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Summary

Motivating problems: sequential (or non-sequential) inference
and simulation outside SSMs (including normalising constant
calculation)

Feynman-Kac formalisation of such problems

Specific algorithms: IBIS, tempering SMC, SMC-ABC

An overarching framework: SMC samplers
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Sequential Bayesian learning

Pt(dθ) posterior distribution of parameters θ, given observations
y0:t , where θ ∈ Θ; typically:

Pt(dθ) =
1

pt(y0:t)
pθt (y0:t)P−1(dθ)

with P−1(dθ) the prior distribution, pθt (y0:t) likelihood and pt(y0:t)
marginal likelihood.
Note that

Pt(dθ)

Pt−1(dθ)
=

1

pt(yt |y0:t−1)
pθt (yt |y0:t−1) ∝ pθt (yt |y0:t−1).
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Practical motivations

sequential learning

Detection of outliers and structural changes

Sequential model choice/composition

‘Big’ data

Data tempering effect
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Tempering

Suppose we wish to either sample from, or compute the
normalising constant of

P(dθ) =
1

L
exp{−V (θ)}µ(dθ).

Idea: introduce for any a ∈ [0, 1],

Pa(dθ) =
1

La
exp{−aV (θ)}µ(dθ).

Note that

Pb(dθ)

Pa(dθ)
=

La
Lb

exp{(a− b)V (θ)} ∝ exp{(a− b)V (θ)}
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Estimating ratios of normalising constants

Interestingly, we have two identities to compute L1/L0:

Bridge sampling:

L1

L0
=

n∏
i=1

Lai
Lai−1

for 0 = a0 < . . . < an = 1, where

Lai
Lai−1

=

ˆ
Θ

exp{(ai−1 − ai )V (θ)}Pai−1(dθ)

Thermodynamic integration:

log(L1/L0) =

ˆ 1

0
Pa [V (Θ)]da
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Rare events

Suppose we wish to either sample from, or compute the
normalising constant of

P(dθ) =
1

L
1E (θ)µ(dθ).

for some set E .

As for tempering, we could introduce a sequence of sets
Θ = E0 ⊃ . . . ⊃ En = E , and the corresponding sequence of
distributions.
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Statement

Sequence of probability distributions on a common space
(Θ,B(Θ)), P0(dθ), . . . ,PT (dθ). In certain applications interest
only in PT , in others for all Pt , in others mainly interested in
normalising constants.

nicolas.chopin@ensae.fr SMC samplers



Motivating problems
Notation and statement of problem

IBIS
SMC samplers

IBIS

Input of IBIS1

A sequence of distributions Pt(dθ) on (Θ,B(Θ))

Weights Gt(θ) = `−1
t Pt(dθ)/Pt−1(dθ), with P−1 := M0,

and `t normalising constant

MCMC kernels, Mt(θ,dθ
′) invariant wrt Pt−1

The number of particles N

1Chopin, N. (2002). A sequential particle filter method for static models.
Biometrika, 89:539–552
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Algorithm 1 IBIS pt1

All operations to be performed for all n ∈ 1 : N.
At time 0:

(a) Generate Θn
0 ∼M0(dx0).

(b) Compute wn
0 = G0(Θn

0), W n
0 = wn

0 /
∑N

m=1 w
m
0 , and

lN0 = N−1
∑N

n=1 w
n
0 .
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Algorithm 2 IBIS pt2

Recursively, for t = 1, . . . ,T :
If degeneracy criterion not fulfilled:

(a) Set Θn
t = Θn

t−1.

(b) Compute wn
t = wn

t−1Gt(Θn
t ), W n

t = wn
t /
∑N

m=1 w
m
t ,

and lNt = N−1
∑N

n=1 w
n
t .

If degeneracy criterion fulfilled:

(a) Generate ancestor variables An
t ∈ 1 : N independently

from M(W 1:N
t−1).

(b) Generate Θn
t ∼ Mt(Θ

An
t

t−1,dθ).

(c) Set wn
t = Gt(Θn

t ). W n
t = wn

t /
∑N

m=1 w
m
t , and

lNt = N−1
∑N

n=1 w
n
t .
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Output of IBIS

PN
t (dθ) =

N∑
n=1

W n
t δΘn

t
(dθ) approximates Pt(dθ)

`Nt approximates `t
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Main tools in IBIS

Extension, invariance & particle approx

Pt(dθ
′) =

Pt(dθ
′)

Pt−1(dθ′)
Pt−1(dθ′)

= Gt(θ
′)

ˆ
Θ
Mt(θ,dθ

′)Pt−1(dθ)

≈ Gt(θ
′)

ˆ
Θ
Mt(θ,dθ

′)PN
t−1(dθ)

= Gt(θ
′)
∑
n

Mt(Θn
t−1, dθ

′)W n
t−1

Use of two types of invariant transition kernels

Adaptation
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Example: sequential Bayesian learning

Pt(dθ)

Pt−1(dθ)
=

1

pt(yt |y0:t−1)
pθt (yt |y0:t−1)

`t = pt(yt |y0:t−1)

Typically, M0 = P−1; improper priors; analyse in batches
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Auto-calibration

A standard choice for MCMC kernel Mt is a Gaussian random walk
Metropolis. Then we can calibrate the random walk variance on
the empirical variance of the resampled particles.
It is also possible to automatically choose when to do
resampling+MCMC:

for sequential inference, trigger resampling+MCMC when ESS
is below (say) N/2.

for tempering SMC, one may choose recursively δi = ai − ai−1

by solving numerically ESS = N/2 (say).
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SMC samplers

A principled framework for building FK models for a broad
category of problems, outside the rehearsed state-space models:
Del Moral et al2 (2006).

Includes many of the previous ideas as special cases

2Del Moral, P., Doucet, A., and Jasra, A. (2006). Sequential Monte Carlo
samplers.
J. R. Stat. Soc. Ser. B Stat. Methodol., 68(3):411–436
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Input of SMC sampler

A sequence of distributions Pt(dθ) on (Θ,B(Θ))

(Forward) kernels, Mt(θ,dθ
′), t = 1 : T and backward

kernels
←−
K t−1(θ,dθ′), t = T − 1 : 0

Weights, for t = 1, . . . ,T

Gt(θ
′, θ) = c−1

t

Pt(dθ)
←−
K t−1(θ,dθ′)

Pt−1(dθ′)Mt(θ′,dθ)

and G0(θ) = c−1
0 P0(dθ)/M0(dθ),

The number of particles N
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With these ingredients, define Feynman-Kac models

Qt(dθ0:t) =
1

Lt
Mt(dθ0:t)G0(θ0)

t∏
s=1

Gs(θs−1, θs)

A direct calculation shows that for each t,

Qt(dθ0:t) = Pt(dθt)
t∏

s=1

←−
K s−1(θs , dθs−1)
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The main idea

This is simply based on two ideas we have already developed:

Feynman-Kac model as a Markov measure

backward kernel of a MC

Then, easy to verify by telescoping that

Qt(dθ0:t)

Mt(dθ0:t)
∝ G0(θ0)

t∏
s=1

Gs(θs−1, θs)
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Special cases

for trivial dynamics Mt(θ,dθ
′) = δθ(dθ′), we can set

←−
K t−1(θ,dθ′) = δθ(dθ′) (this is a trivial special case of the above)

If Mt is invariant wrt Pt , then

←−
K t−1(θ,dθ′) = Pt(dθ

′)
Mt(θ

′,dθ)

Pt(dθ)
Gt(θ

′, θ) =
Pt(dθ

′)

Pt−1(dθ′)
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Optimal choice of backward kernels

Fix horizon t; then if we choose

←−
K s−1(θs ,dθs−1) =

←−
M s−1(θs ,dθs−1) = Mt(dθs−1)

Ms(θs−1, dθs)

Mt(dθs)

then
Qt(dθ0:t)

Mt(dθ0:t)
=

Pt(dθ)

Mt(dθ)

∣∣∣∣
θ=θt

which is clearly optimal (given the fixed forward kernels), but
typically intractable; this is of course the case of SIS.
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