
Lecture 2



Perfect simulation II

Coupling from the Past and the
Fundamental Theorem of Perfect Simulation

Mark Huber
Claremont McKenna College
July, 2018

Supported by NSF grant DMS 1418495



An abbreviated Monte Carlo timeline

I 1951: Acceptance-rejection (Von Neumann)

I 1953: Metropolis-Rosenbluth-Rosenbluth-Teller-Teller (MR2T2)

I 1970: Hastings (new name Metropolis-Hastings)

I 1992: Adaptive Rejection Sampling (Gilks and Wild)

I 1996: Coupling from the Past (Propp and Wilson)

I 1998: Dominated coupling from the past (Kendall)

I 1998: Fill's method (Fill)

I 1999: Bounding chains for CFTP (H.)



An abbreviated Monte Carlo timeline
I 2000: Read-once CFTP (Wilson)

I 2000: FMMR (Fill, Machida, Murdoch, and Rosenthal)

I 2000: Randomness Recycler (Fill & H.)

I 2001: Catalytic Perfect Simulation (Breyer & Roberts)

I 2006: SDE's (Beskos, Papaspiliopoulos, & Roberts)

I 2006: Non-Markovian bounding chains (H.)

I 2009: Reverse time martingales (�atuszy«ski, Kosmidos,
Papaspiliopoulos, Roberts)

I 2014: Atomic regeneration for SMC (Lee, Doucet, �atuszy«ski)

I 2016: Partially Recursive Acceptance Rejection (H. 2016)

I 2016: Bernoulli Factories (H. 2016)



Choices made during AR

Acceptance rejection uses a branching approach using A ⊆ B

Unif(B)

Unif(A)

Unif(B \A)

Unif(B) = Unif(A)(m(A)/m(B)) + Unif(B \A)(1−m(A)/m(B))



Another view of AR

Goal

Easy

Goal

Either quit or start over with same goal



This lecture, coupling from the past

Goal

Easy

As hard as original goal

Goal dist is mixture of easy dist and another dist which
computationally is as di�cult as the original goal



Simulation

Bernoulli Factory

Acceptance
Rejection

Density
AR

Fundamental Theorem
of Simulation

Read-once
CFTP

Coupling
from the past

Bounding
chains

Fundamental Theorem
of Perfect simulation

Dominating
Processes

Birth/death
chains

Uniform coupling

Integration

Gamma Bernoulli
Approximation Scheme

Bounded
Relative
Variance

Gamma Poisson
Approximation Scheme

Tootsie Pop
Algorithm

Well balanced
Importance Sampling



How to build a Perfect

Simulator



Markov chain approach

Move from state to state�under certain conditions distribution of
state at least as close to stationary as we did before.

Perfect simulation approach

Randomly change the distribution that we seek to sample from
until the distribution is easy.



Geometric with parameter 1/2

Geo(1/2)

1

1 + Geo(1/2)

1/2

1/2



Computers are at the end of the day machines

They take certain inputs, perform deterministic actions, which
results in certain outputs



Update function
I All Markov chains can be simulated on a computer

I Computers only perform deterministic actions

I So there is a deterministic function φ

φ
Xt

Rt

Xt+1

where Xt is the current state of the Markov chain and Rt is
some randomness for the step

I Call this function an update function



Example: update function for simple symmetricrandom walk with partially reflecting boundaries
I Start with a source of randomness

R1, R2, . . .
iid∼ Unif({−1, 1})

I Add Ri to Xi to get Xi+1 unless that would leave {1, . . . , 5},
otherwise stay where you are

I Formally

φ(Xt, Rt) = Xt +Rt1(Xt +Rt ∈ {1, . . . , 5})

1 2 3 4 5

1/2 1/2 1/2 1/2

1/21/21/21/2

1/21/2



Stationary update function

Definition
An update function φ is stationary with respect to distribution π if
for X ∼ π, φ(X,R) ∼ π.
Remarks

I Much of MCMC is devoted to �nding stationary update
functions!

I Example from last slide is stationary for π ∼ Unif({1, . . . , 5})



A useful fact

Let

φ1(x1, r1) = φ(x1, r1)

φ2(x1, r1, r2) = φ(φ(x1, r1), r2)

φ3(x1, r1, r2, r3) = φ(φ(φ(x1, r1), r2), r3)

... =
...

Fact
If φ is stationary for π, so is φn.



AR as a mixture process

Recall that to sample uniformly from A, if R ∼ Unif(B),

Unif(B) = Unif(A)1(R ∈ A) + Unif(B \A)1(R /∈ A)

Easy

= +

Goal Worthless



For update functions

I Consider random choices over n steps

R = (R1, . . . , Rn)

I Then either R falls in some special set of random choices A,
or it does not

I Therefore π is a mixture of these two options



Put mathematically

For R = (R1, . . . , Rn), then for X ∼ π,

π ∼ φn(X,R)

∼ φn(X,R)[1(R ∈ A) + 1(R /∈ A)]

∼ φn(X,R)1(R ∈ A) + φn(X,R)1(R /∈ A),

and this holds for any A



What happens when A = (1, 1, 1, 1)

A = {r}, r = (1, 1, 1, 1) means try to move to the right four times

φ4(1, r) = φ4(2, r) = φ4(3, r) = φ4(4, r) = φ4(5, r) = 5

1 2 3 4 5

1/2 1/2 1/2 1/2

1/2

No matter where we start, if R ∈ A, then φ4(x,R) = {5}



Using this to sample

Before we said π is a mixture:

π ∼ φn(X,R)1(R ∈ A) + φn(X,R)1(R /∈ A),

For A = {(1, 1, 1, 1)},

π ∼ π{5}1(R = (1, 1, 1, 1)) + φ4(X,R)1(R 6= (1, 1, 1, 1)),

Just like in AR, when R = (1, 1, 1, 1), the function φ4 collapses the
distribution down to an atomic measure



Picture of example

R← Unif({−1, 1}4), A = {(1, 1, 1, 1)}

X ∼ Unif({1, . . . , 5})

X ← 5

Y ← Unif({1, . . . , 5})
X ← φ4(Y,R)

R ∈ A

R /∈ A



Picture of general CFTP
Ingredients

I φ such that with source of randomness R, φ is stationary for π

I So for X0 ∼ π, φ(X0, R) ∼ π
I A such that it is easy to check if r ∈ A, and for all x ∈ Ω and
r ∈ A, φ(x, r) = {a}

X ∼ φ(X0, R)

X ∼ [φ(X0, R)|R ∈ A]

X ∼ [φ(X0, R|R /∈ A])

R ∈ A

R /∈ A



Implementing CFTP

X ∼ π

X ← a

Y ← π
X ← φ(Y,R)

R ∈ A

R /∈ A



Pseudocode for AR and CFTP
AR

1. Draw X ← Unif(B)

2. If X /∈ A, X ← AR

3. Output X

CFTP

1. Draw R randomly

2. If R ∈ A, set X to be unique element of φ(Ω, R)

3. Else draw Y ← CFTP, X ← φ(Y,R)

4. Output X



These algorithms are both recursive: they call themselves a random
number of times that is unbounded



Both AR and CFTP work

Theorem (Propp & Wilson 1996)
As long as P(R ∈ A) > 0, CFTP outputs X exactly from π in

�nite time.

Theorem
As long as P(R ∈ A) > 0, AR outputs X exactly from π in �nite

time.



Making CTFP e�cient



To run CFTP

Requirement

I Need set A such that #(φ(Ω, R)) = 1 for all R ∈ A
I Want P(R ∈ A) large



Example: Ω = {1, . . . , 5}

For simple symmetric random walk, A is four moves to the right

A = {(1, 1, 1, 1)}, P(R ∈ A) = (1/2)4 = 1/16

When Ω = {1, . . . , n},

A = {(1, 1, 1, . . . , 1)}, P(R ∈ A) = (1/2)n−1

Need to do better!



Monotonicity

Coupling preserves order

1. Start with pair of states x ≤ y
2. Either try to move both to the right, or both to the left

3. After move to x′ and y′, still have x′ ≤ y′



Monotonicity

1 2 3 4 5

1/2 1/2 1/2 1/2

1/21/21/21/2

1/21/2

Examples

I x = 1, y = 3, move equals +1, x′ = 2, y′ = 4

I x = 4, y = 5, move equals +1, x′ = 5, y′ = 5

I x = 2, y = 2, move equals −1, x′ = 1, y′ = 1



Mathematical formulation

Update function, Rt
iid∼ Unif({−1, 1})

Xt+1 =

{
Xt +Rt Xt +Rt ∈ Ω
Xt Xt +Rt /∈ Ω

Note that for all r ∈ {−1, 1}

x ≤ y ⇒ φ(x, r) ≤ φ(y, r)



Minimum and Maximum state

If there is a minimum and maximum state

I Run chain forward from min and max state using the same
random choices for each one

I If they meet, all of the state space has been squeezed between
them, and φ(Ω, R) = {a}



Example: random walk on {1, . . . , 5}

time

1 2 3 4 5 R1 = 1

1 2 3 4 5 R2 = 1

1 2 3 4 5 R3 = −1

1 2 3 4 5 R4 = 1

1 2 3 4 5 R5 = 1

1 2 3 4 5 R6 = 1

1 2 3 4 5 R7 = 1

1 2 3 4 5 R8 = −1

φ(Ω, (1, 1,−1, 1, 1, 1,−1)) = {4}



Monotonicity not true of all, but some chains

Monotonic update functions can be used for

I Ferromagnetic Ising model (Propp Wilson 1996)

I Autonormal model (Wilson 2000, Gibbs 2004)

I Slice samplers (Mira, Møller, Roberts 2001)

I Permutations for linear extensions
(Caracciolo et al 2009, H. 2014)

Pros and cons

I Finding a partial order on state space is easy

I Finding a monotonic update can be di�cult



The Fundamental Theorem of

Perfect Simulation



Generalizing AR and CFTP
So far we have two methods:

X ∼ Unif(B)

X ← R

Y ← Unif(A)
X ← Y

R ∈ A

R /∈ A

AR

X ∼ π

X ← a

Y ← π
X ← φ(Y,R)

R ∈ A

R /∈ A

Coupling from the past



Generalizing AR and CFTP

These algorithms have two good properties

1. They are locally correct: if you assume that subsequent
recursive calls return the correct distribution, then you could
quickly prove the algorithm correct.

2. They terminate with probability 1.

Here's the good part: These two properites are su�cient for a
perfect simulation algorithm to work!



Inuitive form, Fundamental Theorem of PerfectSimulation

Suppose I have an algorithm that terminates with

probability 1, and if I assume the recursive calls have the

corrrect distribution, then I can prove the algorithm is

correct. Then the overall algorithm is correct.



Proof CFTP works
CFTP

1. Draw R randomly

2. If R ∈ A, set X to be unique element of φ(Ω, R)

3. Else draw Y ← CFTP, X ← φ(Y,R)

4. Output X
Proof CFTP has output from π.
By the FTPS, in line 3, assume Y ← CFTP gives Y ∼ π. Then

X = φ(Y,R)1(R ∈ A) + φ(Y,R)1(R /∈ A) = φ(Y,R) ∼ π.



Proof AR works
AR

1. Draw R← Unif(B)

2. If R ∈ A, then X ← R

3. If X /∈ A, Y ← AR, X ← Y

4. Output X
Proof AR has output from Unif(A).
By the FTPS, in line 2 assume Y ∼ Unif(A). For C ⊆ A:

P(X ∈ C) = P(R ∈ C) + P(R /∈ A)P(Y ∈ C)

=
m(C)

m(B)
+

(
1− m(A)

m(B)

)
m(C)

m(A)

=
m(C)

m(A)

(
m(A)

m(B)
+ 1− m(A)

m(B)

)
=
m(C)

m(A)
.



General Perfect Simulation

X ∼ π

Y1 ← π1X ← f1(Y1, R)

Y2 ← π2X ← f2(Y2, R)

R ∈ A

R /∈ A

General Perfect Simulation

I At each step, take one of two paths

I Say that a path terminates if πi easy to sample from so no
further branching is necessary



Fundamental Theorem of Perfect Simulation

Theorem
Suppose that at each step of the perfect simulation, given random

choices R, Y1 ∼ π1, Y2 ∼ π2

X ∼ f1(Y1, R)1(R ∈ A) + f2(Y2, R)1(R /∈ A).

If the algorithm terminates with probability 1, then the result is

X ∼ π.



Some notes

I Presented for 2 choices, but works for any �nite number

I AR: (π1 can be anything)

f1(Y1, R) = R, π2 = Unif(A), f2(Y2, R) = Y2

I CFTP: (π1 can be anything)

f1(Y1, R) = φ(Ω, R), π2 = π, f2(Y2, R) = φ(Y2, R)



Outline of proof of FTPS
I Suppose I limit the number of steps I take to N , at which

point I always return ⊥/∈ Ω. Call the output of this time
constrained algorithm XN . Call the output of the time
unconstrained algorithm X. Then

P(XN ∈ A) ≤ P(X ∈ A) ≤ P(XN ∈ A) + P(XN =⊥).

I By local correctness of branches, for any set A can show by
induction that

P(XN ∈ A) ≤ π(A) ≤ P(XN ∈ A) + P(XN =⊥)

I Assuming the algorithm terminates with probability 1,
limN→∞ P(XN =⊥) = 0.



Other perfect sampling protocols that fit thisframework:

I Adaptive Acceptance Rejection

I Popping

I Randomness recycler

I Partially recursive acceptance rejection

I Fill, Machida, Murdoch, and Rosenthal (FMMR)



Bounding chains



What to do when update function not monotonic

One solution is bounding chains

I Con�guration (x1, x2, . . . , xn)

I Bounding chain for each i has bounding set Ai

I Example: For Ising model start with Ai = {−1, 1}
I MCMC often only updates one or two xi at a time

I If xi is updated, at same time update the bound Ai

Ai = ∪x:(∀j)(xj∈Ai){φ(x,R)i}



Example: Strauss process on finite graph
1 1 1

1 1 1

1 1 1

0

0 0

0 0 0

Density γ2

I Nodes either occupied (labeled 1) or unoccupied (labeled 0)

I Parameter γ ∈ [0, 1], density proportional to

γ#{{i,j}:x(i)x(j)=1}



Use reversible update

1 1

1 1 1

1 1 1

0

0 0

0 0 0

Accept 1 with prob γ2

Accept 0 with prob 1

I Choose a node uniformly to update

I Propose new node label Bern(λ/(1 + λ))

I Always accept a 0, accept a 1 with probability γ#{neighboring 1's}



Pseudocode for update

1 1

1 1 1

1 1 1

0

0 0

0 0 0

Accept 1 with prob γ2

Accept 0 with prob 1

I Choose a node uniformly to update

I Propose new node label Bern(λ/(1 + λ))

I Always accept a 0, accept a 1 with probability γ#{neighboring 1's}



Bounding chain keeps track of “unknown” nodes
I Add new symbol ? = {0, 1} representing node value unknown

I Initially, start with all nodes labeled ?

?

?

?

?

?

?

?

?

?

Then update the bounding chain as you take steps



Example of bounding chain update

I Suppose we try to label a node 0, then always accepted

?

?

?

?

?

?

?

?

?0

⇒

?

?

?

?

?

?

?

?

?0



Example of bounding chain update 2
I Suppose we try to label a node 1, chance of acceptance in

γ0, γ1, γ2, γ3

?

?

?

?

?

?

?

?

?1

⇒

?

?

?

?

?

?

?

?

?1

U ∈ [0, γ3]

or

?

?

?

?

?

?

?

?

??

U ∈ [γ3, 1]

I Only accept if U ∼ Unif([0, 1]) has U ≤ γ3



Example of bounding chain update 3
I Once all the ? nodes are gone, φ(Ω, R) = {x}
I So bounding chains allow use of CFTP

I Let Qt = #{i : x(i) =?}, then can be shown that

E[Qt+1|Qt] ≤ Qt

(
1− ∆λ(1− γ)/(1 + λ)

n

)
,

where n is # of nodes; ∆ is the max degree of the graph, for

λ ≤ 1

∆(1− γ)λ/(1 + λ)− 1



Running time for bounding chain procedure
I Hence

E[Qt+1] ≤ n
(

1− ∆λ(1− γ)/(1 + λ)

n

)t

,

I For

λ ≤ 1

∆(1− γ)λ/(1 + λ)− 1

expected number of steps needed by CFTP is

Θ(n ln(n))



Read once CFTP



Notation

S When R ∈ A

F When R /∈ A

A typical run

F

F
recurse

F
recurse

S
recurse

evaluate evaluate evaluate



Notation

S When R ∈ A

F When R /∈ A

A typical run

FF
recurse

F
recurse

S
recurse

evaluate evaluate evaluate



Notation

S When R ∈ A

F When R /∈ A

A typical run

FF
recurse

F
recurse

S
recurse

evaluate evaluate evaluate



Notation

S When R ∈ A

F When R /∈ A

A typical run

FF
recurse

F
recurse

S
recurse

evaluate evaluate evaluate



Notation

S When R ∈ A

F When R /∈ A

A typical run

FF
recurse

F
recurse

S
recurse

evaluate

evaluate evaluate



Notation

S When R ∈ A

F When R /∈ A

A typical run

FF
recurse

F
recurse

S
recurse

evaluate evaluate

evaluate



Notation

S When R ∈ A

F When R /∈ A

A typical run

FF
recurse

F
recurse

S
recurse

evaluate evaluate evaluate



An observation

There are a geometric number of recursions, with mean equal to the
multiplicative inverse of the probability of a success block R ∈ A

F F F F F F F F F F F FS S

X1

S

X2

S

X3

Every sample before the second and later success blocks comes
from π



Read once CFTP1
Generating X1, . . . , Xnπ iid

1. Repeat
2. Draw R

3. Until R ∈ A
4. Let k ← 0, Xk ← single element of φ(Ω, R)

5. Repeat
6. Draw R, k ← k + 1(R ∈ A)

7. Xk ← φ(Xk, R)

8. Until k = n+ 1

9. Output X1, . . . , Xn

1D. B. Wilson, How to couple from the past using a read-once source of
randomness, Random Structures Algorithms, 16(1):85�113, 2000



Bernoulli Factories



What is a Bernoulli factory?

Given an iid stream
B1, B2, . . .

of random variables of mean p, create a single Bernoulli with mean

f(p)

using as few draws from the stream as possible



An example

Let
f(p) = p(1− p)

then
W = B1(1−B2)

is a Bernoulli random variable with mean p(1− p)



Von Neumann’s Bernoulli Factory: Stopping time

We are trying to �ip a fair coin, so let

f(p) = 1/2

then let
T = inf{t : t is even and B2t 6= B2t−1}

Set W = BT



Von Neumann’s BF: Repeat form

1. Repeat
2. Draw A,B ← Bern(p)

3. Until A 6= B

4. Ouptut B



Von Neumann’s BF: Recursion form

VNBF

1. Draw A,B ← Bern(p)

2. If A = B then draw B ← VNBF

3. Ouptut B



Von Neumann’s BF: Picture form

Unif(1/2)

p

1− p

p
Unif(1/2)

1− p
0

p 1

1− p
Unif(1/2)



BF History: origins

S. Asmussen, P. W. Glynn, and H. Thorisson, Stationarity Detection in

the Initial Transient Problem, ACM Trans. Modeling and Computer

Simulation, 2(2):130�157, 1992.

I Simulation from stationary distribution of regenerative Markov
processes

I Required as subroutine ability to generate from Bernoulli
factory with f(p) = Cp for constant C



BF History: next steps

M. S. Keane and G. L. O'Brien, A Bernoulli factory, ACM Trans.

Modeling and Computer Simulation, 4:213�219, 1994.

I Introduced term Bernoulli factory

I Gave necessary and su�cient conditions on f for a Bernoulli
factory to exist

I Mathematical construct rather than algorithm.

I Unknown if expected run time �nite or tails heavy or light



BF History: Bernstein connection
S. Nacu and Y. Peres, Fast simulation of new coins from old, Ann. Appl.

Probab., 15(1A):93�115, 2005.

I Gave method with exponential tails (so unknown if expected
run time �nite)

I Used Bernstein polynomials to approximate f(p):

n∑
i=0

aip
i(1− p)i ≤ f(p) ≤

n∑
i=0

bip
i(1− p)i

I Algorithm, but required exponential time to implement

I Showed f(p) = 2p su�cient to get any real analytic f



BF History: first practical algorithm

K. �atuszy«ski, I. Kosmidis, O. Papaspiliopoulos, and G. O. Roberts.

Simulation events of unknown probability via reverse time Martingales,

Random Structures Algorithms, 38:441�452, 2011.

I Practical implementation of Nacu & Peres

I Introduced reverse time Martingales technique for perfect
simulation

I Numerical experiments indicated run time not linear in C



BF History: FTPS view

M. Huber, Nearly optimal Bernoulli factories for linear functions,

Combinatorics, Probability and Computing, arXiv: 1308.1562.

25(4):577�591, 2016.

I Used a move from distribution to distribution approach

I FTPS used to prove correctness

I Runs in time proportional to optimal # of steps needed



Illustrate for f(p) = 2p

Bern(2p)

p 1

1− p
Bern

(
p

1− p

)

Works because (for X ∼ Bern(2p),

P(X = 1) = 2p = (p)(1) + (1− p)
(

p

1− p

)



Shorthand

Since the only distributions we are interested here are Bernoulli,
which are determined by their parameter, shorthand to write:

2p

p
1 (terminating state)

1− p p

1− p



What to do with p/(1− p)

p

1− p

1/2 2p

1/2 2p
p

1− p

Here
p

1− p
=

1

2
· 2p+

1

2
(2p)

p

1− p



What to do with (2p)p/(1− p)

(2p)
p

1− p

1/2 (2p)2

1/2 (2p)2
p

1− p



What to do with (2p)ip/(1− p)

(2p)i+1 p

1− p

1/2 (2p)i+1

1/2 (2p)i+1 p

1− p



Now back to (2p)i

When goal is of form (2p)i, �ip a p-coin once

(2p)i

p (2p)i−1

1− p (2p)i−1
p

1− p



Created Markov chain on distributions

Let r = p/(1− p)

1 (2p) (2p)2 (2p)3 (2p)4 · · ·

r (2p)r (2p)2r (2p)3r · · ·

p
1− p

p
1− p

p
1− p

p
1− p

1/2 1/2 1/2

1/2 1/2 1/2

I If we get to distribution Bernoulli with mean 1, terminate

I So far, we do not have any way of terminating at 0



To deal with (2p)i where i is large

Assume 2p < 1− ε for known ε > 0

(2p)i ≤ (1− ε)i < exp(−iε)

For i > 1/ε, exp(−1) < 1/2, which means

2(2p)i < 1



What to do with (2p)i

(2p)i

1/2 0

1/2 2(2p)i

(2p)ir

1/2 0

1/2 2(2p)ir



How to deal with 2(2p)i

Bring 2 inside the exponent,

2(2p)i = (2 · 21/i)i,

For i large
21/i ≈ 1 + ln(2)/i,

so does not increase constant much



Running time

Theorem
The average number of steps (with appropriate tuning of constants)

for a Bernoulli Factory with f(p) = Cp ≤ 1− ε is 9.5Cε−1.



Summary

I Coupling from the past is second most widely used perfect
simulation technique after AR

I Takes advantage of existing update functions for Markov
chains

I FTPS gives condition for perfect simulations to work similar to
stationary updates for MCMC to work

I Idea applicable to situations such as Bernoulli Factories

I Goal: randomly transform your problem/distribution to an
easier one


