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Motivation: Doubly-intractable models



Motivation: Exponential Random Graph Models

Used extensively in the social networks community

View the observed network as one realisation of a random
variable
The probability of observing a given graph is dependent on
certain ‘local’ graph properties
For example the edge density, the number of triangles or k-stars
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Motivation: Modelling social networks

P(Y = y) = Z(θ)−1 exp

(∑
k

θkgk (y)

)

g(y) is a vector of K graph statistics
θ is a K -dimensional parameter indicating the ‘importance’ of
each graph statistic

(Intractable) partition function or normalising term

Z(θ) =
∑
y∈Y
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Parameter inference for doubly-intractable models

Expectations with respect to the posterior distribution

Eπ[φ(θ)] =

∫
Θ
φ(θ)π(θ|y)dθ ≈ 1

N

N∑
k=1

φ(θk ) θk ∼ π(θ|y)

Simplest function of interest

Eπ[θ] =

∫
Θ
θ π(θ|y)dθ ≈ 1

N

N∑
k=1

θk θk ∼ π(θ|y)

But need to sample from the posterior distribution...



The Metropolis-Hastings algorithm

To draw samples from a distribution π(θ):

Choose an initial θ0, define a proposal distribution q(θ, ·), set n = 0.

Iterate the following for n = 0 . . .Niters

1 Propose new parameter value, θ′, from q(θn, ·)
2 Set θn+1 = θ′ with probability, α(θn, θ

′), else θn+1 = θn

α(θn, θ
′) = min

[
1,
π(θ′)q(θ′, θn)

π(θn)q(θn, θ′)

]
3 n = n + 1



Doubly-intractable distributions

Unfortunately ERGMs are example of ‘doubly-intractable’
distribution:

π(θ|y) = p(y|θ)π(θ)
p(y)

=
f (y;θ)
Z(θ)

π(θ)
/

p(y)

Partition function or normalising term, Z(θ), is intractable and
function of parameters

α(θ,θ′) = min
(

1,
q(θ′,θ)π(θ′)f (y;θ′)Z(θ)
q(θ,θ′)π(θ)f (y;θ)Z(θ′)

)

As well as ERGMs, lots of other examples... (Ising and Potts
models, spatial models, phylogenetic models)



Doubly-intractable distributions

Unfortunately ERGMs are example of ‘doubly-intractable’
distribution:

π(θ|y) = p(y|θ)π(θ)
p(y)

=
f (y;θ)
Z(θ)

π(θ)
/

p(y)

Partition function or normalising term, Z(θ), is intractable and
function of parameters

α(θ,θ′) = min
(

1,
q(θ′,θ)π(θ′)f (y;θ′)Z(θ)
q(θ,θ′)π(θ)f (y;θ)Z(θ′)

)

As well as ERGMs, lots of other examples... (Ising and Potts
models, spatial models, phylogenetic models)



Doubly-intractable distributions

Unfortunately ERGMs are example of ‘doubly-intractable’
distribution:

π(θ|y) = p(y|θ)π(θ)
p(y)

=
f (y;θ)
Z(θ)

π(θ)
/

p(y)

Partition function or normalising term, Z(θ), is intractable and
function of parameters

α(θ,θ′) = min
(

1,
q(θ′,θ)π(θ′)f (y;θ′)Z(θ)
q(θ,θ′)π(θ)f (y;θ)Z(θ′)

)

As well as ERGMs, lots of other examples... (Ising and Potts
models, spatial models, phylogenetic models)



Current Bayesian approaches

Approaches which use some kind of approximation:
pseudo-likelihoods

Exact-approximate MCMC approaches:
auxiliary variable methods such as Exchange algorithm (requires
perfect sample if implemented correctly)

pseudo-marginal (requires unbiased estimate of likelihood)

α(θn, θ
′) = min

[
1,
π̂(θ′)q(θ′, θn)

π̂(θn)q(θn, θ′)

]



The Exchange algorithm (Murray et al 2004 and
Møller et al 2004)

Expand the state space of our target (posterior) distribution to

p(x, θ, θ′|y) = f (y;θ)
Z(θ)

π(θ)q(θ, θ′)
f (x;θ′)
Z(θ′)

/
p(y)

Gibbs sample q(θ, θ′) f (x;θ′)
Z(θ′)

Propose to swap θ ↔ θ′ using Metropolis-Hastings

α(θ, θ′) =
f (y ; θ′)f (x ; θ)π(θ′)q(θ′, θ)
f (y ; θ)f (x ; θ′)π(θ)q(θ, θ′)
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Pseudo-marginal MCMC (Roberts and Andrieu, 2009)
Need an unbiased positive estimate of the target distribution
p̂(y |θ,u) such that∫

p̂(y |θ,u)pθ(u)du = p(y |θ)

Define joint distribution

π(θ,u|y) = π(θ)p̂(y |θ,u)pθ(u)
p(y)

This integrates to one, and has the posterior as its marginal
We can sample from this distribution!

α(θ, θ′) =
p̂(y |θ′,u′)π(θ′)pθ′(u′)

p̂(y |θ,u)π(θ)pθ(u)
× q(θ′, θ)pθ(u)

q(θ, θ′)pθ′(u′)
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What’s the problem?

we need unbiased estimate of

π(θ|y) = p(y|θ)π(θ)
p(y)

=
f (y;θ)
Z(θ)

π(θ)
/

p(y)

We can unbiasedly estimate Z(θ) but if we take the reciprocal
then the estimate is no longer unbiased.

E[Ẑ(θ)] = Z(θ)

E

[
1
Ẑ(θ)

]
6= 1
Z(θ)
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Our approach

Construct an unbiased estimate of the likelihood, based on a
series expansion of the likelihood and stochastic truncation.

Use pseudo-marginal MCMC to sample from the desired
posterior distribution.



Proposed methodology
Construct random variables {V j

θ, j ≥ 0} such that the series

π̂(θ|y , {V j}) =
∞∑

j=0

V j
θ has E

[
π̂(θ|y , {V j})

]
= π(θ|y).

This infinite series then needs to be truncated unbiasedly.
This can be achieved via a number of Russian roulette schemes.
Define random time, τθ, such that u := (τθ, {V j

θ,0 ≤ j ≤ τθ})

π(θ,u|y) =
τθ∑

j=0

V j
θ which satisfies

E
[
π(θ,u|y)|{V j

θ, j ≥ 0}
]
=
∞∑

j=0

V j
θ
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Implementation example

Rewrite the likelihood as an infinite series. Inspired by the work
of Booth (2005).

Simple manipulation:

f (y;θ)
Z(θ)

=
f (y;θ)
Z̃(θ)

1

1−
[
1− Z(θ)

Z̃(θ)

] =
f (y;θ)
Z̃(θ)

∞∑
n=0

κ(θ)n

where
κ(θ) = 1− Z(θ)

Z̃(θ)

The series converges for |κ(θ)| < 1.
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Implementation example continued

We can unbiasedly estimate each term in the series using n
independent estimates of Z(θ).

f (y;θ)
Z(θ)

=
f (y;θ)
Z̃(θ)

∞∑
n=0

[
1− Z(θ)
Z̃(θ)

]n

≈ f (y;θ)
Z̃(θ)

∞∑
n=0

n∏
i=1

[
1− Ẑi(θ)

Z̃(θ)

]

Computed using importance sampling (IS) or sequential Monte
Carlo (SMC), for example.

But can’t compute an infinite number of them...
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Unbiased estimates of infinite series

Take an infinite convergent series S =
∑∞

k=0 ak which we would
like to estimate unbiasedly.

The simplest: draw integer k with probability p(K = k) where∑∞
k=0 p(K = k) = 1, then Ŝ = ak/p(K = k)

E[Ŝ] =
∑

k
p(K =k)ak
p(K =k) = S

(This is essentially importance sampling)

Variance:
∑∞

n=0

[
a2

n
p(N=n)

]
− S2
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Russian roulette

Alternative: Russian roulette.

Choose series of probabilities, {qn}, and draw sequence of i.i.d.
uniform random variables, {Un} ∼ U [0,1], n = 1,2,3 . . .

Define time τ = inf{k ≥ 1 : Uk ≥ qk}

Sτ =
∑τ−1

j=0
aj∏j

i=1 qi
, is an unbiased estimate of S.

Must choose {qn} to minimise variance of estimator.
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Debiasing estimator, McLeish (2011), Rhee Glynn
(2012)

Want unbiased estimate of E[Y ], but can’t generate Y . Can
generate approximations, Yn, s.t. limn→∞ E[Yn]→ E[Y ].

Ê[Y ] = Y0 +
∞∑

i=1

Yi − Yi−1

Define probability distribution for N, non-negative, integer-valued
random variable, then

Z = Y0 +
N∑

i=1

Yi − Yi−1

P(N ≥ i)

is an unbiased estimator of E[Y ] and has finite variance.
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Negative estimates

Often we cannot guarantee the overall estimate will be positive

Can use a trick from the Physics literature...
Recall we have an unbiased estimate of the likelihood, p̂(y |θ,u)

Eπ[φ(θ)] =

∫
φ(θ)π(θ|y)dθ =

∫ ∫
φ(θ)π(θ,u|y) dθdu

=

∫ ∫
φ(θ) p̂(y |θ,u)π(θ)pθ(u) dθdu∫ ∫

p̂(y |θ,u)π(θ)pθ(u) dθdu

=

∫ ∫
φ(θ)σ(p̂) |p̂(y |θ,u)|π(θ)pθ(u) dθdu∫ ∫
σ(p̂) |p̂(y |θ,u)|π(θ)pθ(u) dθdu
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Negative estimates cont.
From last slide

Eπ[φ(θ)] =

∫ ∫
φ(θ)σ(p̂) |p̂(y |θ,u)|π(θ)pθ(u) dθdu∫ ∫
σ(p̂) |p̂(y |θ,u)|π(θ)pθ(u) dθdu

=

∫ ∫
φ(θ)σ(p̂) q(θ,u|y) dθdu∫ ∫
σ(p̂) q(θ,u|y) dθdu

Can get a Monte Carlo estimate of φ(θ) wrt the posterior using
samples from the ‘absolute’ distribution

Eπ[φ(θ)] ≈
∑

k φ(θk )σ(p̂k )∑
k σ(p̂k )
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Summary

So, we can get an unbiased estimate of doubly-intractable
distribution.

Draw a random integer, k ∼ p(k)
Compute k -th term in infinite series
Compute overall unbiased estimate of likelihood

Plug the absolute value into a pseudo-marginal MCMC scheme
to sample from the posterior (or close to...).
Compute expectations with respect to the posterior using
importance sampling identity.

However, the methodology is computationally costly as need
many low-variance estimates of partition function.

But, we can compute estimates in parallel...
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Results: Ising models

We simulated a 40x40 grid of data points from a Gibbs sampler with
Jβ = 0.2



Geometric construction with Russian roulette sampling
AIS
Parallel implementation using Matlab.
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probabilities etc.
Compare with approximate approaches in terms of variance and
computation
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