
Lecture 1

Perfect simulation I

What, Why, and How

Mark Huber
Claremont McKenna College
July, 2018

Supported by NSF grant DMS 1418495

What is perfect simulation/integration?

Perfect simulation
Stopping time rules that tell you when you have reached a
point where you have a sample that comes exactly from
your target distribution.

Perfect integration

Find an integral/expectation that has error bounds
chosen by the user without regard to the (usually
unknown) variance of your Monte Carlo samples.

Why perfect simulation?
Exact simulation from high dimensional distributions

Applies in situations where dependence between
dimensions bounded. Markov random �elds, weighted
permutations, Stochastic Di�erential Equations.

Replaces the burn-in/warm-up/mixing steps in MCMC

Often mixing time dealt with by limited heuristics in stat
applications, which works most but not all the time.

Allows for more complicated Markov chains

Often steps require exact draws from di�cult
distributions. For example, Zig-zag and slice samplers can
need these algorithms as subroutines.

How to perfectly integrate

Overarching philosophy

Keep track of both the state and the distribution of the
state, randomly changing both until you reach a point
where you have the distribution you need.

Simulation

Bernoulli Factory

Acceptance
Rejection

Density
AR

Fundamental Theorem
of Simulation

Read-once
CFTP

Coupling
from the past

Bounding
chains

Fundamental Theorem
of Perfect simulation

Dominating
Processes

Birth/death
chains

Uniform coupling

Integration

Gamma Bernoulli
Approximation Scheme

Bounded
Relative
Variance

Gamma Poisson
Approximation Scheme

Tootsie Pop
Algorithm

Well balanced
Importance Sampling

Simulation

We don’t need no asymptotics

Asymptotics Order
notation

Four sampling problems

Strauss point process

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓
Ising model

Beta(3, 2)

1 2 3 4 5

Unif({1, . . . , 5})

Start with the easy one

Suppose that I invite four friends over for a game of dice

Question, how to decide who goes �rst?

Restating

Goal: sample uniformly from

1 2 3 4 5

Source of randomness: rolls of a fair sixed die, so uniform over

1 2 3 4 5 6

The MCMC approach
Use our random six sided die rolls to move one to the left or right

R1, R2, . . .
iid∼ Unif({1, 2, 3, 4, 5, 6})

I If Ri ∈ {1, 3, 5} try to move one step to the right,

I Else try moving one step to to the left

1 2 3 4 5

1/2 1/2 1/2 1/2

1/21/21/21/2

1/21/2

Update function version

R1, R2, . . .
iid∼ Unif({1, 2, 3, 4, 5, 6})

Dt = 1(Rt ∈ {1, 3, 5})− 1(Rt ∈ {2, 4, 6})
Xt+1 = Xt +Dt1(Xt +Dt ∈ {1, . . . , 5}) = φ(Xt, Rt)

1 2 3 4 5

1/2 1/2 1/2 1/2

1/21/21/21/2

1/21/2

Here 1(expression) = 1 if the expression is true and 0 otherwise.

Problem with this approach
I Final state Xt never exactly uniform

I Do not know initially how many steps to take in order for state
to be close to uniform

I For complex problem, could accidentally create chain that does
not mix at all

1 2 3 4 5

1/2 1/2 1/2

1/21/21/2

1/21/21/2 1/2

A better idea

1. Roll the six sided die until we get a

number from 1 to 5

2. Output the number rolled

Viewed as a stopping time
Roll the die over and over again (let Ri

iid∼ Unif({1, . . . , 6}))

6 6 5 3 6 2 1

T = 3

. . .

Let T be �rst time number is not 6. Formally

T = inf{t : Rt 6= 6},

here inf is the in�mum that is the smallest number for which this
happens�after �nding the inf, our sample is

X = RT

Call T a stopping time

Viewed as a mixture

1 2 3 4 5 6

Unif({1, . . . , 6})

∼ 1 2 3 4 5

Unif({1, . . . , 5})

+ 6

Unif({6})

6

6

5

6

1

6

Viewed as branching process

X ← Unif({1, 2, 3, 4, 5})

X ← R

X ← Unif({1, 2, 3, 4, 5})

R ∈ {1, . . . , 5}

R /∈ {1, . . . , 5}

R← Unif({1, . . . , 6})

Pros and cons

What have we lost

I Need a random number of tries to get our sample

What have we gained

I Answer (when arrives) comes exactly from desired distribution

I No need to build Markov chain or understand mixing time

Perfect simulation

Definition
A perfect simulation algorithm uses a number of steps T in order
to sample exactly from a target distribution π. Here T is an
unbounded random variable that is �nite with probability 1.

Example T ∼ Geo(1/2)

1. Flip a fair coin until you get
a head

2. Return the number of �ips

T T T H︸ ︷︷ ︸
T = 4

Photo credit: Rutgers School of Engineering

In pseudocode

Repeat version
RepeatGeo

1. T ← 0

2. Repeat
2.1 Draw

C ← Unif({tails,heads})2.2 T ← T + 1

3. Until C = heads

4. Output T

Recursive de�nition
RecursiveGeo

1. Draw
C ← Unif({tails,heads})

2. If C = heads output 1

3. Else
3.1 Y ← RecursiveGeo3.2 T ← 1 + Y

Viewed as a mixture

Let δx be distribution where

X ∼ δx ⇔ P(X = x) = 1

Geo(1/2) is a mixture of a �xed dist and a shifted version of itself

Geo(1/2) ∼ (1/2)δ1 + (1/2)[1 + Geo(1/2)]

Perfect simulation algorithms take advantage of these mixtures!

Perfect simulation protocols

Definition
A protocol is a general framework for creating algorithms.

First perfect simulation protocol: Acceptance Rejection

John Von Neumann, Various Techniques used in
connection with random digits, J. Res. Nat. Bur. Stand.
Appl. Math, Series 3, 36�38 (1951)

Uniform Acceptance Rejection
Theorem
Let A ⊆ B, R1, R2, . . .Unif(B), and T = inf{t : Rt ∈ A}. If
P(T <∞) = 1, then RT ∼ Unif(A).

R1

R3

R2

T = 3

RT

AR in pseudocode repeat view

AR

1. Repeat
2. Draw X ← Unif(B)

3. Until X ∈ A
4. Output X

AR in pseudocode recursive view

AR

1. Draw X ← Unif(B)

2. If X /∈ A, X ← AR

3. Output X

AR in mixture view

Unif(A) ∼ m(A)

m(B)
Unif(A) +

m(B)−m(A)

m(B)
Unif(B)

= +

Question: how to sample from densities with AR

Beta(3, 2)

fX(s) = s2(1− s)1(s ∈ [0, 1])

Fundamental Theorem of

Simulation

The FTS: informally stated

Densities are an illusion (multivariate densities doubly so):
all random variables can be viewed as uniform random
variables.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Second
Edition), Springer, p. 47, 2004

The FTS: In pictures
To draw X ∼ fX
1. Draw (X,Y) uniformly from region under the density curve

2. Output X

Beta(3, 2)

fX(s) = s2(1− s)1(s ∈ [0, 1])

(X,Y)

C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Second
Edition), Springer, p. 47, 2004

The FTS: Stated formally

Theorem (Fundamental Theorem of Simulation)
Simulating X with density f is equivalent to drawing

(X,Y) ∼ Unif({(x, y) : y ∈ [0, f(x)]})

and keeping the X value.

C. P. Robert and G. Casella, Monte Carlo Statistical Methods (Second
Edition), Springer, p. 47, 2004

Drawing from densities with FTS and AR

1. Embed area under density A in a larger region B

A

B

2. Draw (X,Y) uniformly from A using AR

3. Output X

What if B is also de�ned by a density?

fX

fW

Say that fW dominates fX if fW ≥ fX

AR for dominated densities

fX

fW

W

Y

1. Repeat
2. Draw W ∼ fW
3. Draw Y ← Unif([0, fW (W)])

4. Until Y ≤ fX(W)

5. Output W

Once W has been drawn, the probability that a uniform draw on
[0, fW (W)] is at most fX(W) is fX(W)/fW (W).

AR for unnormalized densities
If fW (s) ≥ fX(s) for all s,

1. Repeat
2. Draw W ← fW

3. Draw U ← Unif([0, 1])

4. Until U ≤ fX(W)/fW (W)

5. Ouptut W
Expected number of draws of W needed:∫

Ω fW (s) ds∫
Ω fX(s) ds

AR for normalized densities
If cfW (s) ≥ fX(s) for all s, where fW and fX are normalized

1. Repeat
2. Draw W ← fW

3. Draw U ← Unif([0, 1])

4. Until U ≤ fX(W)/[cfW (W)]

5. Ouptut W
Expected number of draws of W needed:

c

Problem #3: Strauss Point Process

A Strauss point process is
a repulsive point process�so
points are farther apart than
for a Poisson process of equal
intensity. It does this by having
a factor of γ < 1 in the density
for each pair of points within
distance r of each other.

Penalty is γ3

Strauss process viewed as density
A density consists of two things

1. A nonnegative function that puts more probability where the
function is high

2. A reference measure

Example

I For continuous random variables over R, the reference measure
is dx, Lebesgue measure (aka length, area, etcetera) (so
µ([3, 7]) = 7− 3 = 4)

I For discrete random variables over {x1, x2, . . .}, the reference
measure is counting measure # (so #({a, b, c}) = 3)

I For the Strauss Point process, the reference measure is called
a Poisson point process

What is a Poisson point process?

A Poisson point process (PPP) is a set of points P (possibly
empty) with two properties.

1. The average number of points in A
is proportional to λ and the
measure of A.

2. For disjoint A and B, the number
of points in A and B are
independent.

Generating Poisson point processes

Ingredients

I Region A with area a

I Intensity λ

Method

1. Draw a Poisson random variable N with mean λa

2. Draw points P1, . . . , PN iid uniform over A.

Pseudocode for PPP

PPP

Input intensity λ, region A, : Output: P ∼ PPP (λ,A)

1) Draw N ← Pois(λ · area(A))
2) Draw P1, . . . , PN ← iid Unif(A)
3) Output {P1, . . . , PN}

Strauss process as a density

I Let p = {p1, . . . , pk} be a set of points in the region

I Let t(p) = #{(i, j) : dist(pi, pj) < R}
I Density of p wrt the unit rate Poisson process is

fλ,γ,R(p) = γt(p)

AR for Strauss

AR method for Strauss

1. Repeat
2. Draw P ← PPP(λ)

3. Draw U ← Unif([0, 1])

4. Until U ≤ γt(P)

Why not use AR everywhere?
I Expected number of points in PPP draw:

λ · area(A)

I Probability a given point in space rejected because of close
points

(1− γ)[1− exp(−c0r
2λ)]

I Overall chance of acceptance for λr2 small:

≈ exp(−c1(1− γ)λ2r2area(A))

Divide and Conquer for AR
Density for AR is product of penalty factors

I Improve by breaking up region and then stitching together

Have to accept the left hand
side penalties + right hand side
penalties + penalties that cross
from left hand side to the right
hand side. Chance of accepting
is p1p2p3.

Accept γ2 · γ0 · γ1

Stitching AR procedure

PL PR

1 Repeat \\

2 Draw PL from left half

of region using AR

3 Draw PR from right half

of region using AR

4 Draw U ← Unif([0, 1])
5 Let t(PL, PR) be number of

pairs (p`, pr) where

p` ∈ PL, pr ∈ PR with

dist(p`, pr) < R

6 Until U ≤ γt(PL,PR)

7 Output PL ∪ PR

Performance boost from stitching
Old way, expected running time

1

p1
· 1

p2
· 1

p3
,

With stitching [
1

p1
+

1

p2

]
1

p3

Can break down region even further, this improves running time up
until we reach a point where

p1 + p2 ≥ 1

Some run time results

AR AR stitching

λ · area = 10 4.56 sec 3.31 sec
λ · area = 20 132 sec 4.32 sec
λ · area = 40 4.9 hrs 47.2 sec

Stitching more generally
If I was to sample from density that can be factored into two pieces
that are independent and one that �stitches� the others together,

f(x1, . . . , xn) = g(x1, . . . , xk)h(xk+1, . . . , xn)s(x1, . . . , xn)

where s has known upper bound s′

1. Repeat
2. Draw A from g recursively

3. Draw B from h recursively

4. Draw U ← Unif([0, 1])

5. Until U ≤ s(A,B)/s′(A,B)

A hard shell test
γ = 0, N = 103, R = 0.05

Chance of accepting naive AR: < 10−19

Stitching AR gets sample in a few seconds

Variations on AR

Making AR e�cient for speci�c problems

I Log-concave densities: Adaptive AR (Gilks & Wild 1992)

I Permanents (H. 2006)

I Stochastic Di�erential Equations (Beskos & Roberts 2006)

General techniques

I Divide and Conquer (Arratia & deSalvo 2015)

I Partially Recursive AR (H. 2016)

Dealing with bonuses rather than penalties
The Ising model over state space Ω = {−1, 1}V can be viewed as
giving a bonus to densities rather than a penalty:

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓
Ising model

7 edges with like spins

Each like spin gives factor of exp(β)

Each di�erent spin gives factor of 1

Density: exp(7β)

Here the density with respect to uniform measure is

fX(x) = exp

β ∑
{i,j}∈E

1(x(i) = x(j))



Solution
Multiply each factor by constant to make it at most 1: The Ising
model over state space Ω = {−1, 1}V can be viewed as giving a
bonus at most 1:

↑ ↑ ↑

↑ ↑ ↑

↑ ↑ ↑

↓

↓ ↓

↓ ↓ ↓
Ising model

7 edges with like spins

Each like spin gives factor of 1

Each di�erent spin gives factor of exp(−β)

Density: exp(−5β)

Here the density with respect to uniform measure is

gX(x) = exp

−β ∑
{i,j}∈E

1(x(i) 6= x(j))

 = fX(x) exp(−β#(E))

Integration

Inference as integration
I Many statistical problems can be framed as integrals

I Finding p-values: integrate high-dimensional likelihood
I Finding MLE: integrate high-dimensional likelihood given up to

normalizing constant
I Finding Bayes factors: integrate high-dimensional posterior

I Typically dimension is number of data points

I Problem di�cult when statistical model/likelihood does not
have independence

I Monte Carlo can be used to estimate those integrals if we can
draw from statistical model/posterior

I MCMC is a heuristic aimed at getting those draws

I Only a heuristic because mixing time is usually unknown

Saturday Morning Breakfast Cereal by Zach Weinersmith

Samples to Bernoulli draws

Samples to Bernoulli draws

1

0

Samples to Bernoulli draws

1

2 01

Samples to Bernoulli draws

1

2

3

010

Samples to Bernoulli draws

1

2

3

4

0100

Samples to Bernoulli draws

1

2

3

4

5

01001

Samples to Bernoulli draws

1

2

3

4

5

01001

Estimate

τ/8 = π/16 ≈ 2/5

Using AR to integrate
Start with

R1, R2, R3, . . . ∼ Unif(B)

create
B1, B2, B3, . . . ∼ Bern(area(A)/area(B))

by making
Bi = 1(Ri ∈ A)

Estimate p̂ for mean of Bi gives

ˆarea(A) = p̂ · area(B)

Can also use with dominating densities

Given fX ≤ fW , ability to draw from fW :

1. Draw W ← fW

2. Draw Y ← Unif([0, fW (W)])

3. Output B ← 1(Y ≤ fX(W)

Fact
The output B is an indicator (Bernoulli) random variable with
mean

∫
fX(x) dx/

∫
fW (w) dw.

Statistical inference with Strauss
Question: If r and γ are known, what is the Maximum Likelihood
Estimator for λ for this data?

Penalty is γ3

A note about densities
Properties for MLE

I Need density with respect to a measure that does not change
with parameter

I Previously gave density of Strauss with respect to rate λ
Poisson point process

I Instead use density of Strauss with respect to unit rate PPP

I New normalized density:

gλ,γ,r(p) =
λ#(p)γt(p)

Zλ,γ,r
.

I MLE hard to �nd because Zλ,γ,r hard to calculate

Here #(S) counts the number of elements is the set S

Normalizing constant as integral

Strauss normalizing constant

Zλ,γ,r =

∫
Ω
λ#(s)γt(s) ds

Fact
Well known about PPP: for γ = 1 and region of area a,

Zλ,1,r = exp(λa)

Using AR to estimate Zλ,γ,r

Use AR with dominating density

h(s) = λ#(s) ≥ λ#(s)γt(s)

For W ∼ h(s) and U ∼ Unif([0, 1]),

P(accept W) = P(U ≤ γt(W))

= E[1(U ≤ γt(W))]

= Zλ,γ,r exp(−λa)

Using Bernoulli random

variables for perfect integration

Bernoulli random variables

I Note 1(U ≤ γt(W)) is an indicator or Bernoulli r.v.

I Want a robust estimator for mean of a Bernoulli

I Here robust means error is controlled for all means in [0, 1]

I In fact, we can do better and set the distribution of the
relative error (H. 2017, Feng, H., Ruan 2018)

User specified relative error

Definition
Say that an estimate â for a has user speci�ed relative error or
USRE if the distribution of â/a does not depend on â, but only on
parameters speci�ed by the user in constructing â.

Idea for USRE for Bernoulli means

1. Use Bernoulli r.v.'s to build Geometric r.v.'s with mean 1/p

2. Use Geometric r.v.'s to build Exponential r.v.'s with mean 1/p

3. Use USRE (MOM for instance) for Exponentials to estimate p

Gamma Bernoulli Approximation Scheme

Gamma_Bernoulli_Approximation_Scheme
Input: k Output: p̂k

1) S ← 0, R← 0.
2) Repeat
3) X ← Bern(p), A← Exp(1)
4) S ← S +X, R← R+A
5) Until S = k
6) p̂k ← (k − 1)/R

M. Huber, A Bernoulli mean estimate with known relative error
distribution, Random Struc. & Alg., arXiv:1309.5413, 50:173�182, 2017

Relative error for GBAS

Theorem
For GBAS, E[p̂k] = p. Moreover for all p ∈ [0, 1], the relative error
is distributed as

p

p̂k
∼ Gamma(k, k − 1)

Visualizing the relative error

User set k = 5 P(|rel err| > 0.1) ≈ 92.6%

-1 10.1-0.1

Visualizing the relative error

User set k = 20 P(|rel err| > 0.1) ≈ 66.1%

-1 10.1-0.1

Visualizing the relative error

User set k = 672 P(|rel err| > 0.1) ≈ 1%

-1 10.1-0.1

Computing the error exactly with c = 1

pgamma(1/0.9,671,670,lower.tail=FALSE) + pgamma(1/1.1,671,670)

0.01002245

pgamma(1/0.9,672,671,lower.tail=FALSE) + pgamma(1/1.1,672,671)

0.00996848

Set k = 672 w/ prob 0.4159678, k = 671 w/ prob 0.5840322

E[k] = 671.416 gives error 0.01000000

Accuracy of GBAS

Definition
An algorithm is an (ε, δ)-randomized approximation scheme if
for all ε, δ > 0, the output â of the algorithm satis�es (with respect
to true answer a)

P
(∣∣∣∣ âa − 1

∣∣∣∣ > ε

)
< δ.

Performance of GBAS

Theorem
Let ε, δ > 0 set c = 2ε/[(1− ε2) ln(1 + 2ε/(1− ε))] ≈ 1 + (2/3)ε2

Then let â be the output of GBAS with k = d2ε−2 ln(δ−1)e divided
by c. Then â is an (ε, δ)− ras.

J. Feng, M. Huber, and Y. Ruan. Monte Carlo with user-speci�ed relative
error. In P. W. Glynn and A. Owen, editors, Proceedings in Mathematics &

Statistics: Monte Carlo and Quasi-Monte Carlo methods, 241, chapter 12.
Springer. To appear.

Remarks about GBAS performance

I ε−2 ln(δ−1) factor part of Monte Carlo

I Only way to improve that is through Quasi-Monte Carlo

I Factor of 2 same as in denominator of normal distribution

I Use of c biases estimator slightly but makes it slightly faster
(in higher order terms) than CLT

A natural next step
By the Fundamental Theorem of Probability
(aka The Law of Total Expectation)

E[1(U ≤ γt(W))] = E[E[1(U ≤ γt(W))|W]] = E[γt(W)]

I Replacing a random variable with its expectation preserves
unbiasedness, reduces variance

I Conditioning to reduce variance is often called
Rao-Blackwellization

I Also the basis of Importance Sampling

I In Part IV I will discuss perfect integration with non-Bernoulli
r.v.'s that apply to IS methods

Perfect simulation and MCMC

MCMC practice

I For complex hierarchical models MCMC often only viable way

I Often MCMC is run by optimists

mixing time data collection

X

Optimists devote 10% of time to burnin/mixing time

MCMC practice for pessimists

mt dc

X1

mt dc

X2

mt dc

X3

mt dc

X4

mt dc

X5

Without running your Markov chain multiple times, impossible to
know anything about V(Xi)

I Spending half our steps on mixing time

I Some sense �correct� amount: more and data collection
decreases rapidly, less and gain at most twice as much data

I For safety half of time budget should be spent on mixing

How perfect simulation helps

Replaces mixing entirely for Markov chain

ps

dc

X1

ps

dc

X2

ps

dc

X3

ps

dc

X4

ps

dc

X5

Even imperfect but better starting point helps

1 2 3 4 5

1/2 1/2 1/2 1/2

1/21/21/21/2

1/21/2

Start state Unif({1, 5}) reduces mixing time by a factor of 4

mt dc

X1

mt dc

X2

mt dc

X3

mt dc

X4

mt dc

X5

Acceptance Rejection Variants

Variations on a theme

Modi�cations of basic AR

I Thinning Poisson processes (Preston 1977)

I Union bound AR

I Markov, Chebyshev, Cherno� AR (Bucklew 2004)

I Divide and Conquer AR (Min & Wang 2008)

I Partially Recursive AR (H. 2016)

I Minc's Inequality AR (H. 2006, H. & Law 2008)

I Exact draws from certain SDE's (Beskos et al. 2006)

If you can bound it, AR might be the answer!

Summary

Major points

I Acceptance Rejection is a widely applicable approach to
generating samples exactly from a target distribution in a
random amount of time

I E�ciency depends directly on close original problem is to an
easy problem

I Can be directly turned into a robust integration method

I When used with MCMC, should use roughly one third to one
half of computational time on perfect simulation

I AR can be exponential slow for high dimensional problems
(will tackle this problem next lecture)

