

Bayesian inference for doubly-intractable distributions

Anne-Marie Lyne

anne-marie.lyne@curie.fr

April, 2016

Joint Work

≜UCL

- On Russian Roulette Estimates for Bayesian Inference with Doubly-Intractable Likelihoods
- Anne-Marie Lyne, Mark Girolami, Yves Atchade, Heiko Strathmann, Daniel Simpson
- Statist. Sci. Volume 30, Number 4 (2015)

Talk overview

- 1 Doubly intractable models
- 2 Current Bayesian approaches
- 3 Our approach using Russian roulette sampling
- 4 Results

Motivation: Doubly-intractable models

Used extensively in the social networks community

- Used extensively in the social networks community
- View the observed network as one realisation of a random variable

- Used extensively in the social networks community
- View the observed network as one realisation of a random variable
- The probability of observing a given graph is dependent on certain 'local' graph properties

- Used extensively in the social networks community
- View the observed network as one realisation of a random variable
- The probability of observing a given graph is dependent on certain 'local' graph properties
- For example the edge density, the number of triangles or k-stars

Motivation: Modelling social networks

$$\mathcal{P}(\mathbf{Y} = \mathbf{y}) = \mathcal{Z}(\boldsymbol{\theta})^{-1} \exp\left(\sum_{k} \theta_{k} g_{k}(\mathbf{y})\right)$$

- $\mathbf{g}(\mathbf{y})$ is a vector of K graph statistics
- m hinspace is a K-dimensional parameter indicating the 'importance' of each graph statistic

Motivation: Modelling social networks

$$\mathcal{P}(\mathbf{Y} = \mathbf{y}) = \mathcal{Z}(\boldsymbol{\theta})^{-1} \exp\left(\sum_{k} \theta_{k} g_{k}(\mathbf{y})\right)$$

- $\mathbf{g}(\mathbf{y})$ is a vector of K graph statistics
- $m{\theta}$ is a K-dimensional parameter indicating the 'importance' of each graph statistic
- (Intractable) partition function or normalising term

$$\mathcal{Z}(m{ heta}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp\left(\sum_{k} heta_{k} g_{k}(\mathbf{y})
ight)$$

Parameter inference for doubly-intractable models

Expectations with respect to the posterior distribution

$$\mathrm{E}_{\pi}[\phi(m{ heta})] = \int_{\Theta} \phi(m{ heta}) \pi(m{ heta}|\mathbf{y}) \mathrm{d}m{ heta} \; pprox \; rac{1}{N} \sum_{k=1}^{N} \phi(m{ heta}_k) \quad m{ heta}_k \sim \pi(m{ heta}|\mathbf{y})$$

Simplest function of interest

$$\mathrm{E}_{\pi}[m{ heta}] = \int_{m{\Theta}} m{ heta} \; \pi(m{ heta}|\mathbf{y}) \mathrm{d}m{ heta} \; pprox \; rac{1}{N} \sum_{k=1}^{N} m{ heta}_{k} \quad m{ heta}_{k} \sim \pi(m{ heta}|\mathbf{y})$$

■ But need to sample from the posterior distribution...

The Metropolis-Hastings algorithm

To draw samples from a distribution $\pi(\theta)$:

Choose an initial θ_0 , define a proposal distribution $q(\theta, \cdot)$, set n = 0.

Iterate the following for $n = 0 \dots N_{\text{iters}}$

- 1 Propose new parameter value, θ' , from $q(\theta_n, \cdot)$
- 2 Set $\theta_{n+1} = \theta'$ with probability, $\alpha(\theta_n, \theta')$, else $\theta_{n+1} = \theta_n$

$$\alpha(\theta_n, \theta') = \min \left[1, \frac{\pi(\theta')q(\theta', \theta_n)}{\pi(\theta_n)q(\theta_n, \theta')} \right]$$

3
$$n = n + 1$$

Doubly-intractable distributions

Unfortunately ERGMs are example of 'doubly-intractable' distribution:

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\rho(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\rho(\mathbf{y})} = \frac{f(\mathbf{y};\boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})}\pi(\boldsymbol{\theta}) / \rho(\mathbf{y})$$

Doubly-intractable distributions

Unfortunately ERGMs are example of 'doubly-intractable' distribution:

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\rho(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\rho(\mathbf{y})} = \frac{f(\mathbf{y};\boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})}\pi(\boldsymbol{\theta}) / \rho(\mathbf{y})$$

■ Partition function or normalising term, $\mathcal{Z}(\theta)$, is intractable and function of parameters

$$\alpha(\boldsymbol{\theta}, \boldsymbol{\theta}') = \min\left(1, \frac{q(\boldsymbol{\theta}', \boldsymbol{\theta})\pi(\boldsymbol{\theta}')f(\mathbf{y}; \boldsymbol{\theta}')\mathcal{Z}(\boldsymbol{\theta})}{q(\boldsymbol{\theta}, \boldsymbol{\theta}')\pi(\boldsymbol{\theta})f(\mathbf{y}; \boldsymbol{\theta})\mathcal{Z}(\boldsymbol{\theta}')}\right)$$

Doubly-intractable distributions

Unfortunately ERGMs are example of 'doubly-intractable' distribution:

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\rho(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\rho(\mathbf{y})} = \frac{f(\mathbf{y};\boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})}\pi(\boldsymbol{\theta}) / \rho(\mathbf{y})$$

■ Partition function or normalising term, $\mathcal{Z}(\theta)$, is intractable and function of parameters

$$\alpha(\boldsymbol{\theta}, \boldsymbol{\theta}') = \min \left(1, \frac{q(\boldsymbol{\theta}', \boldsymbol{\theta})\pi(\boldsymbol{\theta}')f(\mathbf{y}; \boldsymbol{\theta}')\mathcal{Z}(\boldsymbol{\theta})}{q(\boldsymbol{\theta}, \boldsymbol{\theta}')\pi(\boldsymbol{\theta})f(\mathbf{y}; \boldsymbol{\theta})\mathcal{Z}(\boldsymbol{\theta}')} \right)$$

 As well as ERGMs, lots of other examples... (Ising and Potts models, spatial models, phylogenetic models)

Current Bayesian approaches

- Approaches which use some kind of approximation: pseudo-likelihoods
- Exact-approximate MCMC approaches:
 - auxiliary variable methods such as Exchange algorithm (requires perfect sample if implemented correctly)
 - pseudo-marginal (requires unbiased estimate of likelihood)

$$\alpha(\theta_n, \theta') = \min \left[1, \frac{\hat{\pi}(\theta')q(\theta', \theta_n)}{\hat{\pi}(\theta_n)q(\theta_n, \theta')} \right]$$

The Exchange algorithm (Murray et al 2004 and Møller et al 2004)

Expand the state space of our target (posterior) distribution to

$$p(\mathbf{x}, \theta, \theta' | \mathbf{y}) = \frac{f(\mathbf{y}; \theta)}{\mathcal{Z}(\theta)} \pi(\theta) q(\theta, \theta') \frac{f(\mathbf{x}; \theta')}{\mathcal{Z}(\theta')} / p(\mathbf{y})$$

The Exchange algorithm (Murray et al 2004 and Møller et al 2004)

Expand the state space of our target (posterior) distribution to

$$p(\mathbf{x}, \theta, \theta' | \mathbf{y}) = \frac{f(\mathbf{y}; \theta)}{\mathcal{Z}(\theta)} \pi(\theta) q(\theta, \theta') \frac{f(\mathbf{x}; \theta')}{\mathcal{Z}(\theta')} / p(\mathbf{y})$$

- Gibbs sample $q(\theta, \theta') \frac{f(\mathbf{x}; \theta')}{\mathcal{Z}(\theta')}$
- lacktriangleright Propose to swap $heta \leftrightarrow heta'$ using Metropolis-Hastings

$$\alpha(\theta, \theta') = \frac{f(y; \theta')f(x; \theta)\pi(\theta')q(\theta', \theta)}{f(y; \theta)f(x; \theta')\pi(\theta)q(\theta, \theta')}$$

■ Need an unbiased positive estimate of the target distribution $\hat{p}(y|\theta,u)$ such that

$$\int \hat{p}(y|\theta,u)p_{\theta}(u)\mathrm{d}u = p(y|\theta)$$

■ Need an unbiased positive estimate of the target distribution $\hat{p}(y|\theta,u)$ such that

$$\int \hat{p}(y|\theta,u)p_{\theta}(u)\mathrm{d}u = p(y|\theta)$$

Define joint distribution

$$\pi(\theta, u|y) = \frac{\pi(\theta)\hat{p}(y|\theta, u)p_{\theta}(u)}{p(y)}$$

■ Need an unbiased positive estimate of the target distribution $\hat{p}(y|\theta,u)$ such that

$$\int \hat{p}(y|\theta,u)p_{\theta}(u)\mathrm{d}u = p(y|\theta)$$

Define joint distribution

$$\pi(\theta, u|y) = \frac{\pi(\theta)\hat{p}(y|\theta, u)p_{\theta}(u)}{p(y)}$$

■ This integrates to one, and has the posterior as its marginal

■ Need an unbiased positive estimate of the target distribution $\hat{p}(y|\theta,u)$ such that

$$\int \hat{p}(y|\theta,u)p_{\theta}(u)\mathrm{d}u = p(y|\theta)$$

Define joint distribution

$$\pi(\theta, u|y) = \frac{\pi(\theta)\hat{p}(y|\theta, u)p_{\theta}(u)}{p(y)}$$

- This integrates to one, and has the posterior as its marginal
- We can sample from this distribution!

$$\alpha(\theta, \theta') = \frac{\hat{p}(y|\theta', u')\pi(\theta')p_{\theta'}(u')}{\hat{p}(y|\theta, u)\pi(\theta)p_{\theta}(u)} \times \frac{q(\theta', \theta)p_{\theta}(u)}{q(\theta, \theta')p_{\theta'}(u')} \times \frac{q(\theta', \theta)p_{\theta}(u)}{q(\theta, \theta')p_{\theta'}(u')}$$

What's the problem?

we need unbiased estimate of

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\rho(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\rho(\mathbf{y})} = \frac{f(\mathbf{y};\boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})}\pi(\boldsymbol{\theta}) / \rho(\mathbf{y})$$

What's the problem?

we need unbiased estimate of

$$\pi(\boldsymbol{\theta}|\mathbf{y}) = \frac{\rho(\mathbf{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{\rho(\mathbf{y})} = \frac{f(\mathbf{y};\boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})}\pi(\boldsymbol{\theta}) / \rho(\mathbf{y})$$

■ We can unbiasedly estimate $\mathcal{Z}(\theta)$ but if we take the reciprocal then the estimate is no longer unbiased.

$$E[\hat{\mathcal{Z}}(\theta)] = \mathcal{Z}(\theta)$$
$$E\left[\frac{1}{\hat{\mathcal{Z}}(\theta)}\right] \neq \frac{1}{\mathcal{Z}(\theta)}$$

Our approach

- Construct an unbiased estimate of the likelihood, based on a series expansion of the likelihood and stochastic truncation.
- Use pseudo-marginal MCMC to sample from the desired posterior distribution.

Proposed methodology

■ Construct random variables $\{V_{\theta}^{j}, j \geq 0\}$ such that the series

$$\hat{\pi}(\theta|y,\{V^j\}) = \sum_{j=0}^{\infty} V_{\theta}^j$$
 has $\mathbb{E}\left[\hat{\pi}(\theta|y,\{V^j\})\right] = \pi(\theta|y)$.

Proposed methodology

■ Construct random variables $\{V_{\theta}^{j}, j \geq 0\}$ such that the series

$$\hat{\pi}(\theta|y,\{V^j\}) = \sum_{j=0}^{\infty} V_{\theta}^j$$
 has $\mathbb{E}\left[\hat{\pi}(\theta|y,\{V^j\})\right] = \pi(\theta|y)$.

- This infinite series then needs to be truncated unbiasedly.
- This can be achieved via a number of Russian roulette schemes.

Proposed methodology

■ Construct random variables $\{V_{\theta}^{j}, j \geq 0\}$ such that the series

$$\hat{\pi}(\theta|y,\{V^j\}) = \sum_{j=0}^{\infty} V_{\theta}^j \quad \text{has} \quad \mathbb{E}\left[\hat{\pi}(\theta|y,\{V^j\})\right] = \pi(\theta|y).$$

- This infinite series then needs to be truncated unbiasedly.
- This can be achieved via a number of Russian roulette schemes.
- Define random time, τ_{θ} , such that $u := (\tau_{\theta}, \{V_{\theta}^{j}, 0 \leq j \leq \tau_{\theta}\})$

$$\pi(\theta, u|y) = \sum_{j=0}^{ au_{ heta}} V_{ heta}^j$$
 which satisfies

$$\mathbb{E}\left[\pi(\theta, u|y)|\{V_{\theta}^{j}, j \geq 0\}\right] = \sum_{i=0}^{\infty} V_{\theta}^{j}$$

Implementation example

■ Rewrite the likelihood as an infinite series. Inspired by the work of Booth (2005).

Implementation example

- Rewrite the likelihood as an infinite series. Inspired by the work of Booth (2005).
- Simple manipulation:

$$\frac{f(\mathbf{y};\theta)}{\mathcal{Z}(\theta)} = \frac{f(\mathbf{y};\theta)}{\tilde{\mathcal{Z}}(\theta)} \frac{1}{1 - \left[1 - \frac{\mathcal{Z}(\theta)}{\tilde{\mathcal{Z}}(\theta)}\right]} = \frac{f(\mathbf{y};\theta)}{\tilde{\mathcal{Z}}(\theta)} \sum_{n=0}^{\infty} \kappa(\theta)^n$$

where

$$\kappa(\theta) = 1 - \frac{\mathcal{Z}(\theta)}{\tilde{\mathcal{Z}}(\theta)}$$

Implementation example

- Rewrite the likelihood as an infinite series. Inspired by the work of Booth (2005).
- Simple manipulation:

$$\frac{f(\mathbf{y};\theta)}{\mathcal{Z}(\theta)} = \frac{f(\mathbf{y};\theta)}{\tilde{\mathcal{Z}}(\theta)} \frac{1}{1 - \left[1 - \frac{\mathcal{Z}(\theta)}{\tilde{\mathcal{Z}}(\theta)}\right]} = \frac{f(\mathbf{y};\theta)}{\tilde{\mathcal{Z}}(\theta)} \sum_{n=0}^{\infty} \kappa(\theta)^n$$

where

$$\kappa(\theta) = 1 - \frac{\mathcal{Z}(\theta)}{\tilde{\mathcal{Z}}(\theta)}$$

■ The series converges for $|\kappa(\theta)| < 1$.

Implementation example continued

■ We can unbiasedly estimate each term in the series using n independent estimates of $\mathcal{Z}(\theta)$.

$$\frac{f(\mathbf{y}; \boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})} = \frac{f(\mathbf{y}; \boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \sum_{n=0}^{\infty} \left[1 - \frac{\mathcal{Z}(\boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \right]^{n}$$

$$\approx \frac{f(\mathbf{y}; \boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \sum_{n=0}^{\infty} \prod_{i=1}^{n} \left[1 - \frac{\hat{\mathcal{Z}}_{i}(\boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \right]$$

Implementation example continued

■ We can unbiasedly estimate each term in the series using n independent estimates of $\mathcal{Z}(\theta)$.

$$\frac{f(\mathbf{y}; \boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})} = \frac{f(\mathbf{y}; \boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \sum_{n=0}^{\infty} \left[1 - \frac{\mathcal{Z}(\boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \right]^{n}$$

$$\approx \frac{f(\mathbf{y}; \boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \sum_{n=0}^{\infty} \prod_{i=1}^{n} \left[1 - \frac{\hat{\mathcal{Z}}_{i}(\boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \right]$$

Computed using importance sampling (IS) or sequential Monte Carlo (SMC), for example.

Implementation example continued

■ We can unbiasedly estimate each term in the series using n independent estimates of $\mathcal{Z}(\theta)$.

$$\frac{f(\mathbf{y}; \boldsymbol{\theta})}{\mathcal{Z}(\boldsymbol{\theta})} = \frac{f(\mathbf{y}; \boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \sum_{n=0}^{\infty} \left[1 - \frac{\mathcal{Z}(\boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \right]^{n}$$

$$\approx \frac{f(\mathbf{y}; \boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \sum_{n=0}^{\infty} \prod_{i=1}^{n} \left[1 - \frac{\hat{\mathcal{Z}}_{i}(\boldsymbol{\theta})}{\tilde{\mathcal{Z}}(\boldsymbol{\theta})} \right]$$

- Computed using importance sampling (IS) or sequential Monte Carlo (SMC), for example.
- But can't compute an infinite number of them...

Unbiased estimates of infinite series

■ Take an infinite convergent series $S = \sum_{k=0}^{\infty} a_k$ which we would like to estimate unbiasedly.

Unbiased estimates of infinite series

- Take an infinite convergent series $S = \sum_{k=0}^{\infty} a_k$ which we would like to estimate unbiasedly.
- The simplest: draw integer k with probability p(K = k) where $\sum_{k=0}^{\infty} p(K = k) = 1$, then $\hat{S} = a_k/p(K = k)$

Unbiased estimates of infinite series

- Take an infinite convergent series $S = \sum_{k=0}^{\infty} a_k$ which we would like to estimate unbiasedly.
- The simplest: draw integer k with probability p(K = k) where $\sum_{k=0}^{\infty} p(K = k) = 1$, then $\hat{S} = a_k/p(K = k)$
- $\blacksquare \mathbb{E}[\hat{S}] = \sum_{k} \frac{p(K=k)a_{k}}{p(K=k)} = S$

Unbiased estimates of infinite series

- Take an infinite convergent series $S = \sum_{k=0}^{\infty} a_k$ which we would like to estimate unbiasedly.
- The simplest: draw integer k with probability p(K = k) where $\sum_{k=0}^{\infty} p(K = k) = 1$, then $\hat{S} = a_k/p(K = k)$
- $\blacksquare \mathbb{E}[\hat{S}] = \sum_{k} \frac{p(K=k)a_k}{p(K=k)} = S$
- (This is essentially importance sampling)
- Variance: $\sum_{n=0}^{\infty} \left[\frac{a_n^2}{p(N=n)} \right] S^2$

- Alternative: Russian roulette.
- Choose series of probabilities, $\{q_n\}$, and draw sequence of i.i.d. uniform random variables, $\{U_n\} \sim \mathcal{U}[0,1]$, n=1,2,3...

- Alternative: Russian roulette.
- Choose series of probabilities, $\{q_n\}$, and draw sequence of i.i.d. uniform random variables, $\{U_n\} \sim \mathcal{U}[0,1]$, $n = 1, 2, 3 \dots$
- Define time $\tau = \inf\{k \ge 1 : U_k \ge q_k\}$

- Alternative: Russian roulette.
- Choose series of probabilities, $\{q_n\}$, and draw sequence of i.i.d. uniform random variables, $\{U_n\} \sim \mathcal{U}[0,1]$, $n = 1, 2, 3 \dots$
- Define time $\tau = \inf\{k \ge 1 : U_k \ge q_k\}$
- $S_{\tau} = \sum_{j=0}^{\tau-1} \frac{a_j}{\prod_{i=1}^j q_i}$, is an unbiased estimate of S.

- Alternative: Russian roulette.
- Choose series of probabilities, $\{q_n\}$, and draw sequence of i.i.d. uniform random variables, $\{U_n\} \sim \mathcal{U}[0,1]$, $n = 1, 2, 3 \dots$
- Define time $\tau = \inf\{k \ge 1 : U_k \ge q_k\}$
- $S_{\tau} = \sum_{j=0}^{\tau-1} \frac{a_j}{\prod_{i=1}^{j} q_i}$, is an unbiased estimate of S.
- Must choose $\{q_n\}$ to minimise variance of estimator.

■ Want unbiased estimate of E[Y], but can't generate Y. Can generate approximations, Y_n , s.t. $\lim_{n\to\infty} E[Y_n] \to E[Y]$.

■ Want unbiased estimate of E[Y], but can't generate Y. Can generate approximations, Y_n , s.t. $\lim_{n\to\infty} E[Y_n] \to E[Y]$.

$$\widehat{\mathrm{E}[Y]} = Y_0 + \sum_{i=1}^{\infty} Y_i - Y_{i-1}$$

■ Want unbiased estimate of E[Y], but can't generate Y. Can generate approximations, Y_n , s.t. $\lim_{n\to\infty} E[Y_n] \to E[Y]$.

$$\widehat{\mathrm{E}[Y]} = Y_0 + \sum_{i=1}^{\infty} Y_i - Y_{i-1}$$

■ Define probability distribution for *N*, non-negative, integer-valued random variable, then

■ Want unbiased estimate of E[Y], but can't generate Y. Can generate approximations, Y_n , s.t. $\lim_{n\to\infty} E[Y_n] \to E[Y]$.

$$\widehat{\mathrm{E}[Y]} = Y_0 + \sum_{i=1}^{\infty} Y_i - Y_{i-1}$$

■ Define probability distribution for *N*, non-negative, integer-valued random variable, then

$$Z = Y_0 + \sum_{i=1}^{N} \frac{Y_i - Y_{i-1}}{P(N \ge i)}$$

 \blacksquare is an unbiased estimator of $\mathbb{E}[Y]$ and has finite variance.

Negative estimates

■ Often we cannot guarantee the overall estimate will be positive

Negative estimates

- Often we cannot guarantee the overall estimate will be positive
- Can use a trick from the Physics literature...
- Recall we have an unbiased estimate of the likelihood, $\hat{p}(y|\theta, u)$

$$\begin{aligned} \mathbf{E}_{\pi}[\phi(\theta)] &= \int \phi(\theta)\pi(\theta|\mathbf{y})\mathrm{d}\theta = \int \int \phi(\theta)\pi(\theta,\mathbf{u}|\mathbf{y})\;\mathrm{d}\theta\mathrm{d}\mathbf{u} \\ &= \frac{\int \int \phi(\theta)\;\hat{p}(\mathbf{y}|\theta,\mathbf{u})\pi(\theta)p_{\theta}(\mathbf{u})\;\mathrm{d}\theta\mathrm{d}\mathbf{u}}{\int \int \hat{p}(\mathbf{y}|\theta,\mathbf{u})\pi(\theta)p_{\theta}(\mathbf{u})\;\mathrm{d}\theta\mathrm{d}\mathbf{u}} \end{aligned}$$

Negative estimates

- Often we cannot guarantee the overall estimate will be positive
- Can use a trick from the Physics literature...
- Recall we have an unbiased estimate of the likelihood, $\hat{p}(y|\theta, u)$

$$\begin{split} & \mathbf{E}_{\pi}[\phi(\theta)] = \int \phi(\theta)\pi(\theta|y)\mathrm{d}\theta = \int \int \phi(\theta)\pi(\theta,u|y)\;\mathrm{d}\theta\mathrm{d}u \\ & = \frac{\int \int \phi(\theta)\;\hat{p}(y|\theta,u)\pi(\theta)p_{\theta}(u)\;\mathrm{d}\theta\mathrm{d}u}{\int \int \hat{p}(y|\theta,u)\pi(\theta)p_{\theta}(u)\;\mathrm{d}\theta\mathrm{d}u} \\ & = \frac{\int \int \phi(\theta)\sigma(\hat{p})\;|\hat{p}(y|\theta,u)|\pi(\theta)p_{\theta}(u)\;\mathrm{d}\theta\mathrm{d}u}{\int \int \sigma(\hat{p})\;|\hat{p}(y|\theta,u)|\pi(\theta)p_{\theta}(u)\;\mathrm{d}\theta\mathrm{d}u} \end{split}$$

Negative estimates cont.

From last slide

$$E_{\pi}[\phi(\theta)] = \frac{\int \int \phi(\theta)\sigma(\hat{p}) |\hat{p}(y|\theta, u)|\pi(\theta)p_{\theta}(u) d\theta du}{\int \int \sigma(\hat{p}) |\hat{p}(y|\theta, u)|\pi(\theta)p_{\theta}(u) d\theta du}$$
$$= \frac{\int \int \phi(\theta)\sigma(\hat{p}) q(\theta, u|y) d\theta du}{\int \int \sigma(\hat{p}) q(\theta, u|y) d\theta du}$$

Negative estimates cont.

From last slide

$$E_{\pi}[\phi(\theta)] = \frac{\int \int \phi(\theta)\sigma(\hat{p}) |\hat{p}(y|\theta, u)|\pi(\theta)p_{\theta}(u) d\theta du}{\int \int \sigma(\hat{p}) |\hat{p}(y|\theta, u)|\pi(\theta)p_{\theta}(u) d\theta du}$$
$$= \frac{\int \int \phi(\theta)\sigma(\hat{p}) q(\theta, u|y) d\theta du}{\int \int \sigma(\hat{p}) q(\theta, u|y) d\theta du}$$

■ Can get a Monte Carlo estimate of $\phi(\theta)$ wrt the posterior using samples from the 'absolute' distribution

$$\mathrm{E}_{\pi}[\phi(\theta)] pprox \frac{\sum_{k} \phi(\theta_{k}) \sigma(\hat{p}_{k})}{\sum_{k} \sigma(\hat{p}_{k})}$$

So, we can get an unbiased estimate of doubly-intractable distribution.

- So, we can get an unbiased estimate of doubly-intractable distribution.
 - Draw a random integer, $k \sim p(k)$
 - Compute *k*-th term in infinite series
 - Compute overall unbiased estimate of likelihood

- So, we can get an unbiased estimate of doubly-intractable distribution.
 - Draw a random integer, $k \sim p(k)$
 - Compute *k*-th term in infinite series
 - Compute overall unbiased estimate of likelihood
- Plug the absolute value into a pseudo-marginal MCMC scheme to sample from the posterior (or close to...).
- Compute expectations with respect to the posterior using importance sampling identity.

- So, we can get an unbiased estimate of doubly-intractable distribution.
 - Draw a random integer, $k \sim p(k)$
 - Compute *k*-th term in infinite series
 - Compute overall unbiased estimate of likelihood
- Plug the absolute value into a pseudo-marginal MCMC scheme to sample from the posterior (or close to...).
- Compute expectations with respect to the posterior using importance sampling identity.
- However, the methodology is computationally costly as need many low-variance estimates of partition function.

- So, we can get an unbiased estimate of doubly-intractable distribution.
 - Draw a random integer, $k \sim p(k)$
 - Compute *k*-th term in infinite series
 - Compute overall unbiased estimate of likelihood
- Plug the *absolute* value into a pseudo-marginal MCMC scheme to sample from the posterior (or close to...).
- Compute expectations with respect to the posterior using importance sampling identity.
- However, the methodology is computationally costly as need many low-variance estimates of partition function.
- But, we can compute estimates in parallel...

Results: Ising models

We simulated a 40x40 grid of data points from a Gibbs sampler with $J\beta=0.2$

ŮCL

- Geometric construction with Russian roulette sampling
- AIS
- Parallel implementation using Matlab.

■ ERGM model, 16 nodes

- ERGM model, 16 nodes
- Graph statistics in model exponent are number of edges, number of 2- and 3-stars and number of triangles

- ERGM model, 16 nodes
- Graph statistics in model exponent are number of edges, number of 2- and 3-stars and number of triangles
- Estimates of the normalising term were computed using SMC

- ERGM model, 16 nodes
- Graph statistics in model exponent are number of edges, number of 2- and 3-stars and number of triangles
- Estimates of the normalising term were computed using SMC
- Series truncation was carried out using Russian roulette

Parameter	Configuration	Estimate (standard error)
θ	0-0	-4.27 (1.13)
σ_2	Ç	1.09 (0.65)
σ_3	60	-0.67 (0.41)
τ	Q	1.32 (0.65)

	Mean	Standard error
Edges	-5.1629	1.6645
2-stars	1.5532	0.8078
3stars	-0.9313	0.4684
Triangles	0.9891	0.6778

Further work

- Optimise various parts of the methodology, stopping probabilities etc.
- Compare with approximate approaches in terms of variance and computation

Further work

- Optimise various parts of the methodology, stopping probabilities etc.
- Compare with approximate approaches in terms of variance and computation

Thank you for listening!

References

- MCMC for doubly-intractable distributions. Murray, Ghahramani, MacKay (2004)
- An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Møller, Pettitt, Berthelsen, Reeves (2004).
- Unbiased Estimation with Square Root Convergence for SDE Models. Rhee, Glynn (2012)
- A general method for debiasing a Monte Carlo estimator.
 McLeish (2011)
- Unbiased Monte Carlo Estimation of the Reciprocal of an Integral. Booth (2007)