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Introduction

Discrete Gibbs or Markov random fields have appeared as convenient sta-

tistical model to analyse different types of spatially correlated data.

Hidden random fields: we observe only a noisy version y of an unobserved

discrete latent process x

Discrete Gibbs or Markov random fields suffer from major

computational difficulties

Intractable normalizing constant
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For parameter estimation:

Richard Everitt (2012) Bayesian Parameter Estimation for Latent Markov

Random Fields and Social Networks, Journal of Computational and

Graphical Statistics

Model choice questions: selecting the number of latent states

and the dependency structure of hidden Potts model

Use the Bayesian Information Criterion
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Plan

• Discrete hidden Gibbs or Markov random fields

• Block Likelihood Information Criterion

– Background on Bayesian Information Criterion

– Gibbs distribution approximations

– Related model choice criteria

• Comparison of BIC approximations

– Hidden Potts models

– First experiment: selection of the number of colors

– Second experiment: selection of the dependency structure

– Third experiment: BLIC versus ABC
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Discrete hidden Gibbs or Markov random fields

A discrete Markov random field X with respect to G :

• a collection of random variables Xi taking values in X = {0, . . . , K−1}

indexed by a finite set of sites S = {1, . . . , n}

• the dependency between the sites is given by an undirected graph G

which induces a topology on S :

P (Xi = xi | X−i = x−i) = P
(
Xi = xi

∣∣ XN (i) = xN (i)

)
,

where N (i) denotes the set of all the neighbor sites to i in G : i and

j are neighbor if and only if i and j are linked by an edge in G .

Markov random fields ⇐⇒ Undirected graphical models
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A discrete Gibbs random fields X with respect to G

• a collection of random variables Xi taking values in X = {0, . . . , K−1}

indexed by a finite set of sites S = {1, . . . , n}

• the pdf of X factorizes with respects to the cliques of G :

P(X = x | G ) = π (x | ψ,G ) =
1

Z(ψ,G )
exp

−
∑
c∈CG

Hc (xc | ψ)


– CG is the set of maximal cliques of G ,

– ψ is a vector of parameters,

– the Hc functions denote the energy functions.

If P(X = x | G ) > 0 for all x, the Hammersley-Clifford theorem

proves that Markov and Gibbs random fields are equivalent with

regards to the same graph.
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Intractable normalizing constant (the partition function)

Z(ψ,G ) =
∑

x∈X n

exp

−
∑
c∈CG

Hc (xc | ψ)


Summation over the numerous possible realizations of the random field

X cannot be computed directly
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Hidden Markov random fields

x is latent, we observe y and assume that

π (y | x, φ) =
∏
i∈S

π (yi | xi, φ)

Emission distribution π(yi | xi, φ): discrete, Gaussian, Poisson...
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Likelihood

π (y | φ,ψ) =
∑

x∈X n

π (y | x, φ)
1

Z(ψ,G )
exp

−
∑
c∈CG

Hc (xc | ψ)

 .

Double intractable issue!
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Core of bayesian model choice: the integrated likelihood

∫ ∑
x∈X n

π (y | x, φ)
1

Z(ψ,G )
exp

−
∑
c∈CG

Hc (xc | ψ)

π(φ,ψ)dφdψ

Triple intractable problem!
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Block Likelihood Information Criterion

Background on Bayesian Information Criterion

y = {y1, . . . , yn} an iid sample

Finite set of models {m : 1, . . . ,M}

π (m | y) =
π(m)e (y | m)∑
m ′ π(m ′)e (y | m ′)

e (y | m) =

∫
πm (y | θm)πm (θm)dθm
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Laplace approximation

log e (y | m) = logπm
(
y
∣∣ θ̂m)

−
dm

2
log(n) + Rm

(
θ̂m

)
+O

(
n− 1

2

)
θ̂m is the maximum likelihood estimator of θm

dm is the number of free parameters for model m

Rm is bounded as the sample size grows to infinity

BIC

−2 log e (y | m) ' BIC(m) = −2 logπm
(
y
∣∣ θ̂m)

+ dm log(n)

Penalty term: dm log(n) increases with the complexity of the

model
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Consistency of BIC: iid processes from the exponential families,

mixture models, Markov chains...

For selecting the neighborhood system of an observed Gibbs random fields:

Csiszar and Talata (2006) proposed to replace the likelihood by the

pseudo-likelihood and modify the penalty term.
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Gibbs distribution approximations

Replace the Gibbs distribution by tractable surrogates

Pseudo-likelihood (Besag, 1975), composite likelihood (Lindsay, 1988):

replace the original Markov distribution by a product of easily normalized

distribution

Conditional composite likelihoods are not a genuine probability distribu-

tion for Gibbs random field

=⇒ the focus hereafter is solely on valid probability function
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Idea: minimize the Kullback-Leibler divergence over a restricted class of

tractable probability distribution

=⇒Mean field approaches: minimize the Kullback-Leibler divergence over

the set of probability functions that factorize on sites

=⇒ Celeux, Forbes and Peyrard (2003)

PMF-like
x̃ (x | ψ,G ) =

∏
i∈S

π
(
xi; x̃N (i), ψ,G

)
π
(
xi; x̃N (i), ψ,G

)
= P

(
Xi = xi

∣∣ XN (i) = x̃N (i)

)
x̃ is a fixed point of an iterative algorithm
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Use tractable approximations that factorize over larger sets of nodes

A(1), . . . , A(C) a partition

Px̃ (x | ψ,G ) =

C∏
`=1

π
(
xA(`); x̃B(`), ψ,G

)
x̃ is a constant field

B(`) is either the set of neighbor of A(`) or the empty set

For parameter estimation

Nial Friel (2012) Bayesian inference for Gibbs random fields using com-

posite likelihoods. Proceedings of the Winter Simulation Conference 2012
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If B(`) = ∅, we are cancelling the edges in G that link elements of A(`) to

elements of any other subset of S .

The Gibbs distribution is then simply replaced by the product of the

likelihood restricted to A(`).
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Px̃ (y | ψ,φ,G ) =
∑

x∈X n

π (y | x, φ)Px̃ (x | ψ,G )

=

C∏
`=1

∑
xA(`)

 ∏
i∈A(`)

π (yi | xi, φ)

π (xA(`); x̃B(`), ψ,G
)

=

C∏
`=1

∑
xA(`)

π
(
yA(`)

∣∣ xA(`), φ
)
π
(
xA(`); x̃B(`), ψ,G

)
.

Block Likelihood Information Criterion (BLIC)

BIC ≈ −2 logPx̃ (y | θ∗,G ) + d log(|S |) = BLIC x̃ (θ∗)

θ∗ = (φ∗, ψ∗) is a parameter value to specify

d the number of parameters
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Nial Friel and Havard Rue (2007) Recursive computing and simulation-

free inference for general factorizable models, Biometrika

Each term of the product can be computed as long as the blocks

are small enough!

π
(
xA(`); x̃B(`), ψ,G

)
=

1

Z
(
ψ,G , x̃B(`)

) exp
{
ψTS

(
xA(`); x̃B(`)

)}
S
(
xA(`); x̃B(`)

)
is the restriction of S to the subgraph defined on the set

A(`) and conditioned on the fixed border x̃B(`)
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∑
xA(`)

π
(
yA(`)

∣∣ xA(`), φ
)
π
(
xA(`); x̃B(`), ψ,G

)
=

1

Z
(
ψ,G , x̃B(`)

) ∑
xA(`)

exp
{

logπ
(
yA(`)

∣∣ xA(`), φ
)
+ψTS

(
xA(`); x̃B(`)

)}
︸ ︷︷ ︸

=Z(θ,G ,yA(`),x̃B(`))

.

Z
(
θ,G ,yA(`), x̃B(`)

)
corresponds to the normalizing constant of the

conditional random field XA(`) knowing YA(`) = yA(`)

Initial model with an extra potential on singletons
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BLIC x̃ (θ∗) =

−2

C∑
`=1

{
logZ

(
θ∗,G ,yA(`), x̃B(`)

)
− logZ

(
ψ∗,G , x̃B(`)

)}
+ d log(|S |)
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Related model choice criteria

Our approach encompasses the Pseudo-Likelihood Information Criterion

(PLIC) of Stanford and Raftery (2002) as well as the mean field-like ap-

proximations BICMF-like proposed by Forbes and Peyrard (2003).

They consider the finest partition of S and propose ingenious solutions

for choosing x̃ and estimating θ∗.

Stanford and Raftery (2002) suggest to set (x̃, θ∗) to the final estimates

of the Iterated Conditional Modes algorithm of Besag (1986).

Forbes and Peyrard (2003) put forward the use of the output

(θ̂MF-like, x̃MF-like) of the mean-field EM algorithm of Celeux, Forbes and

Peyrard(2003).
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PLIC = BLIC x̃ICM (
θ̂ICM

)
BICMF-like = BLIC x̃MF-like (

θ̂MF-like
)
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Comparison of BIC approximations

Hidden Potts models

π (x | ψ,G ) =
1

Z(ψ,G )
exp

−ψ
∑
i
G
∼j

1{xi = xj}


where the sum i

G
∼ j is over the set of edges of the graph G .

In the statistical physic literature, ψ is interpreted as the inverse of a

temperature, and when the temperature drops below a fixed threshold,

values xi of a typical realization of the field are almost all equal.
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Neighborhood graphs G of hidden Potts model

The four closest neighbour graph G4
The eight closest neighbour graph G8
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yobs, n = 100× 100 pixels image, such that

yi | xi = k ∼ N
(
µk, σ

2
k

)
k ∈ {0, . . . , K− 1},

M = {HPM (G , θ, K) : K = Kmin, . . . , Kmax ; G ∈ {G4,G8}} ,

θ∗ and the field x̃: mean-field EM

EM-like algorithm has been initialized with a simple K-means procedure
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A(`): square block of dimension b× b.

Block Likelihood Criterion is indexed by the dimension of the blocks:

BLICMF-like
b×b .

BICMF-like = BLICMF-like
1×1

B(`) = ∅, we note our criterion BLICb×b

BLIC1×1 is the BIC approximations corresponding to a finite independent

mixture model

Simulated images obtained using the Swendsen-Wang algorithm
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First experiment: selection of the number of colors

Dependency structure is known

Select the number K if hidden states

K = 4, µk = k and σk = 0.5

for G4 → ψ = 1

for G8 → ψ = 0.4

The images present homogeneous regions and then the observations ex-

hibit some spatial structure
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HPM(G4, θ, 4)

K 2 3 4 5 6 7

BICMF-like 0 0 39 23 16 22

BLICMF-like
2×2 0 0 58 18 8 16

BLIC1×1 0 0 97 1 2 0

BLIC2×2 0 0 100 0 0 0
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HPM(G8, θ, 4)

K 2 3 4 5 6 7

BICMF-like 0 0 43 18 19 20

BLICMF-like
2×2 0 0 52 14 17 17

BLIC1×1 0 3 90 1 4 2

BLIC2×2 0 1 99 0 0 0

BLIC4×4 0 0 100 0 0 0
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Second experiment: selection of the dependency structure

K is known

Discriminate between the two dependency structures

HPM(G4, θ, 4)

G4 G8

BLIC1×1 46 54

BICMF-like 100 0

BLICMF-like
2×2 100 0

BLIC2×2 100 0
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HPM(G8, θ, 4)

G4 G8

BICMF-like 0 100

BLICMF-like
2×2 0 100

BLIC2×2 59 41

BLIC4×4 0 100
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Third experiment: BLIC versus ABC

K is known

Discriminate between the two dependency structures

K = 2, µk = k and σk = 0.39

for G4 → π(ψ) = U [0, 1]
for G8 → π(ψ) = U [0, 0.35]

1000 realizations from HPM(G4, θ, 2) and HPM(G8, θ, 2)
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ABC approximations

Train size 5, 000 100, 000

2D statistics 14.2% 13.8%

4D statistics 10.8% 9.8%

6D statistics 8.6% 6.9%

Clever geometric summary statistics: number of connected components,

size of the biggest connected components.

BLIC approximation

BLIC4×4 −→ 7.7%
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