = M(U¥,,0) and &8 = M(UY,,0).

so that particles with the same index are similar (if M is
continuous in #).

m At subsequent steps, the same random numbers U 1’3 are
used to propagate 2% and 79"

m Standard resampling breaks the correspondence between
similarity and indices: 2 and 3@ might not be similar.
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Index-matching resampling

m To preserve the correspondence between indices, we want

to maximize the probability of drawing couples of ancestors
such that a = a.

m...ie. we want P in J (w,w) with maximum trace.
m We can define:

P = diag(min{w, w}) + (1 — a)r 7L,
with

N
a= Z min{w*, o*},
k=1

r = (w —min{w,w})/(1 — «),
7 = (0 — min{w,w})/(1 — a).

m P has maximum trace in J (w,w): we cannot augment its
diagonal without violating the marginal constraints.

Pierre E. Jacob
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-matching resampling
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-matching resampling

Distance between 1,000 pairs of particles, sampled
independently and then propagated with common random
numbers.

Q
time

Hidden AR, 6 = 0.30, 6 = 0.31.
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-matching resampling

Distance between 1,000 pairs of particles, sampled
independently and then propagated with common random
numbers.

Q
time

Hidden AR, 6 = 0.30, 6 = 0.40.
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Sorting and resampling

Univariate setting: z is of dimension 1.

m Sort the two systems ()N and (%)1,.

m Perform e.g. systematic resampling on each sorted system,
using the same random numbers.

m Thus if a¥ selects 27 in the first system, @” is likely to
select a Z* close to 7.

This can be extended to multivariate settings by sorting the
particles according to the Hilbert space-filling curve.

See Deligiannidis, Doucet, Pitt & Kohn, 2015, and Pitt &
Malik, 2011, Gerber & Chopin, 2015.
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Outline

A new smoothing algorithm
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Who cares about unbiased estimators?

m Coupled resampling leads to a practical unbiased estimator
H,, of the smoothing quantity

/h(ito;T) p(dzo.r|y1.1,0),
for a test function h (for fixed ).
m Computing H&l), . ,HqSR) in parallel, we obtain
SR R g
H,= =S HD,
R ; u

along with a CLT-based error estimate.

m By contrast, for existing smoothing techniques, parallelism
is not trivial, nor is the construction of error estimates.
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Proposed estimator

m Use Rhee & Glynn (2014) trick to turn a Conditional
Particle Filter kernel into an unbiased estimator of
smoothing functionals.

m Coupled resampling schemes are instrumental in this
construction.

m Instead of two particle systems given 6 and 6, we consider
two particle systems with same 6 but different “reference

trajectories”.
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ries from particle filters

Upon running a particle filter, we get trajectories x[lnj\f with

weights w%’N .

75 100

0 25 .50
time

Figure: Hidden auto-regressive model, T' = 100 observations, N = 128.
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Conditional particle filter

Input: a trajectory Zg.r.
At step t = 0,

Sample :c’g ~ pig(dzg), forall k € 1: N — 1, set )} = .
Set wf = N~1, forallkel:N.
At step t > 1,

Sample ancestors a; V! ~ r(dat N1 | wlh), set al¥ = N.

k
Sample zF ~ fo(day | x3 ), forallk € 1: N — 1, set
N _ x
Ty = T

Compute wf = gg(y; | 2¥), forall k € 1: N.
Output: sample a trajectory, x’{;‘:T with probability w’%.
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1ditional particle filter

Figure: M = 100 paths, for the hidden auto-regressive model, 7' = 100
observations, N = 128.
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Conditional particle Filter

. 50, 75 100
iteration

Figure: M = 100 samples for xg, for the hidden auto-regressive model,
T = 100 observations, N = 128.
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Conditional particle Filter

. 50, 75 100
iteration

Figure: M = 100 samples for z1g9, for the hidden auto-regressive
model, T' = 100 observations, N = 128.
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Unbiased estimators

Von Neumann & Ulam (~ 1950), Kuti (~ 1980), Rychlik
(~1990), McLeish (~ 2010), Rhee & Glynn
(2012,2013,2014).

Introduce

m a sequence of random variables (H™) with
E[H™] —— [ h(zor) p(dzo.r|yrr, 0),

n—oo

e.g. H™ = h(X™) with (X(™) generated by CPF,
m a sequence (A(™) such that

E [Z \A(”)]] < 0,
n=>0

with H(-1) = 0 by convention.

Pierre E. Jacob
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Unbiased estimators

m Then
E Z A(n) — Z E[A(n)] — Z E[H(n) - H(n—l)]
n=0 n=0 n=0

= nll{go E[H(n)] = /h(.’lf'();T) p(de:TkUl:Ta 9)
Thus, consider
K
A®)
H, = Z Wa

n=0

where K is an integer-valued random variable. Then

0 A(n) .
E[H,]=E[) AM%I;))] = /h(UUo:T) p(dzor|yr:r, ).

n=0
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Unbiased estimators

Idea from Rhee & Glynn, 2014. Write
x () — gpn(X(n_l)) = O Pp_10...0 apl(X(O)).
Introduce

O A x(0)

) XM= wz(ff(o)), R X0 = @n+10-~-0902(X(0))-
Then A = h(X™) — b(X"=1) is such that

E[A™] = E[H™ — g1
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Unbiased estimators based on CPF chains

m Start from X (@ and X(© generated by two particle filters.

m Apply one step of CPF kernel to X(©, to get X (V).

m For n > 2, apply the CPF kernel to both X (™1 and
X(=2) with the same random numbers, to get X (") and

X =,

m We can see each step as a joint CPF acting on pairs of
trajectories, and use coupled resampling ideas.

m Can we expect A = (X)) — b(X™=1D) to decrease to
zero in average?
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Norm of A™ with independent resampling
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Hidden auto-regressive model, T' = 20 observations, N = 32.
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Norm of A™ with independent resampling
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T = 100 observations, N = 128.
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Norm of A™ with index-matching resampling
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Norm of A™ with index-matching resampling
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T = 100 observations, N = 128.
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Coupled conditional particle Filter

m We consider coupled conditional particle filters, acting on
pairs of trajectories:

(x X0y = 5 (x| x(=2))

m A coupled CPF kernel uses common random numbers for
both systems, and a coupled resampling scheme.

m We focus on index-matching resampling.

m We sce that after a number of coupled CPF steps,
X = X () exactly, and thus A = 0.

m We can thus stop early in the computation of
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Proposed estimator

Case h = Id: we estimate the smoothing means.
m Sample an integer-valued random variable K.
m Sample ¢y, draw X© and set X1 = (X)),
Compute A = X0 set H, + A,
Sample X©) = X compute AW = x1) — X0,
Set H, + H, + AW /P(K > 1).
mForn=2 ... K,
m Sample @, set (XM X1y —
m Compute AW = X _ X (n— 1).
m Stop if AW =0,
m Set H, «+ H, +AM/P(K > n).

m Return H,.
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Example: Phytoplankton—Zooplankton
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Figure: Phytoplankton—Zooplankton model, T' = 365, N = 1,024,

R = 1,000 estimators, with a Geometric truncation with mean 100.
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Example: Phytoplankton—Zooplankton
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Figure: Smoothing means of P, T = 365, N = 1,024, R = 1,000
estimators, with a Geometric truncation with mean 100.

The bars represent +2¢ around the estimated means. The blue
line is obtained from a long CPF run.
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Example: Phytoplankton—Zooplankton
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Figure: Smoothing means of Z, T = 365, N = 1,024, R = 1,000
estimators, with a Geometric truncation with mean 100.

The bars represent +2¢ around the estimated means. The blue
line is obtained from a long CPF run.
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Example: Phytoplankton—Zooplankton
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Figure: Smoothing means of Z, first 65/365 time steps, N = 1,024,
R = 1,000 estimators, with a Geometric truncation with mean 100.
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Example: Phytoplankton—Zooplankton
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Figure: Smoothing means of Z, last 65/365 time steps, N = 1,024,
R = 1,000 estimators, with a Geometric truncation with mean 100.
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Example: Phytoplankton—Zooplankton
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Figure: Trace of relative variance of the smoothing mean estimator,
T =365, N =1,024, R = 1,000 estimators, with a Geometric
truncation with mean 100.
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Discussion

m Coupled resampling schemes can be used to improve a
variety of particle-based algorithms.

m New estimator of smoothing functionals, easy to parallelize
and with error estimates.

m Benefits greatly from ancestor sampling;:
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The End

Thank you for listening!

Soon on arXiv. ..
PJ, Fredrik Lindsten, Thomas Schén, Coupling Particle Filters.

m Pitt & Malik, 2011, Particle filters for continuous likelihood
evaluation and mazimisation, J. of Econometrics.

m Rhee & Glynn, 2014, Ezxact estimation for markov chain
equilibrium expectations, arXiv.

m Deligiannidis, Doucet, Pitt & Kohn, 2015, The correlated
pseudo-marginal method, arXiv.

Pierre E. Jacob Coupling Particle Systems 56/ 56



	Motivation for coupling particle filters
	How to couple two particle filters
	A new smoothing algorithm

