
Feynman-Kac models
HMMs

Feynman-Kac models & HMMs

nicolas.chopin@ensae.fr
(based on a previous PG course with O. Papaspiliopoulos)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Outline

1 Feynman-Kac models
Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

2 HMMs

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Summary

Tool: change of measure

Define FK models via Markov and CoM

FK formalism of given probabilistic models

Explore properties of FK models: recursion, marginalisation,
Markovianity

Apply the machinery on specific SSMs: HMMs.

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Change of measure

Definition

Let (X ,B(X)) be a measurable space, and M and Q two
probability measures defined on this space. We then say that Q is
absolutely continuous with respect to M, if for any A 2 B(X) for
which M(A) = 0, Q(A) = 0. In this case, we also say that M
dominates Q.

In fact, Q is a.c. wrt to M i↵ 9

w(x) =
Q(dx)

M(dx)

(Radon-Nikodym)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Lemma

Suppose that Q and M are probability mesures on a space X , and
w(x) / Q(dx)/M(dx). Then, for any test function �,

M(�w) = Q(�)M(w) .

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

The other way around

Alternatively, if you give me:

A probability measure M;

a function G such that

L := M(G) 2 (0,1)

Then I can define:

Q(dx) =
1

L
M(dx)G (x)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

The components of a Feynman-Kac model

Markov measure:

MT (dx0:T) = M0(dx0)
TY

t=1

Mt(xt�1, dxt) .

Potential functions, G0 : X ! R+, and Gt : X 2 ! R+, for
1  t  T

Change of measure: for t  T

Qt(dx0:T) =
1

Lt
G0(x0)

(
tY

s=1

Gs(xs�1, xs)

)
MT (dx0:T)

Components: T ,G0,M0, Gt(xt�1, xt),Mt(xt�1, dxt)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Partition function/evidence/marginal likelihood

Lt =

ˆ
X t+1

G0(x0)
tY

s=1

Gs(xs�1, xs)Mt(dx0:t)

= EMt

"
G0(X0)

tY

s=1

Gs(Xs�1,Xs)

#
.

and assume that Gt ’s such that 0 < Lt <1 for all t
Normalising factors: `t = Lt/Lt�1

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

The “bootstrap” Feynman-Kac formalism of a

state-space model

Consider a state-space model with signal transition kernels
Pt(xt�1, dxt) and observation densities ft(yt |xt). We define its
“bootstrap” Feynman-Kac formalism to be a
Feynman-Kacmodel with the following components

M0(dx0) = P0(dx0) , G0(x0) = f0(y0|x0)
Mt(xt�1, dxt) = Pt(xt�1, dxt) , Gt(xt�1, xt) = ft(yt |xt) .

Then

Qt�1(dx0:t) = Pt(X0:t 2 dx0:t |Y0:t�1 = y0:t�1)

Qt(dx0:t) = Pt(X0:t 2 dx0:t |Y0:t = y0:t)

Lt = pt(y0:t)nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Is this the only one? And what is this formalism useful for?

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

The “guided” Feynman-Kac formalism of a state-space

model

Consider a state-space model with signal transition kernels
Pt(xt�1, dxt) and observation densities ft(yt |xt). We define its
“guided” Feynman-Kac formalism to be a Feynman-Kacmodel
with the following components

G0(x0)M0(dx0) = f0(y0|x0)P0(dx0) ,

Gt(xt�1, xt)Mt(xt�1, dxt) = ft(yt |xt)Pt(xt�1, dxt) .

meaning of equalities, special case

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

The “auxiliary” Feynman-Kac formalism of a state-space

model

Consider a state-space model with signal transition kernels
Pt(xt�1, dxt) and observation densities ft(yt |xt). Additionally,
let ⌘t(xt) be user-chosen, “auxiliary” functions, such that
EPt [⌘t(Xt)|Y0:t = y0:t] <1 for all t. We define its “auxiliary”
Feynman-Kac formalism to be a Feynman-Kacmodel with the
following components

G0(x0)M0(dx0) = f0(y0|x0)P0(dx0)⌘0(x0)

Gt(xt�1, xt)Mt(xt�1, dxt) = ft(yt |xt)Pt(xt�1, dxt)
⌘t(xt)

⌘t�1(xt�1)

terminology, matching of distributions, plan for next slides
nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Use of formalism

Decouple a statistical model (the state-space model) from its
mathematical representation ! unified treatment of theory
(recursions) and numerics (particle filters)

Feynman-Kacmodels share the same fundamental structure:
the specific change of measure from a Markov measure !
common set of recursions regardless of the details of
components

Feynman-Kac representation and modularity

Feynman-Kac outside state-space models

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Forward recursion (Feynman-Kac formalism) pt1

Initialise with Q�1(dx0) = M0(dx0), then, for t = 0 : T ,

Extension:

Qt�1(dxt�1:t) = Qt�1(dxt�1)Mt(xt�1, dxt)

Recall definition

Change of measure:

Qt(dxt�1:t) =
1

`t
Gt(xt�1, xt)Qt�1(dxt�1:t)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Forward recursion (Feynman-Kac formalism) pt2

with

`0 = L0 =

ˆ
X
G0(x0)M0(dx0)

and

`t =
Lt
Lt�1

=

ˆ
X 2

Gt(xt�1, xt)Qt�1(dxt�1:t)

for t � 1.

Marginalisation:

Qt(dxt) =

ˆ
X
Qt(dxt�1:t)

=
1

`t

ˆ
X
Gt(xt�1, xt)Mt(xt�1, dxt)Qt�1(dxt�1)

Prediction after extension; Proof

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Implications for the ”b”-fm: recursion for filter, prediction,
likelihood

Pt�1(Xt 2 dxt |Y0:t�1 = y0:t�1)

=

ˆ
X
Pt(xt�1, dxt)Pt(Xt�1 2 dxt�1|Y0:t�1 = y0:t�1) ,

Pt(Xt 2 dxt |Y0:t = y0:t) =
1

pt(yt |y0:t�1)
ft(yt |xt)

Pt�1(Xt 2 dxt |Y0:t�1 = y0:t�1).

pt(yt |y0:t�1) =

ˆ
X 2

ft(yt |xt)Pt�1(Xt�1:t 2 dxt�1:t |Y0:t�1 = y0:t�1) .

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Feynman-Kac model as a Markov measure - cost-to-go
functions

HT :T (xT) = 1 ,

Ht:T (xt) =

ˆ
XT�t

TY

s=t+1

Gs(xs�1, xs)Ms(xs�1, dxs) , t < T .

Hence

Ht:T (xt) =

ˆ
X
Gt+1(xt , xt+1)Ht+1:T (xt+1)Mt+1(xt , dxt+1)

but also

Ht:T (xt) = EMT

"
TY

s=t+1

Gs(Xs�1,Xs)
���Xt = xt

#

= EMt+1 [Gt+1(Xt ,Xt+1)Ht+1:T (Xt+1)|Xt = xt] .

proof of results, dynamic programming
nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Proposition

QT is the law of a Markov process with state-space X , initial
distribution

Q0|T (dx0) =
H0:T (x0)

LT
G0(x0)M0(dx0) ,

forward transition kernels Qt|T (xt�1, dxt) given by:

Qt|T (xt�1, dxt) =
Ht:T (xt)

Ht�1:T (xt�1)
Gt(xt�1, xt)Mt(xt�1, dxt) ,

and backward kernels given by:

 �
Q t�1|T (xt , dxt�1) =

Qt|T (xt�1, dxt)

QT (dxt)
QT (dxt�1) .

Meaning of ratios; Proof by telescoping; each term a kernelnicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Implications for the ”b”-fm: POMP

By immediate translation:

Ht:T (xt) =
PT (Yt+1:T 2 dyt+1:T |Xt = xt)

⌫T�t(dyt+1:T)
, t < T .

pt(yt+1:T |xt) =
ˆ
X
f (yt+1|xt+1)p(yt+2:T |xt+1)Pt(xt , dxt+1) .

Hence, the conditioned Markov process is also Markov with

P0|T (dx0) =
p(y1:T |x0)
p(y0:T)

f0(y0|x0)P0(dx0) ,

Pt|T (xt�1, dxt) =
p(yt+1:T |xt)
p(yt:T |xt�1)

ft(yt |xt)Pt(xt�1, dxt) .

Stability properties
nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Forward-backward recursions in Feynman-Kac models

Recall that MT (dx0:t) = Mt(dx0:t). For the Feynman-Kacmodel
we have:

Proposition

For any t < T ,

QT (dx0:t) =
Lt
LT

Ht:T (xt)Qt(dx0:t) .

Ideas for proof?
Proof: use the Markov property of the Q process

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Corollary

QT (dxt) =
Lt
LT

Ht:T (xt)Qt(dxt) .

& from Proposition .3 and the result above we get:

Corollary

 �
Q t�1|T (xt , dxt�1) =

1

`t
Gt(xt�1, xt)

Mt(xt�1, dxt)

Qt(dxt)
Qt�1(dxt�1)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Implications for the ”b”-fm: forward filtering/backward
smoothing

P(Xt 2 dxt |Y0:T = y0:T) =
1

p(yt+1:T |y0:t)
p(yt+1:T |xt)

P(Xt 2 dxt |Y0:t = y0:t)

 �
P t�1|T (xt , dxt�1) =

1

p(yt |y0:t�1)
ft(yt |xt)

Pt(xt�1, dxt)

Pt(Xt 2 dxt |Y0:t = y0:t)
Pt�1(Xt�1 2 dxt�1|Y0:t�1 = y0:t�1) .

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Forward-backward simulation

How generate draws from QT (dx0:T)?

Then, we should know how to generate from

PT (X0:T 2 dx0:T |Y0:T = y0:T)

ideas?

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

Further reading

The “Don Quixote” of SMC: Feynman-Kac formulae (Del
Moral, Springer)

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Outline

1 Feynman-Kac models
Change of measure
Feynman-Kac formalism
Feynman-Kac formalisms of a state space model
Forward recursion
FK as Markov measures

2 HMMs

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

HMMs

X = {1, . . . ,K}
Integrals ! sums; measures ! vectors; kernels ! matrices

Following based on “bootstrap” formalism

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Feynman-Kac models
HMMs

Complexity

Predictive probabilities: O(K 2) (unless sparse transition
matrix, e.g. change point models)

Given those, filter & likelihood factors obtained at O(K)

Overall cost: O(TK 2) as opposed to O(KT)

Still, K might be large...

nicolas.chopin@ensae.fr Feynman-Kac models & HMMs

Particle filtering

nicolas.chopin@ensae.fr

(based on a previous PG course with O. Papaspiliopoulos)

nicolas.chopin@ensae.fr Particle filtering

Objectives

nicolas.chopin@ensae.fr Particle filtering

Objectives

introduce a generic PF algorithm for a given
Feynman-Kac model {(M

t

, G
t

)}T

t=0

discuss the di�erent algorithms one may obtain for a given
state-space model, by using di�erent Feynman-Kac formalisms.
give more details on the implementation, complexity, and so on
of the algorithm.

nicolas.chopin@ensae.fr Particle filtering

The algorithm

nicolas.chopin@ensae.fr Particle filtering

Input

A Feynman-Kac model {(M
t

, G
t

)}T

t=0

such that:
the weight function G

t

may be evaluated pointwise (for all t);
it is possible to simulate from M

0

(dx
0

) and from M
t

(x
t≠1

, dx
t

)
(for any x

t≠1

and t)

The number of particles N

nicolas.chopin@ensae.fr Particle filtering

Structure

Algorithm 1 Basic PF algorithm

All operations to be performed for all n œ 1 : N.
At time 0:

(a) Generate Xn

0

≥ M
0

(dx
0

).
(b) Compute wn

0

= G
0

(Xn

0

), W n

0

= wn

0

/
q

N

m=1

wm

0

, and
LN

0

= N≠1

q
N

n=1

wn

0

.
Recursively, for t = 1, . . . , T :

(a) Generate ancestor variables An

t

œ 1 : N independently
from M(W 1:N

t≠1

).
(b) Generate Xn

t

≥ M
t

(XA

n

t

t≠1

, dx
t

).
(c) Compute wn

t

= G
t

(XA

n

t

t≠1

, Xn

t

), W n

t

= wn

t

/
q

N

m=1

wm

t

,
and LN

t

= LN

t≠1

{N≠1

q
N

n=1

wn

t

}.

nicolas.chopin@ensae.fr Particle filtering

Output

the algorithm delivers the following approximations at each time t:

1
N

Nÿ

n=1

”
X

n

t

approximates Q
t≠1

(dx
t

)

QN

t

(dx
t

) =
Nÿ

n=1

W n

t

”
X

n

t

approximates Q
t

(dx
t

)

LN

t

approximates L
t

nicolas.chopin@ensae.fr Particle filtering

some comments

by approximates, we mean: for any test function Ï, the
quantity

QN

t

(Ï) =
Nÿ

n=1

W n

t

Ï(Xn

t

)

converges to Q
t

(Ï) as N æ +Œ (at the standard Monte Carlo
rate O

P

(N≠1/2)).

complexity is O(N) per time step.

nicolas.chopin@ensae.fr Particle filtering

some comments

by approximates, we mean: for any test function Ï, the
quantity

QN

t

(Ï) =
Nÿ

n=1

W n

t

Ï(Xn

t

)

converges to Q
t

(Ï) as N æ +Œ (at the standard Monte Carlo
rate O

P

(N≠1/2)).

complexity is O(N) per time step.

nicolas.chopin@ensae.fr Particle filtering

Particle algorithms for a given state-space model

nicolas.chopin@ensae.fr Particle filtering

Principle

We now consider a given state-space model:

with initial law P
0

(dx
0

) and Markov kernel P
t

(x
t≠1

, dx
t

) for
{X

t

};
with conditional probability density f

t

(y
t

|x
t

) for Y
t

|X
t

and discuss how the choice of a particular Feynman-Kac formalism
leads to more or less e�cient particle algorithms.

nicolas.chopin@ensae.fr Particle filtering

The bootstrap filter

Bootstrap Feynman-Kac formalism:

M
t

(x
t≠1

, dx
t

) = P
t

(x
t≠1

, dx
t

), G
t

(x
t≠1

, x
t

) = f
t

(y
t

|x
t

)

then Q
t

is the filtering distribution, L
t

is the likelihood of y
0:t

, and
so on.
The resulting algorithm is called the boostrap filter, and is
particularly simple to interpret: we sample particles from Markov
transition P

t

(x
t≠1

, dx
t

), and we reweight particles according to how
compatible they are with the data.

nicolas.chopin@ensae.fr Particle filtering

The boostrap filter: algorithm

All operations to be performed for all n œ 1 : N.
At time 0:

(a) Generate Xn

0

≥ P
0

(dx
0

).
(b) Compute wn

0

= f
0

(y
0

|Xn

0

), W n

0

= wn

0

/
q

N

m=1

wm

0

, and
LN

0

= N≠1

q
N

n=1

wn

0

.

Recursively, for t = 1, . . . , T :

(a) Generate ancestor variables An

t

œ 1 : N independently
from M(W 1:N

t≠1

).
(b) Generate Xn

t

≥ P
t

(XA

n

t

t≠1

, dx
t

).
(c) Compute wn

t

= f
t

(y
t

|Xn

t

), W n

t

= wn

t

/
q

N

m=1

wm

t

, and
LN

t

= LN

t≠1

{N≠1

q
N

n=1

wn

t

}.

nicolas.chopin@ensae.fr Particle filtering

The bootstrap filter: output

1
N

Nÿ

n=1

Ï(Xn

t

) approximates E[Ï(X
t

)|Y
0:t≠1

= y
0:t≠1

]

Nÿ

n=1

W n

t

Ï(Xn

t

) approximates E[Ï(X
t

)|Y
0:t

= y
0:t

]

LN

t

approximates p(y
0:t

)

nicolas.chopin@ensae.fr Particle filtering

The bootstrap filter: pros and cons

Pros:

particularly simple
does not require to compute the density X

t

|X
t≠1

: we can apply
it to models with intractable dynamics

Cons:

We simulate particles blindly: if Y
t

|X
t

is very informative, few
particles will get a non-negligible weight.

nicolas.chopin@ensae.fr Particle filtering

The guided PF

Guided Feynman-Kac formalism: M
t

is a user-chosen proposal

kernel such that M
t

(x
t≠1

, dx
t

) dominates P
t

(x
t≠1

, dx
t

), and

G
t

(x
t≠1

, x
t

) = f
t

(y
t

|x
t

)P
t

(x
t≠1

, dx
t

)
M

t

(x
t≠1

, dx
t

)

= f
t

(y
t

|x
t

) p
t

(x
t

|x
t≠1

)
m

t

(x
t

|x
t≠1

)

(assuming in the second line that both kernels admit a density wrt a
common measure). We still have that Q

t

(dx
t

) is the filtering
distribution, and L

t

is the likelihood.
We call the resulting algorithm the guided particle filter, as in
practice we would like to choose M

t

so as to guide particles to
regions of high likelihood.

nicolas.chopin@ensae.fr Particle filtering

The guided PF: choice of Mt (local optimality)

Suppose that (G
s

, M
s

) have been chosen to satisfy (??) for
s Æ t ≠ 1. Among all pairs (M

t

, G
t

) that satisfy (??), the Markov
kernel

Mopt

t

(x
t≠1

, dx
t

) = f
t

(y
t

|x
t

)´
X f (y

t

|x Õ) P
t

(x
t≠1

, dx Õ)P
t

(x
t≠1

, dx
t

)

minimises the variance of the weights, Var
Ë
G

t

(XA

n

t

t≠1

, Xn

t

)
È
.

nicolas.chopin@ensae.fr Particle filtering

Interpretation and discussion of this result

Mopt

t

is simply the law of X
t

given X
t≠1

and Y
t

. In a sense it
is the perfect compromise between the information brought by
P

t

(x
t≠1

, dx
t

) and by f
t

(y
t

|x
t

).
In most practical cases, Mopt

t

is not tractable, hence this result
is mostly indicative (on how to choose M

t

).
Note also that the local optimality criterion is debatable. For
instance, we do not consider the e�ect of future datapoints.

nicolas.chopin@ensae.fr Particle filtering

A first example: stochastic volatility

There, the log-density of X
t

|X
t≠1

, Y
t

is (up to a constant):

≠ 1
2‡2

{x
t

≠ µ ≠ „(x
t≠1

≠ µ)}2 ≠ x
t

2 ≠ e≠x

t

2 y2

t

We can use ex≠x

0 ¥ 1 + (x ≠ x
0

) + (x ≠ x
0

)2/2 to get a Gaussian
approximation.

nicolas.chopin@ensae.fr Particle filtering

A second example: bearings-only tracking

In that case, P
t

(x
t≠1

, dx
t

) imposes deterministic constraints:

X
t

(k) = X
t≠1

(k) + X
t≠1

(k + 2), k = 1, 2

We can choose a M
t

that imposes the same constraints. However,
in this case, we find that

Mopt

t

(x
t≠1

, dx
t

) = P
t

(x
t≠1

, dx
t

).

Discuss.

nicolas.chopin@ensae.fr Particle filtering

Guided particle filter pros and cons

Pro:

may work much better that bootstrap filter when Y
t

|X
t

is
informative (provided we are able to derive a good proposal).

Cons:

requires to be able to compute density p
t

(x
t

|x
t≠1

).
sometimes local optimality criterion is not so sound.

nicolas.chopin@ensae.fr Particle filtering

The auxiliary particle filter

In the auxiliary Feynman-Kac formalism, an extra degree of freedom
is gained by introducing auxiliary function ÷

t

, and set:

G
0

(x
0

) = f
0

(y
0

|x
0

) P
0

(dx
0

)
M

0

(dx
0

)÷
0

(x
0

),

G
t

(x
t≠1

, x
t

) = f
t

(y
t

|x
t

) P
t

(x
t≠1

, dx
t

)
M

t

(x
t≠1

, dx
t

)
÷

t

(x
t

)
÷

t≠1

(x
t≠1

) .

so that
Q

t

(dx
0:t

) Ã P(dx
0:t

|Y
0:t

= y
0:t

)÷
t

(x
t

)

and we recover the filtering distribution by reweighting by 1/÷
t

.
Idea: choose ÷

t

so that G
t

is as constant as possible.

nicolas.chopin@ensae.fr Particle filtering

Output of APF

Let w̃n

t

:= wn

t

/÷
t

(Xn

t

), W̃ n

t

:= w̃n

t

/
q

N

m=1

w̃m

t

, then

1
q

N

m=1

˜

W

m

t

f (y

t

|Xm

t

)

Nÿ

n=1

W̃ n

t

f
t

(y
t

|Xn

t

)Ï(Xn

t

) approx. E[Ï(X
t

)|Y
0:t≠1

= y
0:t≠1

]

Nÿ

n=1

W̃ n

t

Ï(Xn

t

) approx. E[Ï(X
t

)|Y
0:t

= y
0:t

]

LN

t

◊ N≠1

Nÿ

n=1

w̃n

t

approx. p(y
0:t

)

nicolas.chopin@ensae.fr Particle filtering

Local optimality for Mt and ÷t

For a given state-space model, suppose that (G
s

, M
s

) have been
chosen to satisfy (??) for s Æ t ≠ 2, and M

t≠1

has also been chosen.
Among all pairs (M

t

, G
t

) that satisfy (??) and functions ÷
t≠1

, the
Markov kernel

Mopt

t

(x
t≠1

, dx
t

) = f
t

(y
t

|x
t

)´
X f (y

t

|x Õ) P
t

(x
t≠1

, dx Õ)P
t

(x
t≠1

, dx
t

)

and the function

÷opt

t≠1

(x
t≠1

) =
ˆ

X
f (y

t

|x Õ) P
t

(x
t≠1

, dx Õ)

minimise Var
Ë
G

t

(XA

n

t

t≠1

, Xn

t

)/÷
t

(Xn

t

)
È
.

nicolas.chopin@ensae.fr Particle filtering

Interpretation and discussion

We find again that the optimal proposal is the law of X
t

given
X

t≠1

and Y
t

. In addition, the optimal auxiliary function is the
probability density of Y

t

given X
t≠1

.
For this ideal algorithm, we would have

G
t

(x
t≠1

, x
t

) = ÷opt

t

(x
t

);

the density of Y
t+1

given X
t

= x
t

; not constant, but intuitively
less variable than f

t

(y
t

|x
t

) (as in the bootstrap filter).

nicolas.chopin@ensae.fr Particle filtering

Example: stochastic volatility

We use the same ideas as for the guided PF: Taylor expansion of
log-density, then we integrate wrt x

t

.

nicolas.chopin@ensae.fr Particle filtering

APF pros and cons

Pros:

usually gives some extra performance.

Cons:

a bit di�cult to interpret and use;
they are some (contrived) examples where the auxiliary particle
filter actually performs worse than the bootstrap filter.

nicolas.chopin@ensae.fr Particle filtering

Note on the generality of APF

From the previous descriptions, we see that:

the guided PF is a particular instance of the auxiliary particle
filter (take ÷

t

= 1);
the bootstrap filter is a particular instance of the guided
PF(take M

t

= P
t

).

This is why some recent papers focus on the APF.

nicolas.chopin@ensae.fr Particle filtering

When to resample?

nicolas.chopin@ensae.fr Particle filtering

Resampling or not resampling, that is the question

For the moment, we resample every time. When we introduced
resampling, we explained that the decision to resample was based on
a trade-o�: adding noise at time t ≠ 1, while hopefully reducing
noise at time t (assuming that {X

t

} forgets its past).

We do know that never resample would be a bad idea: consider
M

t

(x
t≠1

, dx
t

) defined such that the X
t

are IID N (0, 1),
G

t

(x
t

) = 1(x
t

> 0). (More generally, recall the curse of
dimensionality of importance sampling.)

nicolas.chopin@ensae.fr Particle filtering

Resampling or not resampling, that is the question

For the moment, we resample every time. When we introduced
resampling, we explained that the decision to resample was based on
a trade-o�: adding noise at time t ≠ 1, while hopefully reducing
noise at time t (assuming that {X

t

} forgets its past).
We do know that never resample would be a bad idea: consider
M

t

(x
t≠1

, dx
t

) defined such that the X
t

are IID N (0, 1),
G

t

(x
t

) = 1(x
t

> 0). (More generally, recall the curse of
dimensionality of importance sampling.)

nicolas.chopin@ensae.fr Particle filtering

The ESS recipe

Trigger the resampling step whenever the variability of the weights
is too large, as measured by e.g. the ESS (e�ective sample size):

ESS(W 1:N

t

) := 1
q

N

n=1

(W n

t

)2

= {
q

N

n=1

w
t

(Xn)}2

q
N

n=1

w
t

(Xn)2

.

Recall that ESS(W 1:N

t

) œ [1, N], and that if k weights equal one,
and N ≠ k weights equal zero, then ESS(W 1:N

t

) = k.

nicolas.chopin@ensae.fr Particle filtering

PF with adaptive resampling

(Same operations at t = 0.)
Recursively, for t = 1, . . . , T :

(a) If ESS(W 1:N

t≠1

) < “N
generate ancestor variables A1:N

t≠1

from resampling
distribution RS(W 1:N

t≠1

), and set Ŵ n

t≠1

= W A

n

t

t≠1

;
Else (no resampling)
set An

t≠1

= n and Ŵ n

t≠1

= 1/N
(b) Generate Xn

t

≥ M
t

(XA

n

t

t≠1

, dx
t

).
(c) Compute wn

t

= (NŴ n

t≠1

) ◊ G
t

(XA

n

t

t≠1

, Xn

t

),
LN

t

= LN

t≠1

{N≠1

q
N

n=1

wn

t

}, W n

t

= wn

t

/
q

N

m=1

wm

t

.

nicolas.chopin@ensae.fr Particle filtering

	Feynman-Kac models
	Change of measure
	Feynman-Kac formalism
	Feynman-Kac formalisms of a state space model
	Forward recursion
	FK as Markov measures

	HMMs

