PMMH and averages Existing theory A tighter result? Summary

# Pseudo-marginal MH using averages of unbiased estimators

Joint work with Alex Thiery (NUS)

#### Chris Sherlock

Department of Mathematics and Statistics Lancaster University

April 2016

PMMH and averages Existing theory First result A tighter result? Simulation study

Summary

### Example set up

### Imagine:

data; y parameters of a model (interest); X auxiliary (latent) variables (nuisance)  $p(y|x,v) = p(y|v,x)p_V(dv|x)$ model  $\pi_0(x)$ prior

Ideally we'd use the Metropolis-Hastings (MH) algorithm to target

$$\pi(x) \propto \pi_0(x) p(y|x) = \pi_0(x) \int p(y|x, v) p_V(\mathrm{d}v|x),$$

but the integral is intractable.

We can, however create a non-negative, unbiased estimator of p(y|x), for example

$$\hat{p}(y|x, V) := p(y|x, V)$$
 where  $V \sim p_V(dv|x)$ .

### The PMMH algorithm

Now, let  $\hat{p}(y|x, V) \ge 0$  be any unbiased estimator of p(y|x), where  $V \sim p_V(dv|x)$  are auxiliary variables (e.g. from importance sampling; particle filter; Rhee/Glynn). Then

$$\hat{\pi}(x; V) = \pi_0(x)\hat{p}(y|x, V)$$

is an unbiased estimator of  $\pi(x)$  up to some fixed constant.

Given a current value, x and a realisation  $\hat{\pi} = \hat{\pi}(x; v)$ , one iteration of the PMMH algorithm is:

#### PMMH Algorithm

- **1** Sample x' from some density q(x, x').
- 2 Sample  $\hat{\pi}'$  from unbiased estimator,  $\hat{\pi}(x'; V')$  of  $\pi(x')$ .
- Let

$$\alpha = 1 \wedge \frac{\hat{\pi}' q(x', x)}{\hat{\pi} q(x, x')}.$$

**4** W.p.  $\alpha$  set  $x \leftarrow x'$  and  $\hat{\pi} \leftarrow \hat{\pi}'$  else keep x and  $\hat{\pi}$  unchanged.

PMMH and averages

Existing theory

First result

A tighter result?

Simulation study

Summary

## Averages of estimators

Instead of a single realisation,  $\hat{\pi}(x; v)$ , of an unbiased estimator, we could create m such realisations,  $\hat{\pi}(x; v_1), \ldots, \hat{\pi}(x; v_m)$ . Their average

$$\hat{\pi}_m = \frac{1}{m} \sum_{j=1}^m \hat{\pi}(x; v_j)$$

is a realisation from a new unbiased estimator, which could be used in a PMMH algorithm.

Is this worth doing?

## Outline

- 1 PMMH and averages
- 2 Existing theory
- First result
- 4 A tighter result?
- Simulation study
- **6** Summary

PMMH and averages

Existing theory

First result

A tighter result?

Simulation study

Summary

# The normalised weight, W

The PMMH algorithm creates a Markov chain on (x, v); the stationary distribution is:  $p_V(x, dv)\hat{\pi}(x; v)dx$ .

Let  $W := \hat{\pi}(x; V)/\pi(x) \in W$ , so (WLOG)  $\mathbb{E}[W] = 1$ . The PMMH creates a Markov chain on (x, w); the stationary distribution is:

$$\tilde{\pi}(dx, dw) := \pi(x)dxq_1(x, dw)w.$$

Given a current value, x and a realisation  $\hat{\pi} = \pi(x)w$ , one iteration of the PMMH algorithm is:

#### PMMH Algorithm

- Sample x' from some density q(x, x').
- 2 Sample w' from q(x', dw').
- 6 Let

$$\alpha = 1 \wedge \frac{\pi(x')w'q(x',x)}{\pi(x)wq(x,x')} = 1 \wedge r(x,x')\frac{w'}{w}.$$

4 W.p.  $\alpha$  set  $x \leftarrow x'$  and  $w \leftarrow w'$  else keep x and w unchanged.

# Vector of normalised weights, $\underline{W}$

Alternatively we could sample a vector of m estimates,  $\underline{W}$  from

$$q(x, d\underline{w}) := \prod_{j=1}^{m} q_1(x, dw_j).$$

 $\frac{1}{m}\sum_{j=1}^{m}w_{j}$  represents a realisation from a new unbiased estimator. The stationary distribution is

$$\tilde{\pi}(\mathsf{d}x,\mathsf{d}\underline{w}) := \pi(x)\mathsf{d}x\mathsf{q}(x,\mathsf{d}\underline{w})\frac{1}{m}\sum_{j=1}^m w_j.$$

Denote the kernels by  $P_1(x, w; dx', dw')$  and  $P_m(x, \underline{w}; dx', d\underline{w}')$ .

PMMH and averages

Existing theory

First result

A tighter result

Simulation study

Summary

### Measures of interest

Conditional acceptance probability:

$$\alpha(x,x'|\mathsf{P}) := \int \mathsf{q}(x,\mathsf{d}w) w \mathsf{q}(x',\mathsf{d}w') \left[ 1 \wedge r(x,x') \frac{w'}{w} \right]$$

Dirichlet form:

$$\mathcal{E}_{P}(f) := \frac{1}{2} \int \pi(x) dx q(x, x') dx' \int q(x, dw) w q(x', dw') \\ \left[ 1 \wedge r(x, x') \frac{w'}{w} \right] \left[ f(x, w) - f(x', w') \right]^{2}.$$

Spectral gap:

$$\inf_{f\in L^2_0(\tilde{\pi}), \langle f, f\rangle = 1} \mathcal{E}_{\mathsf{P}}(f).$$

Asymptotic variance:

$$\operatorname{Var}(f,\mathsf{P}) := \lim_{n \to \infty} \operatorname{Var}\left(n^{-1/2} \sum_{i=1}^n f(X_i)\right).$$

### Andrieu and Vihola, 2015.

#### AV2015: Theorem 10 + Corollary 31

- For any  $x, x' \in X$  the conditional acceptance rates satisfy  $\alpha^*(x, x'|P_m) \ge \alpha^*(x, x'|P_1)$ .
- ② For any  $f: X \to \mathbb{R}$ , the Dirichlet forms satisfy  $\mathcal{E}_{P_m}(f) \geq \mathcal{E}_{P_1}(f)$ .
- $\Im \operatorname{\mathsf{Gap}}(\mathsf{P}_m) \geq \operatorname{\mathsf{Gap}}(\mathsf{P}_1).$
- **④** For any  $f: X \to \mathbb{R}$  with  $Var_{\pi}(f) < \infty$ , the asymptotic variances satisfy  $Var(f, P_m) ≤ Var(f, P_1)$ .

Does not require independence;  $\underline{W}$  must arise from an exchangeable distribution.

How much better is  $P_m$  than  $P_1$ ? Does it justify the extra computational effort?

PMMH and averages Existing theory First result A tighter result? Simulation study Summary

### Heuristics

Andrieu and Vihola (2016): PMMH is never as good as ideal MH.



Suppose sampling  $W_1, \ldots W_m$  takes m times the computational effort of sampling  $W_1$ . For a given computational budget, # iterations reduced by a factor of m, so we need  $m \text{Var}(f, P_m) < \text{Var}(f, P_1)$  for averaging to be worthwhile.

### Previous work

Sherlock, Thiery, Roberts and Rosenthal (2013) [ArXiv vn 1 of 2015 paper] examines the PMRWM as  $d \to \infty$ .

Empirically: if  $W_j \sim \text{Gam}(a, a)$  iid,  $m\text{Var}(f, P_m) \geq \text{Var}(f, P_1)$ . Same for  $W_j = (a, b)$  w.p. (1 - p, p) iid (with a(1 - p) + bp = 1).

Bornn, Pillai, Smith and Woodard (2014): ABC-MCMC with a uniform error window and assumption that  $P_m$  is non-negative definite then  $(2m-1)Var(f, P_m) \ge Var(f, P_1)$ .

PMMH and averages

Existing theory

First result

A tighter result?

Simulation study

Summary

### Our result

#### Theorem 1

- For any  $x, x' \in X$  the conditional acceptance rates satisfy  $\alpha^*(x, x'|P_m) \leq m\alpha^*(x, x'|P_1)$ .
- ② For any  $f: X \to \mathbb{R}$ , the Dirichlet forms satisfy  $\mathcal{E}_{P_m}(f) \leq m\mathcal{E}_{P_1}(f)$ .
- **③** For any  $f: X \to \mathbb{R}$  with  $Var_{\pi}(f) < \infty$ ,  $mVar(f, P_m) \ge Var(f, P_1) (m-1)Var_{\pi}(f)$ .

Does not require independence;  $\underline{W}$  must arise from an exchangeable distribution (two proofs).

If  $P_m$  is non-negative definite, then  $(2m-1)Var(f, P_m) \ge Var(f, P_1)$ .

# Direct proof: key tools (1)

Consider an extended statespace  $(X \times W^m \times K)$ , where  $K = \{1, 2, ..., m\}$ .

Let  $r = r(x, x') = \pi(x')q(x', x)/(\pi(x)q(x, x'))$ . Define  $Q_1(x, \underline{w}, k; dx', d\underline{w}', k')$  as

$$q(x,x')q(x',d\underline{w}')q_1(\underline{w}',k')\alpha_1(x,\underline{w},k;x',\underline{w}',k') + (1-\overline{\alpha}_1(x,\underline{w},k))\delta((x',\underline{w}',k')-(x,\underline{w},k)),$$

where  $\overline{\alpha}_1(x,\underline{w},k)$  is acc. prob from  $(x,\underline{w},k)$  and

$$q_1(\underline{w}; k) = \begin{cases} \frac{1}{m} & k \in K \\ 0 & \text{otherwise}, \end{cases}, \ \alpha_1(x, \underline{w}, k; x', \underline{w}', k') = 1 \land \left[ r \frac{w'_{k'}}{w_k} \right]$$

Lemma:  $\{(X_t, W_{t,K_t})\}_{t=1}^{\infty}$  under  $Q_1$  is  $\stackrel{\mathcal{D}}{=} \{(X_t, W_t)\}_{t=1}^{\infty}$  under  $P_1$ .

PMMH and averages

Existing theory

First result

A tighter result

Simulation study

Summary

# Direct proof: key tools (2)

Define  $Q_m(x, \underline{w}, k; dx', d\underline{w}', k')$  as

$$q(x,x')q(x',d\underline{w}')q_m(\underline{w}',k')\alpha_m(x,\underline{w},k;x',\underline{w}',k') + (1-\overline{\alpha}_m(x,\underline{w},k))\delta((x',\underline{w}',k')-(x,\underline{w},k)),$$

where  $\overline{\alpha}_m(x,\underline{w},k)$  is acc. prob from  $(x,\underline{w},k)$  and

$$q_m(\underline{w}; k) = \begin{cases} \frac{\underline{w}_k}{\sum_{j=1}^m w_j} & k \in K \\ 0 & \text{otw.} \end{cases}, \alpha_m(x, \underline{w}, k; x', \underline{w}', k') = 1 \land \left[ r \frac{\sum_{j=1}^m w_j'}{\sum_{j=1}^m w_j} \right]$$

Lemma: the joint distribution of  $\{(X_t, \sum_{j=1}^m W_{t,j})\}_{t=1}^{\infty}$  is the same under  $Q_m$  and  $P_m$ .

## Key Steps

#### Proposition

 $Q_1$  and  $Q_m$  both have an invariant distribution of

$$\tilde{\pi}_m(x,\underline{w},k) := \pi(x)q(x;\underline{w})q_1(\underline{w};k)w_k.$$

#### **Proposition**

$$q_1(\underline{w}', k')\alpha_1(x, \underline{w}, k; x', \underline{w}', k') \ge \frac{1}{m}q_m(\underline{w}', k')\alpha_m(x, \underline{w}, k; x', \underline{w}', k')$$

This leads directly to our results on  $\alpha^*(x, x')$  and  $\mathcal{E}$ . Our result for Var follows from a simple (but neat!) Lemma in Andrieu, Lee and Vihola (2015).

PMMH and averages Existing theory First result A tighter result? Simulation study Summary

## A tighter result?

We have:  $mVar(f, P_m) \ge Var(f, P_1) - (m-1)Var_{\pi}(f)$ .

Qn:  $mVar(f, P_m) \ge Var(f, P_1)$  would be better! Is it true?

#### Counter example

$$X = \{1, 2\}, \ q(1, 2) = c_1, \ q(2, 1) = c_2, \ \pi = (0.5, 0.5).$$
  
 $m = 2, \ W = \{0, 2\}$ 

$$q(x, (0, 2)) = q(x, (2, 0)) = 0.5, \ q(x, (0, 0)) = q(x, (2, 2)) = 0.$$

$$f(x) = 2x - 1.$$

### Counter example: plot

The ratio  $Var(f, P_1)/Var(f, P_2)$  as a function of  $(c_1, c_2)$ .





PMMH and averages Existing theory First result A tighter result? Simulation study Summary

## Tighter result?

Qn:  $mVar(f, P_m) \ge Var(f, P_1)$  would be better! Is it true?

A1: Not for general exchangeable weights.

Qn What if the weights are independent?

Consider the kernels on the extended statespace:

$$mVar(f, Q_m) - Var(f, Q_1) = \langle f, Af \rangle$$

where

$$A := 2m(I - Q_m)^{-1} - 2(I - Q_1)^{-1} - (m - 1)I.$$

Qn: Does A have any negative eigenvalues?

A: Yes, for some  $(c_1, c_2)$ , and some independent <u>W</u> distributions.

So  $\exists$  functions  $f(x, \underline{w}, k)$  for which  $mVar(f, Q_m) < Var(f, Q_1)$ .

## Tighter result?

Qn:  $mVar(f, P_m) \ge Var(f, P_1)$  would be better! Is it true?

A1: Not for general exchangeable weights.

A2: Not with independent weights for  $f: X \times W^m \times K \to \mathbb{R}$ .

Qn: What about functions f(x) and with independent weights?

A: ??? - we have not been able to find a counter example.

PMMH and averages

Existing theory

First result

A tighter result?

 ${\sf Simulation\ study}$ 

Summary

# Simulation study

Gaussian-process logistic regression.

- 1. Independence sampler.
- 2. RWM with scaling optimal for the marginal algorithm.

Graphs showing

$$\frac{1}{m}$$
ESS.

# Simulation study: ESS/m



Qn: Never worth taking an average?

PMMH and averages Existing theory First result A tighter result? Simulation study Summary

# Simulation study: ESS/T

#### Graphs show $ESS/T_{cpu}$ .



Qn: Worth taking an average?

A: Yes, when there is a set-up cost.

## Summary

We provide upper bounds on the efficiency of the PMMH when using the average of m exchangeable unbiased estimators compared to using just 1 of the estimators.

If there is no start-up cost then there is little gain in using m > 1.

This is entirely different from the choice of the number of particles in particle-marginal MH: choose m such that  $Var_q(\log W) = \mathcal{O}(1)$ .

Thank you for your attention!