Bayesian Model Selection For Partially Observed Epidemic Models

Panayiota Touloupou

joint work with Simon E.F. Spencer, Bärbel Finkenstädt Rand, Peter Neal, Treveluan J. McKinley

CRiSM Workshop: Estimating Constants April 21, 2016

- Motivation
- METHODS
- SIMULATION STUDIES
- REAL DATA ANALYSIS
- **6** Conclusions

OUTLINE

MOTIVATION

- Motivation
- METHODS
- SIMULATION STUDIES
- 4 REAL DATA ANALYSIS
- 6 Conclusions

STATISTICAL EPIDEMIC MODELLING

- Insights into dynamics of infectious diseases
 - Prevention
 - Control spread of the disease
- Epidemiological data present several challenges
 - Missing data (typically high dimensional)
 - Diagnostic tests imperfect
- Model selection
 - Each model an epidemiologically important hypothesis

MOTIVATION

MOTIVATION

000

Longitudinal observations

Individuals form groups (e.g. households)

: Individual

MOTIVATION 000

- Longitudinal observations
- Individuals form groups (e.g. households)

OUR SETUP

- Longitudinal observations
- Individuals form groups (e.g. households)

OUR SETUP

- Longitudinal observations
- Individuals form groups (e.g. households)

OBJECTIVE

- Analysis of this type of data can be challenging
 - Times of acquiring and clearing infection are unobserved
 - ➤ Intractable likelihood need to know missing times
 - Usual solution: large scale data augmentation MCMC

Bayesian model selection

- Evidence in favour of candidate models
- > Each model an epidemiologically important hypothesis

OBJECTIVES:

- Develop statistical tools for comparison of competing hypotheses
- Special attention on missing data

OUTLINE

- MOTIVATION
- METHODS
- SIMULATION STUDIES
- 4 REAL DATA ANALYSIS
- 6 CONCLUSIONS

A lot of epidemiologically interesting questions take the form of model selection questions

- What is the transmission mechanism of the disease?
- Do individuals develop immunity over time?
- Do water troughs spread *E. coli* O157?

Posterior Probabilities And Marginal Likelihoods

• Would like the posterior probability in favour of model i

$$P(M_i|\mathbf{y}) = \frac{\pi(\mathbf{y}|M_i)P(M_i)}{\sum_{j} \pi(\mathbf{y}|M_j)P(M_j)}$$

Posterior Probabilities And Marginal Likelihoods

• Would like the posterior probability in favour of model i

$$P(M_i|\mathbf{y}) = \frac{\pi(\mathbf{y}|M_i)P(M_i)}{\sum_{j} \pi(\mathbf{y}|M_j)P(M_j)}$$

ullet Equivalently, the Bayes factor comparing models i and j

$$B_{ij} = \frac{\pi(\mathbf{y}|M_i)}{\pi(\mathbf{y}|M_i)}$$

Posterior Probabilities And Marginal Likelihoods

• Would like the posterior probability in favour of model i

$$P(M_i|\boldsymbol{y}) = \frac{\pi(\boldsymbol{y}|M_i)P(M_i)}{\sum_{j} \pi(\boldsymbol{y}|M_j)P(M_j)}$$

ullet Equivalently, the Bayes factor comparing models i and j

$$B_{ij} = \frac{\pi(\mathbf{y}|M_i)}{\pi(\mathbf{y}|M_i)}$$

• All we need is the marginal likelihood,

$$\pi(\mathbf{y}|\mathcal{M}_i) = \int \pi(\mathbf{y}|\boldsymbol{\theta}, \mathcal{M}_i) \pi(\boldsymbol{\theta}|\mathcal{M}_i) d\boldsymbol{\theta}$$

but how can we calculate it?

- Most direct approach: Importance sampling
 - Use asymptotic normality of the posterior to find efficient proposal
- Many existing other approaches:
 - > Harmonic mean
 - Chib's methods
 - Power posteriors
 - Bridge sampling

IMPORTANCE SAMPLING¹

- Obtain samples from the posterior $\pi(\theta|\mathbf{y})$ with MCMC
- Use MCMC samples to inform the proposal distribution $\Rightarrow q(\theta)$
- **1** Draw N samples from $q(\theta)$
- Estimate the marginal likelihood by

$$\widehat{\pi}_{IS}(\mathbf{y}) = \sum_{i=1}^{N} \frac{\pi(\mathbf{y}|\theta_i)\pi(\theta_i)}{q(\theta_i)}$$

¹Clude et al. (2007). Current Challenges in Bayesian Model Choice

Missing Data!

But how to deal with the missing data?

Missing Data!

But how to deal with the missing data?

IMPORTANCE SAMPLING WITH MISSING DATA

- lacktriangle Obtain samples from the joint posterior $\pi(x, \theta|y)$ with MCMC
- ② Use MCMC samples to inform the proposal distribution $\Rightarrow q(\theta)$
- **1** Draw N samples from $q(\theta)$
- For each sampled θ_i draw missing data x_i from the full conditional using Forward Filtering Backward Sampling
- Estimate the marginal likelihood by

$$\widehat{\pi}_{IS}(\boldsymbol{y}) = \sum_{i=1}^{N} \frac{\pi(\boldsymbol{y}|\boldsymbol{x}_{i},\boldsymbol{\theta}_{i}) \ \pi(\boldsymbol{x}_{i}|\boldsymbol{\theta}_{i}) \ \pi(\boldsymbol{\theta}_{i})}{\pi(\boldsymbol{x}_{i}|\boldsymbol{y},\boldsymbol{\theta}_{i}) \ q(\boldsymbol{\theta}_{i})}$$

Harmonic Mean²

• The marginal likelihood $\pi(y)$ can be approximated

$$\widehat{\pi}_{HM}(\mathbf{y}) = \left[\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\pi(\mathbf{y}|\mathbf{x}_i, \boldsymbol{\theta}_i)}\right]^{-1}$$

based on N draws $(x_1, \theta_1), (x_2, \theta_2), \dots, (x_N, \theta_N)$ from the joint posterior $\pi(x, \theta|y)$.

- Can be computed directly from MCMC output
- Asymptotically consistent
- Exhibit large or even infinite variance

²Newton M.A. and Raftery A.E. (1994) Approximate Bayesian inference with the weighted likelihood bootstrap J. R. Stat. Soc. Ser. B. Stat. Methodol. 56. 3-48

Based on the observation that

$$\pi(\mathbf{y}) = \frac{\pi(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) \, \pi(\mathbf{x}, \boldsymbol{\theta})}{\pi(\mathbf{x}, \boldsymbol{\theta}|\mathbf{y})}$$

for fixed θ^* , x^* (high-density posterior point) the log marginal likelihood can be estimated by

$$\log \widehat{\pi}_{\text{Chib}}(\boldsymbol{y}) = \log \pi(\boldsymbol{y}|\boldsymbol{x}^*, \boldsymbol{\theta}^*) + \log \pi(\boldsymbol{x}^*, \boldsymbol{\theta}^*) - \log \widehat{\pi}(\boldsymbol{x}^*, \boldsymbol{\theta}^*|\boldsymbol{y})$$

- \Longrightarrow is estimated by breaking the parameter vector into appropriate blocks
- Required a separate MCMC run to calculate each block

³Chib S. (1995) Marginal likelihood from the Gibbs output *J. Amer. Statist. Assoc,* **90**, 1313–1321. Chib S. and Jeliazkov I. (2001) Marginal likelihood from the MH output *J. Amer. Statist. Assoc,* **96**, 270–281

- Danie Dankadan daffaradan

Power Posterior defined as

$$\pi(x, \theta|y, t) \propto \pi(y|x, \theta)^t \pi(x, \theta)$$

where $t \in [0, 1]$ is a temperature parameter

The log of the marginal likelihood can be represented by

$$\log \pi(\mathbf{y}) = \int_0^1 \mathsf{E}_{x,\theta|\mathbf{y},t} \Big\{ \log \pi(\mathbf{y}|x,\theta) \Big\} \, dt$$

 \implies is calculated numerically by discretising $0 = t_0 < t_1 < \cdots < t_n = 1$, and then using trapezium rule.

⁴Friel N. and Pettitt A. N. (2008) Marginal likelihood estimation via power posteriors J. R. Stat. Soc. Ser. B. Stat. Methodol. **70**, 589–607

- Obtain samples from the power posterior at each temperature t_i
- Variability depends
 - \triangleright Number of t_i 's
 - \triangleright Spacing of t_i 's
 - Number of MCMC samples
- Large number ⇒ more computational effort

REVERSIBLE JUMP MCMC

OUTLINE

- Motivation
- METHODS
- Simulation Studies
- 4 REAL DATA ANALYSIS
- 6 CONCLUSIONS

Simulation Study: Pnemonococcal Carriage⁵

- Household based longitudinal study on carriage of Streptococcus Pneumoniae
- Diagnostic tests obtained every 4 weeks
 - 10 months period
 - Classified as Negative / Positive
- The population is divided into two age groups:
 - Children *** under 5 years old
 - > Adults : over 5 years old

⁵Touloupou et al. (2016) Model comparison with missing data using MCMC and importance sampling. arXiv 1512.04743

Model Details

- Discrete time Susceptible-Infected-Susceptible model
- The transition probabilities age group *i* dependent:

$$P_{i}(\mathbf{S} \longrightarrow \mathbf{I})_{\delta_{t}} = 1 - \exp\left\{-\left(k_{i} + \frac{\beta_{Ci} \mathbf{I}_{C}(t) + \beta_{Ai} \mathbf{I}_{A}(t)}{(z - 1)^{w}}\right) \cdot \delta t\right\}$$

$$P_{i}(\mathbf{I} \longrightarrow \mathbf{S})_{\delta_{t}} = 1 - \exp\left(-\mu_{i} \cdot \delta t\right)$$

⁶Melegaro et al. (2004) Estimating the transmission parameters of pneumococcal carriage in households. Epidemiology and Infection, 132,

RESULTS: MARGINAL LIKELIHOOD ESTIMATION

• $IS_{N_i}: \mathcal{N}(\mu, j \Sigma)$ • $IS_{t_d}: t_d(\mu, \Sigma)$ • $IS_{\text{mix}}: 0.95 \times \mathcal{N}(\theta; \mu, \Sigma) + 0.05\pi(\theta)$ • μ, Σ : from MCMC

HETEROGENEITY IN COMMUNITY Acquisition Rates

Do adults and children acquire infection at the same rate?

- We compare two models:
 - $\rightarrow \mathcal{M}_1: k_A \neq k_C$
 - $\rightarrow M_2: k_A = k_C$

RESULTS: BAYES FACTOR ESTIMATION

(a) Data simulated from model \mathcal{M}_1

(b) Data simulated from model \mathcal{M}_2

RESULTS: EVOLUTION OF THE LOG BAYES FACTOR

PP **RJcor** Chib

IS

OUTLINE

- MOTIVATION
- METHODS
- **3** Simulation Studies
- REAL DATA ANALYSIS
- 6 CONCLUSIONS

STUDY DESIGNS

• Two longitudinal studies of *E. coli* O157:H7

	Dataset 1	Dataset 2
Subjects	160 cattle	168 cattle
Study duration	14 weeks	22 weeks
Sampling interval	2 times/week	14 days

- Each sampling event included a
 - > Faecal pat sample
 - Recto-anal mucosal swab (RAMS)
- Tests were assumed to have perfect specificity but imperfect sensitivity

Patterns Of Infection

Cattle in Pen 5

APPLICATION 1: E. COLI O157 IN FEEDLOT CATTLE

Do animals develop immunity over time?

- We compare two models for infection period:
 - Geometric: lack of memory.
 - Negative Binomial: probability of recovery depends on duration of infection.
- The Negative Binomial is a generalisation of the Geometric:
 - Setting Negative Binomial dispersion parameter $\kappa = 1$ leads to Geometric.

- RJMCMC and IS agree on the estimate of the Bayes factor
- IS estimator: faster convergence
- Bayes factor supports the Negative Binomial model
- The longer the colonization, the greater the probability of clearance - may indicate an immune response in the host

Application 2: Role Of Pen Area/Location

North = small

South = big

Supplement and Premix Storage

Application 2: Role Of Pen Area/Location

Do north and south pens have different risk of infection?

- Allow different external (α_s, α_n) and/or within-pen (β_s, β_n) transmission rates.
- Candidate models:

	External		Within-pen	
Model	North	South	North	South
1	α_n	α_s	β_n	β_s
2	α	α	β_n	eta_s
3	α_n	α_s	β	β
4	α	α	β	β

- RJMCMC and IS provide identical conclusions.
- Evidence to support different within-pen transmission rates.
- Animals in smaller pens more at risk of within-pen infection

Application 3: Investigating Transmission Between Pens

Dataset 2: pens adjacent in a 12×2 rectangular grid.

- No direct contact across feed buck.
- Shared waterers between pairs of adjacent pens.

Application 3: Investigating Transmission Between Pens

Do waterers spread infection?

(a) Model 1: No contacts between pens

(b) Model 2: Transmission via a waterer

(c) Model 3: Transmission via any boundary

Application 3: Posterior Probabilities

- RJMCMC: hard to design efficient jump mechanism
- Using IS results still possible
- Evidence for transmission between pens sharing a waterer rather than another boundary

OUTLINE

- Motivation
- METHODS
- SIMULATION STUDIES
- 4 REAL DATA ANALYSIS
- 6 Conclusions

Concluding Remarks

- Show how IS can be used to test epidemiological questions of interest
- In this study the importance sampling estimator outperformed existing tools
 - Smallest Monte Carlo error
- Importance sampling approach very easy to implement and trivially parallelisable
- Bayes factors depend on choice of prior
 - > Simulations needed to avoid Lindley's paradox

- When the full conditional is not available we use a related full conditional
 - > IS corrects for not using the true full conditional
- My collaborator Peter Neal used the particle filtering to estimate $\pi(x|\theta)$
- We recently applied Bridge Sampling for estimating the marginal likelihood
 - > IS a special case
 - > Slightly reduced variances
 - > We use IS due to ease of implementation

THANKS FOR LISTENING!

Parameter	Symbol	Geometric	Negative Binomial
External transmission probability	$1-e^{-\alpha}$	0.0090	0.0081
External transmission probability		[0.0064, 0.0117]	[0.0057, 0.0109]
Internal transmission probability	$1 - e^{-\beta}$	0.0107	0.0102
Internal transmission probability		[0.0077, 0.0141]	[0.0073, 0.0137]
M	т	8.9942	9.9740
Mean period of infection		[7.7460, 10.4369]	[7.1977, 10.6487]
Cl	К		1.6245
Shape parameter			[0.8361, 2.8972]
Initial puoleability of infaction	μ	0.1001	0.0997
Initial probability of infection		[0.0568, 0.1545]	[0.0557, 0.1546]
Caracitic item of DAL to at	θ_R	0.7750	0.7771
Sensitivity of RAJ test		[0.7304, 0.8156]	[0.7311, 0.8203]
Sensitivity of faecal test	θ_F	0.4639	0.4657
		[0.4206, 0.5073]	[0.4213, 0.5097]

• Posterior mean of the parameters of each model along with the 95% credible interval in brackets.

(d) Model 2 - Posterior Prob 0.77

(e) Model 4 - Posterior Prob 0.16

(f) Model 1 - Posterior Prob 0.06

(g) Model 3 - Posterior Prob 0.01

THE CHOICE OF PRIOR MATTERS!

Simulation study: Heterogeneity in Transmission Rates Among Pens

