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m The probability of observing a given graph is dependent on
certain ‘local’ graph properties

k-stars (or k-degrees)

bl 6. o

m For example the edge density, the number of triangles or k-stars

k-triangles
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Motivation: Modelling social networks

P(Y=y)=2(8)"exp (Z 9kgk(y)>
P

m g(y) is a vector of K graph statistics

m 0 is a K-dimensional parameter indicating the ‘importance’ of
each graph statistic

m (Intractable) partition function or normalising term

Z(0) = exp

<Z 9kgk(y)>
yey P




Parameter inference for doubly-intractable models

m Expectations with respect to the posterior distribution

EL[6(6 ]—/¢ ~(6ly)d6

m Simplest function of interest

N
Bif6] = [ on(oy)a Z 6y ~ =(6ly)

m But need to sample from the posterior distribution

N
Z Ok) Ok~ m(6ly)




The Metropolis-Hastings algorithm

To draw samples from a distribution 7(6):
Choose an initial 6y, define a proposal distribution g(, -), set n = 0.
Iterate the following for n = 0. .. Niers
Propose new parameter value, ', from q(6,, )
Set 6,1 = 0’ with probability, «(6,,6"), else 6,1 = 6,

o(6p,0") = min [1 m()a(?", 0n)
n=n+1

7(6n)q(0n, 9’)]
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Doubly-intractable distributions

m Unfortunately ERGMs are example of ‘doubly-intractable
distribution:

H6ly) — PYIOT(O)

f
p(y)

=(8) /p(y)
m Partition function or normalising term, Z(8), is intractable and
function of parameters

Nl q(0.0)x(0)(y: 0)2(6)
o(6.6') = min (1’ 0(0.0)7(0)1(y; 0)2(0') )

m As well as ERGMSs, lots of other examples

models, spatial models, phylogenetic models)

(Ising and Potts
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Current Bayesian approaches

m Approaches which use some kind of approximation:
pseudo-likelihoods
m Exact-approximate MCMC approaches:
m auxiliary variable methods such as Exchange algorithm (requires
perfect sample if implemented correctly)
m pseudo-marginal (requires unbiased estimate of likelihood)

T #(0)q0,0
a(fn,6') = min {1, ;T( (0", bn)

(0n)q(6n, 9’)]




The Exchange algorithm (Murray et al 2004 and
Mgller et al 2004)

m Expand the state space of our target (posterior) distribution to

(0)a(6.6) 5 /Py
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The Exchange algorithm (Murray et al 2004 and
Mgller et al 2004)

m Expand the state space of our target (posterior) distribution to

p(x,0,0'ly) =

~ (% 0")
2(6) "9 Z gy /PW)
m Gibbs sample g(4,¢") gx(;g/l))

m Propose to swap 6 < 0’ using Metropolis-Hastings
0.0y — T O)n(0)a(@",0)
T T o) 0)r(0)a(0, 9)




Pseudo-marginal MCMC (Roberts and Andrieu, 2009)
m Need an unbiased positive estimate of the target distribution
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Pseudo-marginal MCMC (Roberts and Andrieu, 2009)
p

m Need an unbiased positive estimate of the target distribution
(10, u) such that

/ P10, u)ps(v)

= p(y|0)
m Define joint distribution

(0, uly) = TOPWI0. u)po(u)

p(y)

m This integrates to one, and has the posterior as its marginal
m We can sample from this distribution!

a(0,0) = PU W)(0)pr (W) (0", 0)po(u)
plyl6, u)m(B)po(u) — q(b, 9’)/09/( )




What's the problem?

m we need unbiased estimate of

_ p(yl0)n(0) _ (y:6) _
w(Oly) = =2 = gy "0/ P)




What's the problem?

m we need unbiased estimate of

H6ly) — PYIOT(O)

f
ply)

7(8) /p(y)

m We can unbiasedly estimate Z(6) but if we take the reciprocal
then the estimate is no longer unbiased




Our approach

m Construct an unbiased estimate of the likelihood, based on a
series expansion of the likelihood and stochastic truncation.

m Use pseudo-marginal MCMC to sample from the desired
posterior distribution.
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Proposed methodology

m Construct random variables {Vé,j > 0} such that the series
#(0ly, {V'}) =

Zvl has E [#(6ly.{V/})] = (6ly)

m This infinite series then needs to be truncated unbiasedly.
m This can be achieved via a number of Russian roulette schemes

m Define random time, 7y, such that u := (Te,{Vé,O <j<m})

(0, uly) =

/=0

>V} which satisfies
(6, uly){V).j =0} =3 V]
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Implementation example

m Rewrite the likelihood as an infinite series. Inspired by the work
of Booth (2005).

m Simple manipulation:
f(y;0) _ f(y:9) 1
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N
=
|
Py
<
)
I
2
=
>

where

m The series converges for |k(0)| < 1.




Implementation example continued

m We can unbiasedly estimate each term in the series using n
independent estimates of Z(0)

fy;0)  f(y:0)~[, Z(6)]"
20 z“< ) 2[1 5(0)}
Vi 0) X 2 0)
n=0 i=1

(\]z
==




Implementation example continued

m We can unbiasedly estimate each term in the series using n
independent estimates of Z(0)

:0) _ fv:0) [, 2(0)]"
Z(0) ~ Z(0) 2_%[1 2«))}
18 <[, Ze)
Zo) 251

m Computed using importance sampling (IS) or sequential Monte
Carlo (SMC), for example




Implementation example continued

m We can unbiasedly estimate each term in the series using n
independent estimates of Z(0)

fyi0)  fyi0) [, 2(0)]"
Z(6)  2(0) 2_%[1 2((9)}
i) S [, 20
20 211

m Computed using importance sampling (IS) or sequential Monte
Carlo (SMC), for example

m But can’t compute an infinite number of them

[m]
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Unbiased estimates of infinite series

m Take an infinite convergent series S = ) .~ , ax which we would
like to estimate unbiasedly

T, Aha

m The simplest: draw integer k with probability p(K = k) where
Yo P(K=k)=1,then S = ax/p(K = k)
m E[S] =

kb =S

(This is essentially importance sampling)
m Variance: Y02, [mﬁiﬁzn)] — &2




Russian roulette

m Alternative: Russian roulette.

m Choose series of probabilities, {gn}, and draw sequence of i.i.d.
uniform random variables, {U,} ~ U[0,1],n=1,2,3...




Russian roulette

m Alternative: Russian roulette.

m Choose series of probabilities, {gn}, and draw sequence of i.i.d.
uniform random variables, {U,} ~ U[0,1],n=1,2,3...
m Definetime 7 =inf{fk > 1: Ux > qx}




Russian roulette

m Alternative: Russian roulette.

m Choose series of probabilities, {gn}, and draw sequence of i.i.d.
uniform random variables, {U,} ~ U[0,1],n=1,2,3...
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Russian roulette

m Alternative: Russian roulette.

m Choose series of probabilities, {gn}, and draw sequence of i.i.d.
uniform random variables, {U,} ~ U[0,1],n=1,2,3...

m Define time r =inf{k > 1: Uk > qx}

mS =y - is an unbiased estimate of S.

i=1H1

m Must choose {g,} to minimise variance of estimator.
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Debiasing estimator, McLeish (2011), Rhee Glynn

m Want unbiased estimate of E[Y], but can’t generate Y. Can
generate approximations, Y, s.t. lim,_ E[Yn] — E[Y]

ET[V]IYOJFZY/'
i=

—Yii

m Define probability distribution for N, non-negative, integer-valued
random variable, then

—Yiq
Z="Yot Z P(N > )
m is an unbiased estimator of E[Y] and has finite variance

[m]
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Negative estimates

m Often we cannot guarantee the overall estimate will be positive
m Can use a trick from the Physics literature

m Recall we have an unbiased estimate of the likelihood, p(y|6, u)
Eelo(6 ]—/¢9)w0\yd9—//¢
_ S S

7(0,uly) dddu
p(y|6, u)m(0)ps(u) dodu

ffp y|6, u)m(0)py(u) dodu
_ [ S o(0) 0’.5) 1B(y|0, u)|7(0)p
I [o(P) 1B(y10, u)|=(0)p

p(u) dodu
p(u) dodu




Negative estimates cont.

m From last slide

11012 U000 i
ExloO] = =1 5(5) [Bly16, u) (0)po(u) dddu

[ [e(0)a(p) q(8, uly) dodu
ff q(é, uly) dodu




Negative estimates cont.

m From last slide

J [ ¢0) fa) (10, u)|m(0)po(u) dodu
ExloO] = =1 5(5) [Bly16, u) (0)po(u) dddu

_ S [ o(0)a(p) q(0, uly) dodu
ff q(6,uly) dodu

m Can get a Monte Carlo estimate of ¢(6) wrt the posterior using
samples from the ‘absolute’ distribution

o= Eigl

=} 5
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Summary

m So, we can get an unbiased estimate of doubly-intractable
distribution.

m Draw a random integer, k ~ p(k)
m Compute k-th term in infinite series
m Compute overall unbiased estimate of likelihood

m Plug the absolute value into a pseudo-marginal MCMC scheme
to sample from the posterior (or close to...).

m Compute expectations with respect to the posterior using
importance sampling identity.

m However, the methodology is computationally costly as need
many low-variance estimates of partition function.

m But, we can compute estimates in parallel...

[m] [ = =




Results: Ising models

We simulated a 40x40 grid of data points from a Gibbs sampler with
JB=0.2

o> P = = z 9ac



Sample Autocorrelation Function

1 30,
025 5. 2%
[ ‘ 8
b 0 05 ¢ 20
H )
o
: 2 1 15
3 1y
< JIEE
20 10
£
). ]
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0 5 1 15 2 25 % 5 10 15 20 g
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m Geometric construction with Russian roulette sampling
m AIS
m Parallel implementation using Matlab.
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Example: Florentine business network

m ERGM model, 16 nodes

m Graph statistics in model exponent are number of edges,
number of 2- and 3-stars and number of triangles

m Estimates of the normalising term were computed using SMC
m Series truncation was carried out using Russian roulette
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Example: Florentine business network
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Example: Florentine business network

Parameter Configuration Estimate (standard error)
0 00 —427 (L)
o O:g L091085) Mean | Standard error
0 Edges | -5.1629 1.6645
. gig a0 Dstars | 15532 | 0.8078
3stars | -0.9313 0.4684
) (@ L0 Triangles | 0.9891 0.6778
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Further work

m Optimise various parts of the methodology, stopping
probabilities etc.

m Compare with approximate approaches in terms of variance and
computation




Further work

m Optimise various parts of the methodology, stopping
probabilities etc.

m Compare with approximate approaches in terms of variance and
computation

Thank you for listening!
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