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The cosmological concordance model 

1.INFLATION:  
A burst of exponential expansion in the first ~10-32 s after the Big Bang, probably 
powered by a yet unknown scalar field. 


2.DARK MATTER:  
The growth of structure in the Universe and the observed gravitational effects 
require a massive, neutral, non-baryonic yet unknown particle making up ~25% of 
the energy density.


3.DARK ENERGY:  
The accelerated cosmic expansion (together with the flat Universe implied by the 
Cosmic Microwave Background) requires a smooth yet unknown field with negative 
equation of state, making up ~70% of the energy density.

The next 5 to 10 years are poised to bring major 
observational breakthroughs in each of those topics!

The ΛCDM cosmological concordance model is built on three pillars:
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Cosmography 
The expansion history of the (isotropic, homogeneous) Universe is 
described by the "scale factor" a(t):

time
Physical separation = a(t) × "coordinate distance"
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The cosmological parameters  

The scale factor a(t) is the solution to an ODE containing a number of 
free parameters: the "cosmological parameters"


The cosmological parameters need to be measured observationally. 
They describe the past history of the Universe and how it will expand in 
the future. 

Dark matter:  

possibly a new particle beyond the Standard Model, interacting via 
gravity and weak interaction.

⌦m = 0.315± 0.017

Dark energy:  

a form of vacuum energy with repulsive effect. 
Compatible with Einstein’s cosmological constant. 

⌦⇤ = 0.686± 0.020

Spatial curvature:  

the Universe is flat, as predicted by the model of 
inflation. 

⌦ = 0.0005± 0.0060
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The 3 levels of inference

LEVEL 1  
I have selected a model M 

and prior P(θ|M)

LEVEL 2  
Actually, there are several 

possible models: M0, M1,...

Parameter inference 
What are the favourie 

values of the 
parameters?  

(assumes M is true)

Model comparison 
What is the relative 

plausibility of M0, M1,... 
in light of the data?

odds = P(M0|d)
P(M1|d)

LEVEL 3  
None of the models  
is clearly the best

Model averaging 
What is the inference on 

the parameters 
accounting for model 

uncertainty?

P (�|d) =
�

i P (Mi|d)P (�|d, Mi)P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)
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Examples of model comparison questions

Many scientific questions are 
of the model comparison type

ASTROPHYSICS 
Exoplanets detection 

Is there a line in this spectrum? 
Is there a source in this image?

COSMOLOGY 
Is the Universe flat? 

Does dark energy evolve? 
Are there anomalies in the CMB? 
Which inflationary model is ‘best’? 

Is there evidence for modified gravity? 
Are the initial conditions adiabatic?

ASTROPARTICLE 
Gravitational waves detection 

Do cosmic rays correlate with AGNs?  
Which SUSY model is ‘best’? 

Is there evidence for DM modulation? 
Is there a DM signal in gamma ray/

neutrino data?
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Level 2: model comparison

Bayesian evidence or model likelihood

P (d|M) =
�
� d�P (d|�, M)P (�|M)

The evidence is the integral of the likelihood over the prior: 

 Bayes’ Theorem delivers the model’s posterior:

P (M |d) = P (d|M)P (M)
P (d)

When we are comparing two models:

P (M0|d)
P (M1|d) = P (d|M0)

P (d|M1)
P (M0)
P (M1)

Posterior odds = Bayes factor × prior odds

The Bayes factor:

P (�|d, M) = P (d|�,M)P (�|M)
P (d|M)

B01 � P (d|M0)
P (d|M1)
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Scale for the strength of evidence
• A (slightly modified) Jeffreys’ scale to assess the strength of evidence

|lnB| relative odds favoured model’s 
probability Interpretation

< 1.0 < 3:1 < 0.750 not worth 
mentioning 

< 2.5 < 12:1 0.923 weak

< 5.0 < 150:1 0.993 moderate

> 5.0 > 150:1 > 0.993 strong



Bayesian model comparison of 193 models  
Higgs inflation as reference model

disfavoured favoured

Martin,RT+14
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Computing the model likelihood  

• Usually computational demanding: it’s a multi-dimensional integral, averaging the 
likelihood over the (possibly much wider) prior


• I’ll present two methods used by cosmologists: 


• Savage-Dickey density ratio (Dickey 1971): Gives the Bayes factor between 
nested models (under mild conditions). Can be usually derived from posterior 
samples of the larger (higher D) model. 


• Nested sampling (Skilling 2004): Transforms the D-dim integral in 1D integration. 
Can be used generally (within limitations of the efficiency of the sampling method 
adopted).

P (d|M) =
�
� d�P (d|�, M)P (�|M)Model likelihood:

Bayes factor: B01 � P (d|M0)
P (d|M1)
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The Savage-Dickey density ratio

• This method works for nested models and gives the Bayes factor analytically.

• Assumptions: 


• Nested models: M1 with parameters (Ψ,𝜔) reduces to M0 for e.g. 𝜔=𝜔✶


• Separable priors: the prior π1(Ψ,𝜔|M1) is uncorrelated with  π0(Ψ|M0)


• Result: 

Prior

Marginal posterior 
under M1 

𝜔 = 𝜔✶

Dickey J. M., 1971, Ann. Math. Stat., 42, 204

• The Bayes factor is the ratio of the 
normalised (1D) marginal posterior on the 
additional parameter in M1 over its prior, 
evaluated at the value of the parameter for 
which M1 reduces to M0.

B01 =
p(!?|d)
⇡1(!?)
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Derivation of the SDDR  

p(!?|d) =
p(!?, |d)
p( |!?, d)

Divide and multiply B01 by: 

B01 = p(!?|d)
Z

d 
⇡0( )p(d| ,!?)

P (M1|d)
p( |!?, d)

p(!?, |d)

Since: 

p(!?, |d) =
p(d|!?, )⇡1(!?, )

P (M1|d)
B01 = p(!?|d)

Z
d 

⇡0( )p( |!?, d)

⇡1(!?, )

⇡1(!, ) = ⇡1(!)⇡0( )

Assuming separable 
priors: B01 =

p(!?|d)
⇡1(!?)

Z
d p( |!?, d) =

p(!?|d)
⇡1(!?)

RT, Mon.Not.Roy.Astron.Soc. 378 (2007) 72-82 

P (d|M1) =

Z
d d!⇡1( ,!)p(d| ,!)P (d|M0) =

Z
d ⇡0( )p(d| ,!?)
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SDDR: Some comments
• For separable priors (and nested models), the common parameters do not matter for 

the value of the Bayes factor 

• No need to spend time/resources to average the likelihoods over the common 

parameters 

• Role of the prior on the additional parameter is clarified: the wider, the stronger the 

Occam’s razor effect (due to dilution of the predictive power of model 1)

• Sensitivity analysis simplified: only the prior/scale on the additional parameter 

between the models needs to be considered. 

• Notice: SDDR does not assume Gaussianity, but it does require sufficiently detailed 

sampling of the posterior to evaluate reliably its value at 𝜔=𝜔✶.	

𝜔 = 𝜔✶ 𝜔 = 𝜔✶

Good Bad

?
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Accuracy tests (Normal case)
• Tests with variable dimensionality 

(D) and number of MCMC samples 

• λ is the distance of peak posterior 

from 𝜔✶	in units of posterior std dev  

• SDDR accurate with standard 

MCMC sampling up to 20-D and 
λ=3 


• Accurate estimates further in the 
tails might required dedicated 
sampling schemes

𝜔 = 𝜔✶

λ = (𝜔ML-𝜔✶)/σ

RT, MNRAS, 378, 72-82 (2007)
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Nested Sampling 

• Proposed by John Skilling in 
2004: the idea is to convert a 
D-dimensional integral in a 1D 
integral that can be done 
easily.


• As a by-product, it also 
produces posterior samples: 
model likelihood and 
parameter inference obtained 
simultaneously

Mukherjee+06

X = Prior fraction

L(X) = likelihood value for 
iso-likelihood contour 

enclosing X prior fraction
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Nested Sampling basics 

x1

L(x)

0

1

2
θ

θ

Figure 1: **** Possibly change fig to the one in Feroz et al**** Schematic illustration of the nested
sampling algorithm for the computation of the Bayesian evidence. Levels of constant likelihood in
the two–dimensional parameter space shown at the top right are mapped onto elements of increasing
likelihood as a function of the enclosed prior volume X , with p(m)dm = dX . The evidence is then
computed by integrating the one–dimensional function L(X) from 0 to 1 (from [?])

.

scans). Therefore we adopt NS as an efficient sampler of the posterior. We have compared

the results with our MCMC algorithm and found that they are identical (up to numerical

noise).

2.4 Statistical measures

From the above sequence of samples, obtaining Monte Carlo estimates of expectations for

any function of the parameters becomes a trivial task. For example, the posterior mean is

given by (where ⟨·⟩ denotes the expectation value with respect to the posterior)

⟨m⟩ ≈
∫

p(m|d)mdm =
1

M

M−1∑

t=0

m(t), (2.8)

where the equality with the mean of the samples follows because the samples m(t) are gen-

erated from the posterior by construction. In general, one can easily obtain the expectation

value of any function of the parameters f(m) as

⟨f(m)⟩ ≈
1

M

M−1∑

t=0

f(m(t)). (2.9)

It is usually interesting to summarize the results of the inference by giving the 1–dimensional

marginal probability for the j–th element of m, mj. Taking without loss of generality j = 1

and a parameter space of dimensionality N , the marginal posterior for parameter m1 is

– 6 –

X(⇥) =
�
L(�)>⇥ P (�)d�

P (d) =

Z
d✓L(✓)P (✓) =

Z 1

0
L(X)dX

Skilling, AIP Conf.Proc. 735, 395 (2004); doi: 10.1063/1.1835238

Define X(λ) as the prior mass associated with likelihood 
values above λ

X(0) = 1 X(L
max

) = 0

This is a decreasing function of λ: 

dX is the prior mass associated with likelihoods [λ, λ+dλ]

An infinitesimal interval dX contributes λdx to the evidence, so that: 

where L(X) is the inverse of X(λ). 
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Nested Sampling basic
Suppose that we can evaluate Lj = L(Xj), for a sequence:

0 < Xm < · · · < X2 < X1 < 1

Then the model likelihood P(d) can be estimated numerically as: 

P (d) =
mX

j=1

wjLj

with a suitable set of weights, e.g. for the trapezium rule: 

wj =
1

2
(Xj�1 �Xj+1)
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Nested Sampling in Action 
(animation courtesy of David Parkinson)

P (d) =

Z
d✓L(✓)P (✓) =

Z 1

0
L(X)dX

X = Prior fraction

2D parameter space (uniform priors) 1D model likelihood integral 
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MultiNest sampling approach  
(Slide courtesy of Mike Hobson) 

Hard!
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Nested Sampling: Sampling Step 
• The hardest part is to sample uniformly from the prior subject to the hard 

constraint that the likelihood needs to be above a certain level.  

• Many specific implementations of this sampling step: 


• Single ellipsoidal sampling (Mukherjee+06)


• Metropolis nested sampling (Sivia&Skilling06)


• Clustered and simultaneous ellipsoidal sampling (Shaw+07) 


• Ellipsoidal sampling with k-means (Feroz&Hobson08)


• Rejection sampling (MultiNest, Feroz&Hobson09)


• Diffusion nested sampling (Brewer+09)


• Artificial neural networks (Graff+12)


• Galilean Sampling (Betancourt11; Feroz&Skilling13)


• Simultaneous ellipsoidal sampling with X-means (DIAMONDS, 
Corsaro&deRidder14)


• Slice Sampling Nested Sampling (PolyChord, Handley+15)


• … there will be others, no doubt. 
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Sampling Step: Ellipsoid Fit  

• Simple MCMC (e.g. Metropolis-Hastings) works but can be inefficient

• Mukherjee+06: Take advantage of the existing live points. Fit an ellipsoid to the live 

point, enlarge it sufficiently (to account for non-ellipsoidal shape), then sample from 
it using an exact method:  


• This works, but is problematic/inefficient for multi-modal likelihoods and/or strong, 
non-linear degeneracies between parameters. 
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Sampling Step: Multimodal Sampling 

• Feroz&Hobson08; Feroz+08: At each nested sampling iteration


• Partition active points into clusters 


• Construct ellipsoidal bounds to each cluster 


• Determine ellipsoid overlap 


• Remove point with lowest Li from active points; increment evidence.


• Pick ellipsoid randomly and sample new point with L> Li accounting for overlaps 


• Each isolated cluster gives local evidence 

• Global evidence is the sum of the local evidences 
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Test: Gaussian Mixture Model 
(Slide courtesy of Mike Hobson) 
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Test: Egg-Box Likelihood 

• A more challenging example is the egg-box likelihood:


• Prior:  

L(✓1, ✓2) = exp

✓
2 + cos

✓
✓1
2

◆
cos

✓
✓2
2

◆◆5

✓i ⇠ U(0, 10⇡) (i = 1, 2)

(Animation: Farhan Feroz) 

Likelihood Sampling (30k likelihood evaluations)

logP (d) = 235.86± 0.06 (analytical = 235.88)
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Test: Multiple Gaussian Shells 
Co
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D Nlike Efficiency
2 7000 70%
5 18000 51%
10 53000 34%
20 255000 15%
30 753000 8%

Likelihood Sampling
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Aside: Posterior Samples

• Samples from the posterior can be extracted as (free) by-product: take the 
sequence of sampled points θj and weight sample j by pj  = Lj ωj/P(d)


• MultiNest has only 2 tuning parameters: the number of live points and the tolerance 
for the stopping criterium (stop if Lmax Xi < tol P(d), where tol is the tolerance) 


• It can be used (and routinely is used) as fool-proof inference black-box: no need to 
tune e.g. proposal distribution as in conventional MCMC.

Multi-Modal marginal 
posterior distributions in 
an 8D supersymmetric 
model, sampled with 
MultiNest (Feroz,RT+11)



Roberto Trotta 

Aside: Profile Likelihood 

• With higher number of live points and smaller tolerance (plus keeping all discarded 
samples) MultiNest also delivers good profile likelihood estimates (Feroz,RT+11): 

8D Gaussian Mixture Model - 
Profile Likelihood L(�1) = max�2L(�1, �2)
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Parallelisation and Efficiency 

• Sampling efficiency is less than unity since ellipsoidal approximation to the iso-
likelihood contour is imperfect and ellipsoids may overlap


• Parallel solution:  

• At each attempt to draw a replacement point, drawn NCPU candidates, with 
optimal number of CPUs given by 1/NCPU = efficiency 


• Limitations:  

• Performance improvement plateaus for NCPU >> 1/efficiency 


• For D>>30, small error in the ellipsoidal decomposition entails large drop in 
efficiency as most of the volume is near the surface 


• MultiNest thus (fundamentally) limited to D <= 30 dimensions 
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Neural Network Acceleration 

• A relatively straightforward idea: Use MultiNest discarded samples to train on-line a 
multi-layer Neural Network (NN) to learn the likelihood function.


• Periodically test the accuracy of predictions: when the NN is ready, replace (possibly 
expensive) likelihood calls with (fast) NN prediction.


• SkyNet: a feed-forward NN with N hidden layers, each with Mn nodes. 


• BAMBI (Blind Accelerated Multimodal Bayesian Inference): SkyNet integration with 
MultiNest 


• In cosmological applications, BAMBI typically accelerates the model likelihood 
computation by ~30% — useful, but not a game-changer. 


• Further usage of the resulted trained network (e.g. with different priors) delivers 
speed increases of a factor 4 to 50 (limited by error prediction calculation time). 

Graff+12 (BAMBI) and Graff+14 (SkyNet); Johannesson,RT+16
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PolyChord: Nested Sampling in high-D

• A new sampling step scheme is required to beat the limitations of the ellipsoidal 
decomposition at the heart of MultiNest 


• Slice Sampling (Neal00) in 1D: 

• Slice: All points with L(x)>L0


• From starting point x0, set  
initial bounds L/R by expanding  
from a parameter w


• Draw x1 randomly from within L/R 


• If x1 not in the slice, contract  
bound down to x1 and re-sample x1

Handley et al, Mon.Not.Roy.Astron.Soc. 450 (2015)1, L61-L65 
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High-D Slice Sampling 
• A degenerate contour is transformed into a contour with dimensions of order O(1) in 

all directions (“whitening”) 

• Linear skew transform defined by the inverse of the Cholesky decomposition of the 

live points’ covariance matrix 

• Direction selected at random, then slice sampling in 1D performed (w=1) 

• Repeat N times, with N of order O(D), generating a new point xN decorrelated from x0

Handley+15
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PolyChord: Performance 

• PolyChord number of likelihood evaluations scales at worst as O(D3) as opposed to 
exponential for MultiNest in high-D 
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Summary and Conclusions 

• Bayesian model comparison in cosmology requires the evaluation of model 
likelihoods, often on an industrial scale.


• Many cases of interest involve nested models: In this case, the Savage-Dickey 
Density Ratio offers a computationally inexpensive way of evaluating the Bayes 
Factor between nested models (with mild assumptions and caveats about sampling 
accuracy).


• Nested Sampling has emerged as a powerful tool for model likelihood computation, 
giving posterior samples (and accurate profile likelihood estimates) as by-product. 


• In the MultiNest implementation, nested sampling works well up to ~ 30 
dimensions, with O(100) savings in computational time wrt e.g. thermodynamic 
integration (or standard MCMC for inference).


• Handling larger dimensionality (>> 30) requires better sampling techniques, e.g. 
PolyChord implementing multi-D slice sampling.
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Ellipsoidal decomposition

Courtesy Mike Hobson

Unimodal distribution Multimodal distribution
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Bayesian Model-averaging

Model averaged inferences

Lid
dl

e 
et

 a
l (2

00
7)

P(θ|d) = ∑i P(θ|d,Mi)P(Mi|d)
An application to dark energy: 
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An automatic Occam’s razor

• Bayes factor balances quality of fit vs extra model complexity. 

• It rewards highly predictive models, penalizing “wasted” parameter space 

Δθ

δθ

Prior

Likelihood

Occam’s factor

�̂

P (d|M) =
R

d✓L(✓)P (✓|M)

⇡ P (✓̂)�✓L(✓̂)

⇡ �✓
�✓ L(✓̂)✓̂
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The evidence as predictive probability

• The evidence can be understood as a function of d to give the predictive probability 
under the model M: 

More complex model M1

Simpler model M0

P(d|M)

dObserved value dobs



Simple example: nested models

• This happens often in practice: 
we have a more complex 
model, M1 with prior P(θ|M1), 
which reduces to a simpler 
model (M0) for a certain value of 
the parameter,  
e.g. θ = θ* = 0 (nested models)


• Is the extra complexity of M1 

warranted by the data?  

Δθ

δθ

Prior

Likelihood

θ* = 0 �̂



Δθ

δθ

Prior

Likelihood

θ* = 0 �̂

Define: � � ⇥̂�⇥�

�⇥

For “informative” data: 

lnB01 ⇥ ln �⇥
�⇥ �

⇤2

2

wasted parameter 
space 

(favours simpler model) 

mismatch of 
prediction with 
observed data 
(favours more 

complex model)

Simple example: nested models
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The rough guide to model comparison
wider prior (fixed data)

I10 � log10
�⇥
�⇥

Trotta (2008)

larger sample (fixed prior and significance)

WMAP1

WMAP3

Planck

Δθ = Prior width  
𝛿θ = Likelihood width


