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Outline

Particle filtering (a.k.a. Sequential Monte Carlo) is a set of Monte
Carlo techniques for sequential inference in state-space models.
The error rate of PF is therefore O

P

(N�1/2).

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo
(MC), which typically converges at the faster rate O(N�1+✏).
However, standard QMC is usually defined for IID problems.

We derive a QMC version of PF, which we call SQMC (Sequential
Quasi Monte Carlo).
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QMC basics

Consider the standard MC approximation

1

N

NX

n=1

'(Un) ⇡
ˆ
[0,1]d

'(u)du

where the N vectors Un are IID variables simulated from
U
�
[0, 1]d

�
.

QMC replaces U1:N by a set of N points that are more evenly
distributed on the hyper-cube [0, 1]d . This idea is formalised
through the notion of discrepancy.
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QMC vs MC in one plot
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QMC versus MC: N = 256 points sampled independently and
uniformly in [0, 1]2 (left); QMC sequence (Sobol) in [0, 1]2 of the
same length (right)

nicolas.chopin@ensae.fr SQMC (Sequential quasi-Monte Carlo)



Discrepancy

Koksma–Hlawka inequality:

�����
1

N

NX

n=1

'(un)�
ˆ
[0,1]d

'(u) du

�����  V (')D?(u1:N)

where V (') depends only on ', and the star discrepancy is defined
as:

D?(u1:N) = sup
[0, ]

�����
1

N

NX

n=1

1 (Un 2 [0, ])�
dY

i=1

b
i

����� .

There are various ways to construct point sets P
N

=
�
U1:N

 
so

that D?(u1:N) = O(N�1+✏).
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Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension
one, d = 1, consider

1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
. . .

or more generally,

1

p
, . . . ,

p � 1

p
,
1

p2
, · · · .

In dimension d > 1, a Halton sequence consists of a Van der
Corput sequence for each component, with a di↵erent p for each
component (the first d prime numbers).
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RQMC (randomised QMC)

RQMC randomises QMC so that each Un ⇠ U
�
[0, 1]d

�
marginally.

In this way

E
(

1

N

NX

n=1

'(Un)

)
=

ˆ
[0,1]d

'(u) du

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take
Un = W + V n ⌘ 1, where W ⇠ U([0, 1]d) and V 1:N is a QMC
point set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies
such that (for a certain class of smooth functions '):

Var

(
1

N

NX

n=1

'(Un)

)
= O(N�3+✏)
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Particle Filtering: Hidden Markov models

Consider an unobserved Markov chain (X
t

), X
0

⇠ m
0

(dx
0

) and

X
t

|X
t�1

= x
t�1

⇠ M
t

(x
t�1

, dx
t

)

taking values in X ⇢ Rd , and an observed process (Y
t

),

Y
t

|X
t

⇠ g(y
t

|x
t

).

Sequential analysis of HMMs amounts to recover quantities such
as p(x

t

|y
0:t

) (filtering), p(x
t+1

|y
0:t

) (prediction), p(y
0:t

) (marginal
likelihood), etc., recursively in time. Many applications in
engineering (tracking), finance (stochastic volatility), epidemiology,
ecology, neurosciences, etc.
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Feynman-Kac formalism

Taking G
t

(x
t�1

, x
t

) := g
t

(y
t

|x
t

), we see that sequential analysis of
a HMM may be cast into a Feynman-Kac model. In particular,
filtering amounts to computing

Q
t

(') =
1

Z
t

E
"
'(X

t

)G
0

(X
0

)
tY

s=1

G
s

(X
s�1

,X
s

)

#
,

with Z
t

= E
"
G
0

(X
0

)
tY

s=1

G
s

(X
s�1

,X
s

)

#

and expectations are wrt the law of the Markov chain (X
t

).

Note: FK formalism has other applications that sequential analysis
of HMM. In addition, for a given HMM, there is a more than one
way to define a Feynmann-Kac formulation of that model.
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Particle filtering: the algorithm

Operations must be be performed for all n 2 1 : N.
At time 0,

(a) Generate X n

0

⇠ M
0

(dx
0

).

(b) Compute W n

0

= G
0

(X n

0

)/
P

N

m=1

G
0

(Xm

0

).

Recursively, for time t = 1 : T ,

(a) Generate An

t�1

⇠ M(W 1:N

t�1

).

(b) Generate X n

t

⇠ M
t

(X
A

n

t�1

t�1

, dx
t

).

(c) Compute

W n

t

= G
t

(X
A

n

t�1

t�1

,X n

t

)/
P

N

m=1

G
t

(X
A

m

t�1

t�1

,Xm

t

)

nicolas.chopin@ensae.fr SQMC (Sequential quasi-Monte Carlo)



Formalisation

We can formalise the succession of Steps (a), (b) and (c) at
iteration t as an importance sampling step from random
probability measure

NX

n=1

W n

t�1

�
X

n

t�1

(dex
t�1

)M
t

(ex
t�1

, dx
t

) (0.1)

to
{same thing}⇥ G

t

(ex
t�1

, x
t

).

Idea: use QMC instead of MC to sample N points from (0.1); i.e.
rewrite sampling from (0.1) this as a function of uniform variables,
and use low-discrepancy sequences instead.
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Intermediate step

More precisely, we are going to write the simulation from

NX

n=1

W n

t�1

�
X

n

t�1

(dex
t�1

)M
t

(ex
t�1

, dx
t

)

as a function of Un

t

= (un
t

,V n

t

), un
t

2 [0, 1], V n

t

2 [0, 1]d , such
that:

1 We will use the scalar un
t

to choose the ancestor eX
t�1

.

2 We will use V n

t

to generate X n

t

as

X n

t

= �
t

( eX
t�1

,V n

t

)

where �
t

is a deterministic function such that, for
V n

t

⇠ U [0, 1]d , �
t

( eX
t�1

,V n

t

) ⇠ M
t

( eX
t�1

, dx
t

).

The main problem is point 1.
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Case d = 1

Simply use the inverse transform method: X̃ n

t�1

= F̂�1(un
t

), where

F̂ is the empirical cdf of

NX

n=1

W n

t�1

�
X

n

t�1

(d eX
t�1

).
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From d = 1 to d > 1

When d > 1, we cannot use the inverse CDF method to sample
from the empirical distribution

NX

n=1

W n

t�1

�
X

n

t�1

(dex
t�1

).

Idea: we “project” the X n

t�1

’s into [0, 1] through the (generalised)
inverse of the Hilbert curve, which is a fractal, space-filling curve
H : [0, 1] ! [0, 1]d .

More precisely, we transform X into [0, 1]d through some function
 , then we transform [0, 1]d into [0, 1] through h = H�1.
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Hilbert curve

The Hilbert curve is the limit of this sequence. Note the locality
property of the Hilbert curve: if two points are close in [0, 1], then
the the corresponding transformed points remains close in [0, 1]d .
(Source for the plot: Wikipedia)
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SQMC Algorithm

At time 0,

(a) Generate a QMC point set U1:N

0

in [0, 1]d , and
compute X n

0

= �
0

(Un

0

). (e.g. �
0

= F�1

m

0

)

(b) Compute W n

0

= G
0

(X n

0

)/
P

N

m=1

G
0

(Xm

0

).

Recursively, for time t = 1 : T ,

(a) Generate a QMC point set U1:N

t

in [0, 1]d+1; let
Un

t

= (un
t

,V n

t

).

(b) Hilbert sort: find permutation � such that

� (X �(1)
t�1

)  . . .  � (X �(N)

t�1

).

(c) Generate a1:N
t�1

using inverse CDF Algorithm, with

inputs sort(u1:N
t

) and W �(1:N)

t�1

, and compute

X n

t

= �
t

(X
�(an

t�1

)

t�1

,V �(n)
t

). (e.g. �
t

= F�1

M

t

)

(e) Compute

W n

t

= G
t

(X
�(an

t�1

)

t�1

,X n

t

)/
P

N

m=1

G
t

(X
�(am

t�1

)

t�1

,Xm

t

).
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Some remarks

Because two sort operations are performed, the complexity of
SQMC is O(N logN). (Compare with O(N) for SMC.)

The main requirement to implement SQMC is that one may
simulate from Markov kernel M

t

(x
t�1

, dx
t

) by computing
X
t

= �
t

(X
t�1

,
t

), where
t

⇠ U [0, 1]d , for some deterministic
function �

t

(e.g. multivariate inverse CDF).

The dimension of the point sets 1:N

t

is 1 + d : first component
is for selecting the parent particle, the d remaining

components is for sampling X n

t

given X
a

n

t�1

t�1

.
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Extensions

If we use RQMC (randomised QMC) point sets 1:N

t

, then
SQMC generates an unbiased estimate of the marginal
likelihood Z

t

.

This means we can use SQMC within the PMCMC
framework. (More precisely, we can run e.g. a PMMH
algorithm, where the likelihood of the data is computed via
SQMC instead of SMC.)

We can also adapt quite easily the di↵erent particle smoothing
algorithms: forward smoothing, backward smoothing,
two-filter smoothing.
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Main results

We were able to establish the following types of results: consistency

QN

t

(')�Q
t

(') ! 0, as N ! +1

for certain functions ', and rate of convergence

MSE

h
QN

t

(')
i
= (N�1)

(under technical conditions, and for certain types of RQMC point
sets).
Theory is non-standard and borrows heavily from QMC concepts.
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Some concepts used in the proofs

Let X = [0, 1]d . Consistency results are expressed in terms of the
star norm

kQN

t

�Q
t

k? = sup
[0, ]⇢[0,1)d

���
⇣
QN

t

�Q
t

⌘
(B)

��� ! 0.

This implies consistency for bounded functions ',
QN

t

(')�Q
t

(') ! 0.
The Hilbert curve conserves discrepancy:

k⇡N � ⇡k? ! 0 ) k⇡N
h

� ⇡
h

k? ! 0

where ⇡ 2 P([0, 1]d), h : [0, 1]d ! [0, 1] is the (pseudo-)inverse of
the Hilbert curve, and ⇡

h

is the image of ⇡ through ⇡.
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Examples: Kitagawa (d = 1)

Well known toy example (Kitagawa, 1998):
8
<

:
y
t

= x

2

t

a

+ ✏
t

x
t

= b
1

x
t�1

+ b
2

x

t�1

1+x

2

t�1

+ b
3

cos(b
4

t) + �⌫
t

No paramater estimation (parameters are set to their true value).
We compare SQMC with SMC (based on systematic resampling)
both in terms of N, and in terms of CPU time.
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Examples: Kitagawa (d = 1)
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Log-likelihood evaluation (based on T = 100 data point and 500
independent SMC and SQMC runs).
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Examples: Kitagawa (d = 1)
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Filtering: computing E(X
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|
0:t

) at each iteration t. Gain factor is
MSE(SMC)/MSE(SQMC).
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Examples: Multivariate Stochastic Volatility

Model is

(
t

= S
1

2

t

✏
t

X
t

= µ+ �(X
t�1

� µ) + 
1

2⌫
t

with possibly correlated noise terms: (✏
t

,⌫
t

) ⇠ N
2d

(0, ).
We shall focus on d = 2 and d = 4.
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Examples: Multivariate Stochastic Volatility (d = 2)
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Examples: Multivariate Stochastic Volatility (d = 2)
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Log-likelihood evaluation (left) and filtering (right) as a function of
t.
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Examples: Multivariate Stochastic Volatility (d = 4)
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Conclusion

Only requirement to replace SMC with SQMC is that the
simulation of X n

t

|X n

t�1

may be written as a X n

t

= �
t

(X n

t�1

,n
t

)
where n

t

⇠ U[0, 1]d .

We observe very impressive gains in performance (even for
small N or d = 6).

Supporting theory.
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Further work

Adaptive resampling (triggers resampling steps when weight
degeneracy is too high).

Adapt SQMC to situations where sampling from
M

t

(X n

t�1

, dx
t

) involves some accept/reject mechanism.

Adapt SQMC to situations where sampling from
M

t

(X n

t�1

, dx
t

) is a Metropolis step. In this way, we could
develop SQMC counterparts of SMC samplers (Del Moral et
al, 2006).

SQMC2 (QMC version of SMC2, C. et al, 2013)?

Paper on Arxiv, will be published soon as a read paper in JRSSB.
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Tractable models

For a standard Bayesian model, defined by (a) prior p(✓), and (b)
likelihood p(y |✓), a standard approach is to use the
Metropolis-Hastings algorithm to sample from the posterior

p(✓|y) / p(✓)p(y |✓).

Metropolis-Hastings

From current point ✓
m

1 Sample ✓? ⇠ H(✓
m

, d✓?)

2 With probability 1 ^ r , take ✓
m+1 = ✓?, otherwise ✓m+1 = ✓

m

,
where

r =
p(✓?)p(y |✓?)h(✓m|✓?)
p(✓

m

)p(y |✓
m

)h(✓?|✓m)

This generates a Markov chain which leaves p(✓|y) invariant.
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Metropolis Proposal

Note that proposal kernel H(✓
m

, d✓?) (to simulate proposed value
✓?, conditional on current value ✓

m

). Popular choices are:

random walk proposal: h(✓?|✓
m

) = N(✓?; ✓
m

,⌃); usual
recommendation is to take ⌃ ⇡ c

d

⌃
post

, with c
d

= 2.382/d .

independent proposal: h(✓?|✓
m

) = h(✓?).

Langevin proposals.
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Intractable models

This generic approach cannot be applied in the following situations:

1 The likelihood is p(y |✓) = h✓(y)/Z (✓), where Z (✓) is an
intractable normalising constant; e.g. log-linear models,
network models, Ising models.

2 The likelihood p(y |✓) is an intractable integral

p(y |✓) =
ˆ
X
p(y , x |✓) dx .

3 The likelihood is even more complicated, because it
corresponds to some scientific model involving some
complicate generative process (scientific models,
”likelihood-free inference”, ABC).
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Example of likelihoods as intractable integrals

When p(y |✓) =
´
p(y , x |✓) dx .

phylogenetic trees (Beaumont, 2003);

state-space models (see later);

other models with latent variables.

We will focus on this case, but certain ideas may also be applied to
the two other cases.
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General framework

Consider posterior

⇡(✓, x) / p(✓)p(x |✓)p(y |x , ✓)

where typically x is of much larger dimension than ✓.
One potential approach to sample from the posterior is Gibbs
sampling: iteratively sample ✓|x , y , then x |✓, y . However, there are
many cases where Gibbs is either di�cult to implement, or quite
ine�cient.
Instead, we would like to sample marginally from

⇡(✓) / p(✓)p(y |✓), p(y |✓) =
ˆ
X
p(x , y |✓) dx

but again p(y |✓) is intractable...
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Importance sampling

I cannot compute p(y |✓), but I can compute an unbiased estimator
of this quantity:

p̂(y |✓) = 1

N

NX

n=1

p(y , xn|✓)
q(xn)

, x1:N
iid⇠ q(x)

using importance sampling.
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The pseudo-marginal approach

GIMH (Beaumont, 2003)

From current point ✓
m

1 Sample ✓? ⇠ H(✓
m

, d✓?)

2 With prob. 1 ^ r , take ✓
m+1 = ✓?, otherwise ✓m+1 = ✓

m

, with

r =
p(✓?)p̂(y |✓?)h(✓m|✓?)
p(✓

m

)p̂(y |✓
m

)h(✓?|✓m)

Note that p̂(y |✓?) is based on independent samples generated at
iteration m.
Question: Is GIMH a non-standard HM sampler w.r.t. standard
target ⇡(✓)?
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Validity of GIMH

Property 1

The following function

⇡̄(✓, x1:N) =
NY

n=1

q(xn)
p(✓)p̂(y |✓)

p(y)

is a joint PDF, whose ✓-marginal is ⇡(✓) / p(✓)p(y |✓).

Proof: Direct consequence of unbiasedness; fix ✓ then

ˆ
NY

n=1

q(xn)p(✓)p̂(y |✓) dx1:N = p(✓)E [p̂(y |✓)] = p(✓)p(y |✓)
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GIMH as a Metropolis sampler

Property 2

GIMH is a Metropolis sampler with respect to joint distribution
⇡̄(✓, x1:N). The proposal density is h(✓?|✓m)

Q
N

n=1 q(x
n

? ).

Proof: current point is (✓
m

, x1:N
m

), proposed point is (✓?, x1:N? ) and
HM ratio is

r = ⇠⇠⇠⇠⇠⇠Q
N

n=1 q(x
n

? )p(✓?)p̂(y |✓?)h(✓m|✓?)⇠⇠⇠⇠⇠⇠Q
N

n=1 q(x
n

m

)

⇠⇠⇠⇠⇠⇠Q
N

n=1 q(x
n

m

)p(✓
m

)p̂(y |✓
m

)h(✓?|✓m)⇠⇠⇠⇠⇠⇠Q
N

n=1 q(x
n

? )

Thus, GIMH is a standard Metropolis sampler w.r.t. non-standard
(extended) target ⇡̄(✓, x1:N).

nicolas.chopin@ensae.fr Particles as auxiliary variables: PMCMC and related algorithms



Background
GIMH

PMCMC
Practical calibration of PMMH

Conditional SMC (Particle Gibbs)

There is more to life than this

Property 3

Extend ⇡̄(✓, x1:N) with k |✓, x1:N / ⇡(✓, xk)/q(xk), then,

the marginal dist. of (✓, xk) is ⇡(✓, x).

Conditional on (✓, xk), x
n

⇠ q for n 6= k , independently.

Proof: let

⇡̄(✓, x1:N , k) =

(
NY

n=1

q(xn)

)
⇡(✓, xk)

q(xk)
=

8
<

:
Y

n 6=k

q(xn)

9
=

;⇡(✓, xk)

then clearly the sum w.r.t. k gives ⇡̄(✓, x1:N), while the above
properties hold.
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We can do Gibbs!

One consequence of Property 3 is that we gain the ability to
perform Gibbs, in order to regenerate the N � 1 non-selected
points xn, n 6= k . More precisely:

1 Sample k ⇠ ⇡(k |✓, x1:N) / ⇡(✓, xk)/q(xk)

2 regenerate xn ⇠ q, for all n 6= k .

Could be useful for instance to avoid ”getting stuck”, because say
the current value ⇡̂(✓) is too high.
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Main lessons

We can replace an intractable quantity by an unbiased
estimate, without introducing any approximation.

In fact, we can do more: with Proposition 3, we have obtained
that

1 it is possible to sample from ⇡(✓, x) jointly;
2 it is possible to do a Gibbs step where the N � 1 xn, n 6= k are

regenerated (useful when GIMH ”get stucks”?)

but careful, it is possible to get it wrong...
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Unbiasedness without an auxiliary variable representation

This time, consider instead a target ⇡(✓) (no x), involving an
intractable denominator; an important application is Bayesian
inference on likelihoods with intractable normalising constants:

⇡(✓) / p(✓)p(y |✓) = p(✓)
h✓(y)

Z (✓)

Liang & Lin (2010)’s sampler

From current point ✓
m

1 Sample ✓? ⇠ H(✓m, d✓?)

2 With prob. 1 ^ r , take ✓
m+1 = ✓?, otherwise ✓m+1 = ✓

m

, with

r =
\✓Z (✓

m

)

Z (✓?)

◆
p(✓?)h✓?(y)h(✓

m|✓?)
p(✓

m

)h✓
m

(y)h(✓?|✓m)
.
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Russian roulette

See the Russian roulette paper of Girolami et al (2013, arxiv) for a
valid algorithm for this type of problem. Basically they compute an
unbiased estimator of Z (✓)�1 at every iteration.

Note the connection with Bernoulli factories: from unbiased
estimates Ẑ

i

(✓) of Z (✓), how do you obtain an unbiased estimate
of '(Z (✓))? here '(z) = 1/z .
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PMCMC: introduction

PMCMC (Andrieu et al., 2010) is akin to GIMH, except a more
complex proposal mechanism is used: a PF (particle filter).
The same remarks will apply:

Unbiasedness (of the likelihood estimated provided by the PF)
is only an intermediate result for establishing the validity of
the whole approach.

Unbiasedness is not enough to give you intuition on the
validity of e.g. Particle Gibbs.
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Objective

Objectives

Sample from
p(d✓, dx0:T |y0:T )

for a given state-space model.
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Why are these models di�cult?

Because the likelihood is intractable

p✓
T

(y0:T ) =

ˆ
TY

t=0

f ✓
t

(y
t

|x
t

)
TY

t=1

p✓
t

(x
t

|x
t�1)p

✓
0(x0)
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Feynman-Kac formalism

Taking {M✓
t

,G ✓
t

}
t�0 so that

M✓
t

(x
t�1, dxt) is a Markov kernel (for fixed ✓), with density

m✓
t

(x
t

|x
t�1)

and

G ✓
t

(x
t�1, xt) =

f ✓
t

(y
t

|x
t

)p✓
t

(x
t

|x
t�1)

m✓
t

(x
t

|x
t�1)

we obtain the Feynman-Kac representation associated to a guided
PF that approximates the filtering distribution at every time t.

If we take m✓
t

(x
t

|x
t�1) = p✓

t

(x
t

|x
t�1), we recover the bootstrap

filter (which does not require to be able to evaluate p✓
t

(x
t

|x
t�1)

pointwise).
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Particle filters: pseudo-code

All operations to be performed for all n 2 1 : N.
At time 0:

(a) Generate X n

0 ⇠ M✓
0 (dx0).

(b) Compute wn

0 = G ✓
0 (X

n

0 ), W
n

0 = wn

0 /
P

N

m=1 w
m

0 , and

LN0 = N�1
P

N

n=1 w
n

0 .

Recursively, for t = 1, . . . ,T :

(a) Generate ancestor variables An

t

2 1 : N independently
from M(W 1:N

t�1).

(b) Generate X n

t

⇠ M✓
t

(XA

n

t

t�1, dxt).

(c) Compute wn

t

= G ✓
t

(x
t�1, xt), W n

t

= wn

t

/
P

N

m=1 w
m

t

,

and LN
t

(✓) = LN
t�1(✓)⇥ {N�1

P
N

n=1 w
n

t

}.
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Unbiased likelihood estimator

A by-product of PF output is that

LN
T

(✓) =

 
1

N

NX

n=1

G ✓
0 (X

n

0 )

!
TY

t=1

 
1

N

NX

n=1

G ✓
t

(x
t�1, xt)

!

is an unbiased estimator of the likelihood L
T

(✓) = p(y0:T |✓).

(Not trivial, see e.g Proposition 7.4.1 in Pierre Del Moral’s book.)
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PMCMC

Breakthrough paper of Andrieu et al. (2011), based on the
unbiasedness of the PF estimate of the likelihood.

Marginal PMCMC

From current point ✓
m

(and current PF estimate LN
T

(✓
m

)):

1 Sample ✓? ⇠ H(✓
m

, d✓?)

2 Run a PF so as to obtain LN
T

(✓?), an unbiased estimate of
L
T

(✓?) = p(y0:T |✓?).
3 With probability 1 ^ r , set ✓

m+1 = ✓?, otherwise ✓m+1 = ✓
m

with

r =
p(✓?)LN

T

(✓?)h(✓m|✓?)
p(✓

m

)LN
T

(✓
m

)h(✓?|✓m)
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Validity

Property 1

Let  
T ,✓(dx1:N0:T , da1:N1:T ) be the joint dist’ of all the the rv’s

generated by a PF (for fixed ✓), then

⇡
T

(d✓, dx1:N0:T , da1:N1:T ) =
p(d✓)

p(y0:T )
 
T ,✓(dx

1:N
0:T , da1:N1:T )L

N

T

(✓)

is a joint pdf, such that the ✓-marginal is p(✓|y0:T )d✓.

Proof: fix ✓, and integrate wrt the other variables:ˆ
⇡
T

(·) =
p(✓)

p(y0:T )
E
h
LN
T

(✓)
i
d✓

=
p(✓)p(y0:T |✓)

p(y0:T )
d✓ = p(✓|y0:T )d✓
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More direct proof for T = 1

 1,✓(dx
1:N
0:1 , da1:N1 ) =

NY

n=1

M✓
0 (dx

n

0 )

(
NY

n=1

M✓
1 (x

a

n

1
0 , dxn1 )W

a

n

1
0,✓da

n

1

)

with W n

0,✓ = G ✓
0 (x

n

0 )/
P

N

m=1 G
✓
0 (x

m

0 ). So

⇡1(·) =
p(✓)

p(y0:t)
 1,✓(·)

(
1

N

NX

n=1

G ✓
0 (x

n

0 )

)(
1

N

NX

n=1

G ✓
1 (x

a

n

1
0 , xn1 )

)

=
p(✓)

N2p(y0:t)

NX

n=1

G ✓
1 (x

a

n

1
0 , xn1 )M

✓
1 (x

a

n

1
0 , xn1 )

G ✓
0 (x

a

n

1
0 )

⇠⇠⇠⇠⇠⇠⇠P
N

m=1 G
✓
0 (x

m

0 )��������(
NX

m=1

G ✓
0 (x

m

0 )

)

⇥M✓
0 (dx

a

n

1
0 )

8
<

:
Y

i 6=a

n

1

M✓
0 (dx

i

0)

9
=

;

8
<

:
Y

i 6=n

M✓
1 (x

a

i

1
0 , dx i1)W

a

i

1
1 dai1

9
=

;
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Interpretation

⇡1(d✓, dx
1:N
0:1 , da1:N1 ) =

1

N
⇥
"
1

N

NX

n=1

p(d✓, dx
a

n

1
0 , dxn1 |y0:1)

Y

i 6=a

n

1

M✓
0 (dx

i

0)

8
<

:
Y

i 6=n

M✓
1 (x

a

i

1
0 , dx i1)W

a

i

1
0

9
=

;

#

which is a mixture distribution, with probability 1/N that path n
follows p(d✓, dx0:1|y0:1), An

1 is Uniform in 1 : N, and other paths
follows a conditional SMC distribution (the distribution of a
particle filter conditional on one trajectory being fixed). From this
calculation, one easily deduce the unbiasedness property (directly!)
but also properties similar to those of the GIMH.
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Additional properties (similar to GIMH)

Property 2

Marginal PMCMC is a Metropolis sampler with invariant
distribution ⇡

T

, and proposal distribution h(✓?|✓)d✓? 
T ,✓?(·). (In

particular, it leaves invariant the posterior p(d✓|y0:T ).)

Proof: write the MH ratio, same type of cancellations as for GIMH.
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Additional properties (similar to GIMH)

Property 3

If we extend ⇡
T

by adding component k 2 1 : N with conditional
probability / W k

T

, then the joint pdf ⇡
T

(d✓, dx1:N0:T , da1:N1:T�1, dk) is
such that

(a) (✓,X ?
0:T ) ⇠ p(d✓, dx0:T |y0:T ) marginally; and

(b) Given (✓,X ?
0:T ), the N � 1 remaining trajectories

follow the conditional SMC distribution.

where X ?
0:T is the k�th complete trajectory: X ?

t

= XB

t

t

for all t,

with B
T

= k , B
T�1 = Ak

T

, ... B0 = AB1
1 .
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Outline

1 Background

2 GIMH

3 PMCMC

4 Practical calibration of PMMH

5 Conditional SMC (Particle Gibbs)
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Don’t listen to Je↵!

Proposal: Gaussian random walk, variance ⌃.
Naive approach:

Fix N

target acceptance rate 0.234
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Figure: Acceptance rate vs N, when ⌃ = ⌧ I3, and ⌧ varies, PMMH for a
toy linear Gaussian model
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Recommended approach

Through pilot runs, try to find N such that variance of
log-likelihood estimate is << 1;

Then calibrate in order to minimise the SJD (squared jumping
distance) or some other criterion;

”Best” acceptance rate will be << 0.234.

Adaptative MCMC is kind of dangerous in this context;
consider SMC2 instead.
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Also: state-space model likelihoods are nasty
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� 2

Figure: Log-likelihood contour for nutria data and Ricker state-space
model (third parameter is fixed).
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Outline

1 Background

2 GIMH

3 PMCMC

4 Practical calibration of PMMH

5 Conditional SMC (Particle Gibbs)
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CSMC

The formalisation of PMCMC o↵ers the possibility to
regenerate the N � 1 trajectories that have not been selected;
this is essentially a Gibbs step, conditional on ✓, and the
selected trajectory X ?

0:T .

This CSMC step cannot be analysed with the same tools as
marginal PMCMC, as in Andrieu and Vihola (2012).

From now on, we drop ✓ from the notations.
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Algorithmic description (T = 1)

Assume selected trajectory is X ?
0:1 = (X 1

0 ,X 1
1 ); i.e. k = 1, Ak

1 = 1.
At time t = 0:

(a) sample X n

0 ⇠ M0(dx0) for n 2 2 : N.

(b) Compute weights wn

0 = G0(X n

0 ) and normalise,
W n

0 = wn

0 /
P

N

m=1 w
m

0 .

At time t = 1:

(a) Sample A2:N
1 M(W 1:N

0 ).

(b) Sample X n

1 ⇠ M1(X
A

n

0
1 , dx1) for n 2 2 : N.

(c) Compute weights wn

1 = G1(X
A

n

1
0 ,X n

1 ) and normalise,

W n

1 = wn

1 /
P

N

m=1 w
m

1 .

(d) select new trajectory k with probability W k

1 .

then return X̃ ?
0:1 = (X

A

k

1
0 ,X k

1 ).
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Some remarks

One may show that the CSMC update does not depend on
the labels of the frozen trajectory. This is why we set these
arbitrarily to (1, . . . , 1). Formally, this means that the CSMC
kernel is such that KN

CSMC

: XT ! P(XT ).

This remains true for other resampling schemes (than
multinomial); see next two* slides for an example
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Properties of the CSMC kernel

Theorem

Under appropriate conditions, one has, for any " > 0,
���KN

CSMC

(')(x0:T )� KN

CSMC

(')(x 00:T )
���  "

for N large enough, and ' : XT ! [�1, 1].

This implies uniform ergodicity. Proof based on a coupling
construction.
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Assumptions

G
t

is upper bounded, G
t

(x
t

)  g
t

.

We haveˆ
M0(dx0)G0(x0) �

1

g0
,

ˆ
M

t

(x
t�1, dxt)Gt

(x
t

) � 1

g
t

But no assumptions on the kernels M
t

.
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Backward sampling

Nick Whiteley (in his RSS discussion of PMCMC) suggested to
add an extra backward step to CSMC, where one tries to modify
(recursively, backward in time) the ancestry of the selected
trajectory.
In our T = 1 example, and for multinomial resampling, this
amounts to draw Ak

1 from

P(Ak

1 = a|k , x1:N0:1 ) / W a

0m1(x
k

1 |xa0 )

where m1(xk1 |xa0 ) is the PDF at point xk1 of M1(xa0 , dx1), then
return x?0:1 = (xa0 , xk1 ).
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BS for other resampling schemes

More generally, BS amounts to draw ak1 from

P(ak1 = a|k , x1:N1:2 ) / ⇢1(W
1:N
1 ; ak1 = a|a�k

1 )m2(x
a

1 , xk2 )

where a�k

1 is a1:N1 minus ak1 .

So we need to be able the conditional probability
⇢1(W 1:N

1 ; ak1 = a|a�k

1 ) for alternative resampling schemes.

nicolas.chopin@ensae.fr Particles as auxiliary variables: PMCMC and related algorithms



Background
GIMH

PMCMC
Practical calibration of PMMH

Conditional SMC (Particle Gibbs)

Why BS would bring an improvement?

C. and Singh (2014) prove that CSMC+BS dominates CSMC in
e�ciency ordering (i.e. asymptotic variance). To do so, they prove
that these two kernels are reversible; see Tierney (1998), Mira &
Geyer (1999).
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Simulations

See the plots in next slide, based on the following simple
state-space model, with ✓ = (µ,�,�):

x
t

� µ = �(x
t�1 � µ) + �✏

t

, ✏
t

⇠ N(0, 1)

y
t

|x
t

⇠ Poisson(ext )
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Update rate of Xt

t
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Left: N = 200, right: N = 20. Solid line: multinomial, Dashed
line: residual; Dotted line: Systematic. Crosses mean BS has been
used.
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Conclusion

When the backward step is possible, it should be
implemented, because it improves mixing dramatically. In that
case, multinomial resampling is good enough.

When the backward step cannot be implemented, switching to
systematic resampling helps.
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But what’s the point of PG?

It’s a bit the same discussion as marginal Metropolis (in ✓-space)
versus Gibbs:

Gibbs does not work so well when they are strong correlations
(here between ✓ and X ?

0:T );

Metropolis requires a good proposal to work well.

In some cases, combining the two is helpful: in this way, the CSMC
update will refresh the particle system, which may help to get
“unstuck”.
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