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The sequential analysis of state-space models is the main (but not
only) application of Sequential Monte Carlo.
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Objectives

The sequential analysis of state-space models is the main (but not
only) application of Sequential Monte Carlo.

The aim of this chapter is to define state-space models, give
examples of such models from various areas of science, and discuss
their main properties.
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A first definition (with functions)

A time series model that consists of two discrete-time processes
{Xe}:= (Xt)e>0, {Ye}:= (Ye)r>0, taking values respectively in
spaces X and ), such that

Xe = Ke(Xe—1, Ut,0), t>1
Yt = Ht(Xtv Vtae)v t>0
where Ky, K¢, Hy, are determistic functions, {U;}, {V;} are

sequences of i.i.d. random variables (noises, or shocks), and 6 € © is
an unknown parameter.
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A first definition (with functions)

A time series model that consists of two discrete-time processes
{Xe}:= (Xt)e>0, {Ye}:= (Ye)r>0, taking values respectively in
spaces X and ), such that

Xt - Kt(thly Ut,ﬁ), t 2 1
Yt = Ht(va Vt79)7 t>0

where Ky, K¢, Hy, are determistic functions, {U;}, {V;} are
sequences of i.i.d. random variables (noises, or shocks), and 6 € © is
an unknown parameter.

This is a popular way to define SSMs in Engineering. Rigorous, but
not sufficiently general.
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po(x0) = py(x0)
po(x¢|x0:t—1) = Pf(Xt|Xt—1) t>1 (1.1)
Po(}’t|X0:t,YO:t—1) = fte(}’t|Xt)
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A second definition (with densities)

po(x0) = pg(x0)
po(Xt|x0:t-1) = Pf(Xt|Xt 1) t>1 (1.1)
po(Yt|X0:t, Yo:t—1) = fe()/t|xt)
Not so rigorous (or not general enough): some models are such that

X¢|Xt—1 does not admit a probability density (with respect to a
fixed dominating measure).
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Signal processing: tracking, positioning, navigation

Xt is position of a moving object, e.g.

Xe = Xe—1 + Ur,  Up ~ N2(0,0%h),

and Y; is a measurement obtained by e.g. a radar,

X (2
Y; = atan (XZE1;> + Vi, Vi~ ./\/'1(0,0%/).

and 0 = (02,0%).
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Signal processing: tracking, positioning, navigation

Xt is position of a moving object, e.g.

Xe = Xe—1 + Ur,  Up ~ N2(0,0%h),

and Y; is a measurement obtained by e.g. a radar,

X (2
Y; = atan (XZE1;> + Vi, Vi~ ./\/'1(0,05).

and 0 = (02,0%).
(This is called the bearings-only tracking model.)
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GPS

In GPS applications, the velocity v; of the vehicle is observed, so
motion model is (some variation of):

Xi = Xe1 + v + Uy, Us ~ No(0, 0% ).

Also Y} usually consists of more than one measurement.
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More advanced motion model

A random walk is too erratic for modelling the position of the target;
assume instead its velocitity follows a random walk. Then define:

(kb 0> 0 2
Xt—<02 /2>Xt—1+<02 Ut>7 Us ~ N2(0,0°h),

with obvious meanings for matrices 02 and b.
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More advanced motion model

A random walk is too erratic for modelling the position of the target;
assume instead its velocitity follows a random walk. Then define:

(kb 0> 0 2
Xt—<02 /2>Xt—1+<02 Ut>7 Us ~ N2(0,0°h),

with obvious meanings for matrices 02 and b.
Note: X:(1) and X;(2) (position) are deterministic functions of
X¢—1: no probability density for X¢| X:_1.
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multi-target tracking

Same ideas except {X:} now represent the position (and velocity if
needed) of a set of targets (of random size); i.e. {X;} is a point
process.
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Time series of counts (neuro-decoding, astrostatistics,
genetics)

o Neuro-decoding: Y4 is a vector of d, counts (spikes from
neuron k),

Ye(k)[ Xt ~ P(Ak(Xt)), log Ae(Xt) = ak + BiXt,

and X; is position+velocity of the subject’s hand (in 3D).

@ astro-statistics: Y; is number of photon emissions; intensity
varies over time (according to an auto-regressive process)

@ Y; is the number of ‘reads’, which is a noisy measurement of
the transcription level X; at position t in the genome;
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Time series of counts (neuro-decoding, astrostatistics,
genetics)

o Neuro-decoding: Y4 is a vector of d, counts (spikes from
neuron k),

Ye(k)[ Xt ~ P(Ak(Xt)), log Ae(Xt) = ak + BiXt,

and X; is position+velocity of the subject’s hand (in 3D).

@ astro-statistics: Y; is number of photon emissions; intensity
varies over time (according to an auto-regressive process)

@ Y; is the number of ‘reads’, which is a noisy measurement of
the transcription level X; at position t in the genome;

Note: ‘functional’ definition of state-space models is less
convenient in this case.
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Stochastic volatility (basic model)

Y} is log-return of asset price, Y; = log(pt/pe—1),

Yi|Xe = x¢ ~ N(O,exp(xt))

where {X;} is an auto-regressive process:
Xe—p=0Xee1 — ) + Ue,  Ue ~ N(0,0%)

and 0 = (u, ¢, 0?).
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Stochastic volatility (basic model)

Y} is log-return of asset price, Y; = log(pt/pe—1),

Yi[Xe = x¢ ~ N (0, exp(xt))
where {X:} is an auto-regressive process:

Xe—pp=b(Xe—1—p) + U,  Us ~N(0,06°)

and 0 = (u, ¢, 0?).
Take |¢| < 1 and Xg ~ N(u,02/(1 — p?)) to impose stationarity.
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Stochastic volatility (variations)

@ Student dist’ for noises

@ skewness: Y: = aX; + exp(X¢/2) Vs

o leverage effect: correlation between U; and V4
@ multivariate extensions
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Nonlinear dynamic systems in Ecology, Epidemiology, and
other fields

Y: = Xt + Vi, where {X;} is some complex nonlinear dynamic
system. In Ecology for instance,
Xt = Xe—1+ 61 — O exp(63Xe—1) + Us

where X; is log of population size. For some values of 6, process is

nearly chaotic.
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Nonlinear dynamic systems: Lokta-Volterra

Predator-prey model, where X = (Z*)?, X;(1) is the number of
preys, X¢(2) is the number of predators, and, working in
continuous-time:

Xe(1) B 2X,(1)
Xe(1) + Xe(2) B 2X,(2), teR*
X(2) &0

(but Y4 still observed in discrete time.)
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Nonlinear dynamic systems: Lokta-Volterra

Predator-prey model, where X = (Z*)?, X;(1) is the number of
preys, X¢(2) is the number of predators, and, working in
continuous-time:

Xe(1) B 2X,(1)
Xe(1) + Xe(2) B 2X,(2), teR*
X:(2) &0

(but Y4 still observed in discrete time.)
Intractable dynamics: We can simulate from X;|X;_1, but we
can't compute pg(x¢|x¢—1).
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Nonlinear dynamic systems: Lokta-Volterra

Predator-prey model, where X = (Z*)?, X;(1) is the number of
preys, X¢(2) is the number of predators, and, working in
continuous-time:

Xe(1) B 2X,(1)
Xe(1) + Xe(2) B 2X,(2), teR*
X:(2) &0

(but Y: still observed in discrete time.)

Intractable dynamics: We can simulate from X;|X;_1, but we
can't compute pg(x¢|x¢—1).

see also compartmental models in Epidemiology.
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State-space models with an intractable or degenerate
observation process

We have seen models such that X;|X;_1 is intractable; Y| X; may
be intractable as well. Let

X =(Xe,Ye), Yi=Yi+ Vi, Vi~ N(0,02)

and use {(X{, Y{)} as an approximation of {(Xt, Y})}.
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State-space models with an intractable or degenerate
observation process

We have seen models such that X;|X;_1 is intractable; Y| X; may
be intractable as well. Let

X =(Xe,Ye), Yi=Yi+ Vi, Vi~ N(0,02)

and use {(X{, Y{)} as an approximation of {(Xt, Y})}.
= Connection with ABC (likelihood-free inference).
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Finite state-space models (aka hidden Markov models)

X ={1,...,K}, uses in e.g.

@ speech processing; X; is a word, Y; is an acoustic measurement
(possibly the earliest application of HMMs). Note K is quite
large.

@ time-series modelling to deal with heterogenity (e.g. in
medecine, X; is state of patient)

@ rediscovered in Economics as Markov-switching models; there
Xt is the state of the Economy (recession, growth), and Y; is
some economic indicator (e.g. GDP) which follows an ARMA
process (with parameters that depend on X;)

@ also related: change-point models
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Finite state-space models (aka hidden Markov models)

X ={1,...,K}, uses in e.g.

@ speech processing; X; is a word, Y; is an acoustic measurement
(possibly the earliest application of HMMs). Note K is quite
large.

@ time-series modelling to deal with heterogenity (e.g. in
medecine, X; is state of patient)

@ rediscovered in Economics as Markov-switching models; there
Xt is the state of the Economy (recession, growth), and Y; is
some economic indicator (e.g. GDP) which follows an ARMA
process (with parameters that depend on X;)

@ also related: change-point models

Note: Not of direct interest to us, as sequential analysis may be
performed exactly using Baum-Petrie filter.
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A quick note on the generality of the definition

Consider a GARCH model, i.e. Y; ~ N(0,0?), with
of = a+ BYL +70t g

If we replace 6 = (a, 3,7) by Markov process (6;), do we obtain a
state-space model?
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Definition

The phrase state-space models refers not only to its definition (in
terms of {X;} and {Y;}) but also to a particular ‘inferential
scenario: {Y;:} is observed (data denoted yy,...), {X:} is not, and
one wishes to recover the X;'s given the Y;'s, often sequentially
(over time).
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Filtering, prediction, smoothing

Conditional distributions of interest (at every time t)

e Filtering: X¢|Yo:t

e Prediction: X¢| Yo.t—1

e data prediction: Yi|Yo.t—1

o fixed-lag smoothing: X;_p.¢| Yo:t for h >'1

e complete smoothing: Xo.t| Yot

o likelihood factor: density of Y:|Yo.t—1 (so as to compute the
full likelihood)
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Parameter estimation

All these tasks are usually performed for a fixed 6 (assuming the
model depends on some parameter 6). To deal additionally with
parameter uncertainty, we could adopt a Bayesian approach, and

consider e.g. the law of (6, X;) given Yp.: (for filtering). But this is
often more involved.
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Our notations (spoiler!)

e {X:} is a Markov process with initial law Py(dxp), and Markov
kernel Pe(x¢—1,dx;).

e {Y:} has conditional distribution F:(x¢,dy:), which admits
probability density f:(y¢|x;) (with respect tocommon

dominating measure v(dy;)).
@ when needed, dependence on 6 will be made explicit as follows:

PY(xe—1,dxe), ff(yelxe), ete.
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Our notations (spoiler!)

e {X:} is a Markov process with initial law Py(dxp), and Markov
kernel Pe(x¢—1,dx;).

e {Y:} has conditional distribution F:(x¢,dy:), which admits
probability density f;(y¢|x;) (with respect tocommon
dominating measure v(dy;)).

@ when needed, dependence on 6 will be made explicit as follows:
PY(xe—1,dxe), ff(yelxe), ete.

Algorithms, calculations, etc may be extended straightforwardly to
non-standard situations such that X', ) vary over time, or such that

Y:| Xt also depends on Yp.:—1, but for simplicity, we will stick to
these notations.
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problems with a structure similar to the sequential analysis
of a state-space model

Consider the simulation of Markov process {X;}, conditional on
X: € A; for each t.
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problems with a structure similar to the sequential analysis
of a state-space model

Consider the simulation of Markov process {X;}, conditional on

X: € A; for each t.
Take Y; = 1(X; € A¢), y+ = 1, then this tasks amounts to

smoothing the corresponding state-space model.
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A particular example: self-avoiding random walk

Consider a random walk in Z2, (i.e. at each time we may move
north, south, east or west, wit probability 1/4). We would to
simulate {X;} conditional on the trajectory Xp.7 never visiting the
same point more than once.
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A particular example: self-avoiding random walk

Consider a random walk in Z2, (i.e. at each time we may move
north, south, east or west, wit probability 1/4). We would to
simulate {X;} conditional on the trajectory Xp.7 never visiting the
same point more than once.

How to define {X;} in this case?
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@ Introduce Markov processes via kernels

@ Recursions of marginal distributions
o Conditional distributions

o conditional independence

@ Graphical models

o partially observed Markov processes & state-space models
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Definition
A probability kernel from (X, B(X)) to (¥, B(Y)), P(x,dy’), is a
function from (X', B())) to [0, 1] such that
(a) for every x, P(x,-) is a probability measure on
(Y, B(Y)),
(b) for every A € B(Y), P(x,A) is a measurable function
in X.

v

Then, if

Pl(dXO;l) = ]P)O(dXO)Pl(Xo, Xm)

by construction, P1(dxg) = Pp(dxp) and

[Pl(Xl S dX1|X0 = Xo) = Pl(Xg,dxl) .
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P1(dx0)P100, dxa) = P1(da) Po(x, dxo),
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Definition

A sequence of random variables Xp.1 with joint distribution given

by
.

Pr(Xo.7 € dxo.7) = Po(dxo) H Ps(xs—1,dxs) ,
s=1
is called a (discrete-time) Markov process with state-space X,
initial distribution Py and transition kernel at time t, P;. Likewise,
a probability measure decomposed into a product of an initial
distribution and transition kernels as in (2) will be called a Markov
measure.
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Pr(X: € dxe|Xo:t—1 = x0:6—1) = Pe(xe—1,dx¢) .

]PT(Xt € dXt|)<0:s = XO:s) = Ps-l—l:t(Xs, dXt)a
where

Ps+1:t(X57A) = /

Xt—s

Vi< T,s<t,

PS+1(X57 dXs+1)Ps+2(Xs+1; dXs+2) te Pt(Xt—17 A)
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A marginalisation property

Proposition

Consider a sequence of probability measures, index by t, defined as:

t
IP)t()<0:1: S dXO:t) = IP)O(dXO) H PS(XS—17 dXs) ,
s=1

where Ps are probability kernels. Then, for any t < T,

Pr(dxo:t) = Pe(dxo:t) -
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]Pt(Xt S dXt) = ]E]P’t []P’t(Xt (S dXt|X0;s)] = ]E]Pt[PS—i-th(XS) dXt)] .
With the marginalisation it yields the Chapman-Kolmogorov

Pi(X; € dxt) = E]P’S[Ps+1:t(XSa dxe)],

Vs<t-—1.
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&
P7(Xo.T € dxo.7) = P7(dxT) H P 1_s(xT—s41,dx7_5) ,
s=1

it
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POMP & SSM

T T
P (Xo:7 € dxo.7,Yo.7 € dyo.7) = Pr(dxo.7) H fr(ye|xe) H v(dye)
=0 t=0
T T T
= Po(dxo) H Pr(xt-1, dxe) H fe(velxe) H v(dyt)
=1 t=0 =0

When relevant, fZ(y:|x;) and PY(x;_1,dx:)
Components of a SSM
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Likelihood

pt(vo:t) = Ep, [H fs()/s‘XS)]

s=0

is the density (likelihood/partition function) of the law of Y. 7;
Likelihood factors

pe(yo:t) = po(yo) [ | ps(yslyo:s—1) -

s=1

and

Ptk (Ve:t+k|Y0:t—1) = Peak(Vo:t+k)/Pt—1(Yo:t—1), k>0,t>1.
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Law of states given observations

Pt(XO:t S dXO:t‘ Yot = y0:t) y0 {H f yS’XS } ]P)t(dXO:t) .
t s=0

(To see this, multiply both sides by p:(yo.t) [Tt v(dys) )
Another SSM function that will be is likelihood of future
observations given the current value of the state.

Pr(Yer1:7 € dyer1: 71 Xo:e = Xo:6, Ye = ¥t)

,t< T,
VT_t(dyt+l:T)

pT(Yt+1:T’Xt) =

where by conditional independence it does not depend on xp.t—1, ¥+
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Restating SSM aims

state prediction: deriving
Pe(Xeq1:t4n € dXeg1:04n] Yo:t = yo:t), for h > 1;

filtering: deriving P:(X: € dx¢| Yot = Yo:¢);

fixed-lag smoothing: deriving
Pe(Xe—r:t € dxe—r.t[Yo:e = yo:) for some / > 1;

(complete) smoothing: deriving P:(Xo.: € dxo:¢| Yo.t = yo:t);

likelihood computation: deriving p:(yo:t).
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Graphical models

Variables as nodes; when any two are linked by a kernel draw an
edge:

Xo 6<1\ /Xz\ . @

Path; conditional independence; Markov property of (Xo.7, Yo.7),
Xo. 7, Xo.T conditionally on Yy.7 but not of Yp.71.
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Further reading

o Conditional independence, Chapter 5 of Foundations of
modern Probability (Kallenberg, Springer)

@ Intro to graphical models: Chapter 8 of Pattern recognition
and machine learning (Bishop, Springer)
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