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Objectives

The sequential analysis of state-space models is the main (but not
only) application of Sequential Monte Carlo.

The aim of this chapter is to define state-space models, give
examples of such models from various areas of science, and discuss
their main properties.

nicolas.chopin@ensae.fr Introduction to state-space models



Presentation of state-space models

Examples of state-space models

Sequential analysis of state-space models

Objectives

The sequential analysis of state-space models is the main (but not
only) application of Sequential Monte Carlo.
The aim of this chapter is to define state-space models, give
examples of such models from various areas of science, and discuss
their main properties.

nicolas.chopin@ensae.fr Introduction to state-space models



Presentation of state-space models

Examples of state-space models

Sequential analysis of state-space models

A first definition (with functions)

A time series model that consists of two discrete-time processes
{Xt}:= (Xt)tØ0

, {Yt}:= (Yt)tØ0

, taking values respectively in
spaces X and Y, such that

Xt = Kt(Xt≠1

, Ut , ◊), t Ø 1
Yt = Ht(Xt , Vt , ◊), t Ø 0

where K
0

, Kt , Ht , are determistic functions, {Ut}, {Vt} are
sequences of i.i.d. random variables (noises, or shocks), and ◊ œ � is
an unknown parameter.

This is a popular way to define SSMs in Engineering. Rigorous, but
not su�ciently general.
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A second definition (with densities)

p◊(x
0

) = p◊
0

(x
0

)
p◊(xt |x0:t≠1

) = p◊
t (xt |xt≠1

) t Ø 1
p◊(yt |x0:t , y

0:t≠1

) = f ◊
t (yt |xt)

(1.1)

Not so rigorous (or not general enough): some models are such that
Xt |Xt≠1

does not admit a probability density (with respect to a
fixed dominating measure).
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Signal processing: tracking, positioning, navigation

Xt is position of a moving object, e.g.

Xt = Xt≠1

+ Ut , Ut ≥ N
2

(0, ‡2I
2

),

and Yt is a measurement obtained by e.g. a radar,

Yt = atan
3Xt(2)

Xt(1)

4
+ Vt , Vt ≥ N

1

(0, ‡2

Y ).

and ◊ = (‡2, ‡2

Y ).

(This is called the bearings-only tracking model.)
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GPS

In GPS applications, the velocity vt of the vehicle is observed, so
motion model is (some variation of):

Xt = Xt≠1

+ vt + Ut , Ut ≥ N
2

(0, ‡2I
2

).

Also Yt usually consists of more than one measurement.
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More advanced motion model

A random walk is too erratic for modelling the position of the target;
assume instead its velocitity follows a random walk. Then define:

Xt =
A

I
2

I
2

0
2

I
2

B

Xt≠1

+
A

0
2

0
2

0
2

Ut

B

, Ut ≥ N
2

(0, ‡2I
2

),

with obvious meanings for matrices 0
2

and I
2

.

Note: Xt(1) and Xt(2) (position) are deterministic functions of
Xt≠1

: no probability density for Xt |Xt≠1

.
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multi-target tracking

Same ideas except {Xt} now represent the position (and velocity if
needed) of a set of targets (of random size); i.e. {Xt} is a point
process.
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Time series of counts (neuro-decoding, astrostatistics,
genetics)

Neuro-decoding: Yt is a vector of dy counts (spikes from
neuron k),

Yt(k)|Xt ≥ P(⁄k(Xt)), log ⁄k(Xt) = –k + —kXt ,

and Xt is position+velocity of the subject’s hand (in 3D).
astro-statistics: Yt is number of photon emissions; intensity
varies over time (according to an auto-regressive process)
Yt is the number of ‘reads’, which is a noisy measurement of
the transcription level Xt at position t in the genome;

Note: ‘functional’ definition of state-space models is less
convenient in this case.
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Stochastic volatility (basic model)

Yt is log-return of asset price, Yt = log(pt/pt≠1

),

Yt |Xt = xt ≥ N (0, exp(xt))

where {Xt} is an auto-regressive process:

Xt ≠ µ = „(Xt≠1

≠ µ) + Ut , Ut ≥ N (0, ‡2)

and ◊ = (µ, „, ‡2).

Take |„| < 1 and X
0

≥ N(µ, ‡2/(1 ≠ fl2)) to impose stationarity.
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Stochastic volatility (variations)

Student dist’ for noises
skewness: Yt = –Xt + exp(Xt/2)Vt
leverage e�ect: correlation between Ut and Vt
multivariate extensions
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Nonlinear dynamic systems in Ecology, Epidemiology, and
other fields

Yt = Xt + Vt , where {Xt} is some complex nonlinear dynamic
system. In Ecology for instance,

Xt = Xt≠1

+ ◊
1

≠ ◊
2

exp(◊
3

Xt≠1

) + Ut

where Xt is log of population size. For some values of ◊, process is
nearly chaotic.
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Nonlinear dynamic systems: Lokta-Volterra
Predator-prey model, where X = (Z+)2, Xt(1) is the number of
preys, Xt(2) is the number of predators, and, working in
continuous-time:

Xt(1) ◊
1æ 2Xt(1)

Xt(1) + Xt(2) ◊
2æ 2Xt(2), t œ R+

Xt(2) ◊
3æ 0

(but Yt still observed in discrete time.)

Intractable dynamics: We can simulate from Xt |Xt≠1

, but we
can’t compute pt(xt |xt≠1

).
see also compartmental models in Epidemiology.
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State-space models with an intractable or degenerate
observation process

We have seen models such that Xt |Xt≠1

is intractable; Yt |Xt may
be intractable as well. Let

X Õ
t = (Xt , Yt), Y Õ

t = Yt + Vt , Vt ≥ N (0, ‡2)

and use {(X Õ
t , Y Õ

t )} as an approximation of {(Xt , Yt)}.

∆ Connection with ABC (likelihood-free inference).
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Finite state-space models (aka hidden Markov models)

X = {1, . . . , K}, uses in e.g.
speech processing; Xt is a word, Yt is an acoustic measurement
(possibly the earliest application of HMMs). Note K is quite
large.
time-series modelling to deal with heterogenity (e.g. in
medecine, Xt is state of patient)
rediscovered in Economics as Markov-switching models; there
Xt is the state of the Economy (recession, growth), and Yt is
some economic indicator (e.g. GDP) which follows an ARMA
process (with parameters that depend on Xt)
also related: change-point models

Note: Not of direct interest to us, as sequential analysis may be
performed exactly using Baum-Petrie filter.
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A quick note on the generality of the definition

Consider a GARCH model, i.e. Yt ≥ N (0, ‡2

t ), with

‡2

t = – + —Y 2

t≠1

+ “‡2

t≠1

.

If we replace ◊ = (–, —, “) by Markov process (◊t), do we obtain a
state-space model?
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Definition

The phrase state-space models refers not only to its definition (in
terms of {Xt} and {Yt}) but also to a particular ‘inferential
scenario’: {Yt} is observed (data denoted y

0

, . . .), {Xt} is not, and
one wishes to recover the Xt ’s given the Yt ’s, often sequentially
(over time).
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Filtering, prediction, smoothing

Conditional distributions of interest (at every time t)
Filtering: Xt |Y0:t
Prediction: Xt |Y0:t≠1

data prediction: Yt |Y0:t≠1

fixed-lag smoothing: Xt≠h:t |Y0:t for h Ø 1
complete smoothing: X

0:t |Y0:t
likelihood factor: density of Yt |Y0:t≠1

(so as to compute the
full likelihood)
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Parameter estimation

All these tasks are usually performed for a fixed ◊ (assuming the
model depends on some parameter ◊). To deal additionally with
parameter uncertainty, we could adopt a Bayesian approach, and
consider e.g. the law of (◊, Xt) given Y

0:t (for filtering). But this is
often more involved.
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Our notations (spoiler!)

{Xt} is a Markov process with initial law P
0

(dx
0

), and Markov
kernel Pt(xt≠1

, dxt).
{Yt} has conditional distribution Ft(xt , dyt), which admits
probability density ft(yt |xt) (with respect to common
dominating measure ‹(dyt)).
when needed, dependence on ◊ will be made explicit as follows:
P◊

t (xt≠1

, dxt), f ◊
t (yt |xt), etc.

Algorithms, calculations, etc may be extended straightforwardly to
non-standard situations such that X , Y vary over time, or such that
Yt |Xt also depends on Y

0:t≠1

, but for simplicity, we will stick to
these notations.
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problems with a structure similar to the sequential analysis
of a state-space model

Consider the simulation of Markov process {Xt}, conditional on
Xt œ At for each t.

Take Yt = 1(Xt œ At), yt = 1, then this tasks amounts to
smoothing the corresponding state-space model.
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A particular example: self-avoiding random walk

Consider a random walk in Z2, (i.e. at each time we may move
north, south, east or west, wit probability 1/4). We would to
simulate {Xt} conditional on the trajectory X

0:T never visiting the
same point more than once.

How to define {Xt} in this case?
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Summary

Introduce Markov processes via kernels

Recursions of marginal distributions

Conditional distributions

conditional independence
partially observed Markov processes & state-space models

Graphical models
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Definition

A probability kernel from (X ,B(X )) to (Y,B(Y)), P(x , dy 0), is a
function from (X ,B(Y)) to [0, 1] such that

(a) for every x , P(x , ·) is a probability measure on
(Y,B(Y)),

(b) for every A 2 B(Y), P(x ,A) is a measurable function
in X .

Then, if

P1(dx0:1) = P0(dx0)P1(x0, dx1)

by construction, P1(dx0) = P0(dx0) and

P1(X1 2 dx1|X0 = x0) = P1(x0, dx1) .
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Backward kernel - Bayes

P1(dx0)P1(x0, dx1) = P1(dx1)
 �
P 0(x1, dx0) ,
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Definition

A sequence of random variables X0:T with joint distribution given
by

PT (X0:T 2 dx0:T ) = P0(dx0)
TY

s=1

Ps(xs�1, dxs) ,

is called a (discrete-time) Markov process with state-space X ,
initial distribution P0 and transition kernel at time t, Pt . Likewise,
a probability measure decomposed into a product of an initial
distribution and transition kernels as in (2) will be called a Markov
measure.
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Conditional independence

PT (Xt 2 dxt |X0:t�1 = x0:t�1) = Pt(xt�1, dxt) .

PT (Xt 2 dxt |X0:s = x0:s) = Ps+1:t(xs , dxt) , 8t  T , s < t ,

where

Ps+1:t(xs ,A) =

ˆ
X t�s

Ps+1(xs , dxs+1)Ps+2(xs+1, dxs+2) · · ·Pt(xt�1,A) .
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A marginalisation property

Proposition

Consider a sequence of probability measures, index by t, defined as:

Pt(X0:t 2 dx0:t) = P0(dx0)
tY

s=1

Ps(xs�1, dxs) ,

where Ps are probability kernels. Then, for any t  T ,

PT (dx0:t) = Pt(dx0:t) .
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Some recursions

Pt(Xt 2 dxt) = EPt [Pt(Xt 2 dxt |X0:s)] = EPt [Ps+1:t(Xs , dxt)] .

With the marginalisation it yields the Chapman-Kolmogorov
equation

Pt(Xt 2 dxt) = EPs [Ps+1:t(Xs , dxt)] , 8s  t � 1 .
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Backward process

PT (X0:T 2 dx0:T ) = PT (dxT )
TY

s=1

 �
P T�s(xT�s+1, dxT�s) ,
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POMP & SSM

PT (X0:T 2 dx0:T ,Y0:T 2 dy0:T ) = PT (dx0:T )
TY

t=0

ft(yt |xt)
TY

t=0

⌫(dyt)

= P0(dx0)
TY

t=1

Pt(xt�1, dxt)
TY

t=0

ft(yt |xt)
TY

t=0

⌫(dyt)

When relevant, f ✓t (yt |xt) and P

✓
t (xt�1, dxt)

Components of a SSM
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Likelihood

pt(y0:t) = EPt

"
tY

s=0

fs(ys |xs)
#

is the density (likelihood/partition function) of the law of Y0:T ;
Likelihood factors

pt(y0:t) = p0(y0)
tY

s=1

ps(ys |y0:s�1) .

and

pt+k(yt:t+k |y0:t�1) = pt+k(y0:t+k)/pt�1(y0:t�1) , k � 0 , t � 1 .
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Law of states given observations

Pt(X0:t 2 dx0:t |Y0:t = y0:t) =
1

pt(y0:t)

(
tY

s=0

fs(ys |xs)
)

Pt(dx0:t) .

(To see this, multiply both sides by pt(y0:t)
Qt

s=0 ⌫(dys) )
Another SSM function that will be is likelihood of future
observations given the current value of the state.

pT (yt+1:T |xt) =
PT (Yt+1:T 2 dyt+1:T |X0:t = x0:t ,Yt = yt)

⌫T�t(dyt+1:T )
, t < T ,

where by conditional independence it does not depend on x0:t�1, yt
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Restating SSM aims

state prediction: deriving
Pt(Xt+1:t+h 2 dxt+1:t+h|Y0:t = y0:t), for h � 1;

filtering: deriving Pt(Xt 2 dxt |Y0:t = y0:t);

fixed-lag smoothing: deriving
Pt(Xt�l :t 2 dxt�l :t |Y0:t = y0:t) for some l � 1;

(complete) smoothing: deriving Pt(X0:t 2 dx0:t |Y0:t = y0:t);

likelihood computation: deriving pt(y0:t).
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Graphical models

Variables as nodes; when any two are linked by a kernel draw an
edge:

X0 X1 X2 XT

Y0 Y1 Y2 YT

Path; conditional independence; Markov property of (X0;T ,Y0:T ),
X0:T , X0:T conditionally on Y0:T but not of Y0:T .
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Further reading

Conditional independence, Chapter 5 of Foundations of
modern Probability (Kallenberg, Springer)

Intro to graphical models: Chapter 8 of Pattern recognition

and machine learning (Bishop, Springer)
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