
Lecture 3



Perfect simulation III

Dominated Processes and Uniform Coupler

Mark Huber
Claremont McKenna College
July, 2018

Supported by NSF grant DMS 1418495



The story so far



Coupling from the past: set up

Ingredients

I Need update function φ(x, r)

I Need set A such that

(∀r ∈ A)(∀x ∈ Ω)(φ(x,R) = {a})

So no matter what random choices I pick in A, all the states
in the state space get updated to move to the same state a



Coupling from the past: execution

CFTP

1. Draw R

2. If R ∈ A, X ← only element of φ(Ω, R)

3. Else Y ← CFTP, X ← φ(Y,R)

4. Output X

Big question: how do we �nd such an A?



Coupling from the past: monotonicity

I Suppose we have a partial order on the state space [So for
some states a � b]

I There is a maximum state xmax where (∀x)(x � xmax )

I There is a minimum state xmin where (∀x)(xmin � x)

I For all random choices r

x � y ⇒ φ(x, r) � φ(y, r)



Coupling from the past: utilizing monotonicity

With a monotonic update function

A = {r : φ(xmin , r) = φ(xmax , r)}

Everything else is trapped between the update for the minimum
and maximum states!



Two obstacles to using this

1. What if there is no xmax state?

2. What if the state space is continuous, and φ(xmin , r) never
quite reaches φ(xmax , r)?



Simulation

Bernoulli Factory

Acceptance
Rejection

Density
AR

Fundamental Theorem
of Simulation

Read-once
CFTP

Coupling
from the past

Bounding
chains

Fundamental Theorem
of Perfect simulation

Dominating
Processes

Birth/death
chains

Uniform coupling

Integration

Gamma Bernoulli
Approximation Scheme

Bounded
Relative
Variance

Gamma Poisson
Approximation Scheme

Tootsie Pop
Algorithm

Well balanced
Importance Sampling



What if there is no xmax state?





Unfortunately, this happens a lot

I Perpetuities with state space [0,∞)

I Point processes with unlimited numbers of points

I Queuing networks



Perpetuities



Perpetuities
Model things that grow or shrink randomly with random addition

Xt+1 = AtXt +Bt,

where

A1, A2, . . . ∼ A
B1, B2, . . . ∼ B

When Bt = 1, At = U
1/β
t , where {Ut} are Unif([0, 1]) call this a

Vervaat Perpetutity 1

1W. Vervaat, On a Stochastic Di�erence Equation and a Representation of
Non-negative In�nite Divisible Random Variables, Adv. in Appl. Probab.,
11(4):750�783, 1979



Another view

Can also view Vervaat Perpetuities as in�nite sums of products of
iid U1, U2, . . . ∼ Unif([0, 1])

Y = U
1/β
1 + [U1U2]

1/β + [U1U2U3]
1/β + · · ·

I Lower state is 0

I No upper bound on the state of this chain



Simplify things

I For simplicity of exposition, let β = 1

I Can extend techniques to general beta



Naive update function is monotonic
I For any U ∈ [0, 1],

x ≤ y ⇒ U(x+ 1) ≤ U(y + 1)

I Lower bound is 0

I No upper bound!

I Also strictly monotonic

x < y ⇒ U(x+ 1) < U(y + 1)

so upper and lower processes will never meet



In pictures

0 Xt Xt + 1

Xt+1 ∼ Unif([0, Xt + 1])



Dominating process

Definition
Say that Yt dominates Xt if Xt ≤ Yt for all t.



Getting a dominating process
Suppose that Xt ≥ 5. Then

P((Xt + 1)Ut ≤ Xt − 1) = P(U ≤ 2/3) = 2/3

0 Xt − 1 Xt Xt + 1

Xt+1 ∼ Unif([0, Xt+1])

2/3 1/3



The Dominating Process for β = 1

0 Xt − 1 Xt Xt + 1

Xt+1 ∼ Unif([0, Xt + 1])

5 6 7 · · ·

1/3 1/3 1/3

2/32/3 2/3
2/3



Why is it dominating?

Xt+1 = (Xt + 1)Ut,

Yt+1 = Yt − 1(Ut ≤ 2/3, Yt ≥ 5) + 1(Ut > 2/3)

Fact
If X0 ≤ Y0, Xt+1 = (Xt + 1)Ut, and
Yt+1 = Yt − 1(Ut ≤ 2/3, Yt ≥ 5) + 1(Ut > 2/3) then

(∀t)(Xt ≤ Yt)



Why is this useful?
Can calculate the stationary distribution for Yt

(∀i ∈ {1, 2, 3 . . .})(P(Y∞ = 4 + i) = (1/2)i)

Or another way to say it

Y∞ ∼ 4 +G, G ∼ Geo(1/2)

So

1. Draw Y0 ← Y∞, and then set W0 ← 0

2. Draw U0, . . . , Uk−1 iid Unif([0, 1])

3. For i = 1 to k, Yi ← (Yi−1 + 1)Ui−1, Wi ← (Wi−1 + 1)Ui−1

Then Wi ≤ Xi ≤ Yi



Bringing the processes together

0 Wt − 1 Wt Wt + 1 Yt − 1 Yt Yt + 1

Wt+1 ∼ Unif([0,Wt + 1])

Yt+1 ∼ Unif([0, Yt + 1])

I If we draw X ∼ Unif([0, Yt + 1]) and it falls in [0,Wt + 1],
then it is also uniform over [0,Wt + 1]

I So probability that they come together is (Wt + 1)/(Yt + 1)



Putting this together

1. Draw Y0 ← Y∞, and then set W0 ← 0

2. Draw U0, . . . , Uk−1, Uk iid Unif([0, 1])

3. For i = 1 to k, Yi ← (Yi−1 + 1)Ui−1, Wi ← (Wi−1 + 1)Ui−1

4. Yk+1 ← Uk(1 + Yk)5. If Yk+1 ≤Wk + 1 then Wk+1 ← Yk+16. Else Wk+1 ← (Wk + 1)[Yk+1 − (Wk + 1)]/[Yk −Wk]



Great if it converges

0



What if it doesn’t converge?

6

0

?



Change from regular CFTP

If it does not converge

I Need a coupled draw (X0, Y0) conditioned on Y0 = 6

I To get it, use reversibility

I Recall that if

π(dx)p(x, dy) = π(dy)p(y, dx)

then the chain is reversible, and π is a stationary distribution
of the chain

I For reversible chains in a stationary state, the path looks the
same run forward and backward



Building the dominated process that ends at theright spot

3 steps

1. Run the dominated chain backwards in time to beginning of
the block

2. Impute the forward uniforms from the backward run

3. Use the forward uniforms to update the underlying chain

The result is a run of the underlying chain whose dominating chain
ends at the proper spot



Run dominating process back in time

6

0



Impute forward uniforms

Example If Y−3 = 7 and Y−2 = 6, then

U−2 ∼ Unif[0, 2/3]

If Y−5 = 7 and Y−4 = 8 then

U−4 ∼ Unif[2/3, 1]



Use uniforms to drive upper and lower processesforward

6

0



Now drive (X0, Y0) forward to get Xt

6

0



Spatial processes



Poisson point process

Rate λ over a window A

1. Draw N ← Pois(λ · area(A)

2. Draw P1, . . . , PN uniform over A

Remarks

I The number of possible points is unbounded

I Resulting point process is in the exponential space



Picture of PPP

Region with λ · area = µ

µ0 µ1/1! µ2/2! µ3/3!

· · ·



PPP in time

Jump process

I Continuous time Markov chain

I This is a birth-death chain

I Points are born into the process

I Time between births exponential distribution of rate λ · area(A)

I Points live for a time, then die (and are removed)

I Stationary distribution is PPP



PPP in time
Suppose space is 1D, two points alive at time 0

time

space

I Lifetime of point is Exponential rate 1

I Time between births is Exponential rate µ



Modifying for spatial point processes
Want to draw from bounded density with respect to PPP (for
γ ∈ [0, 1])

fStrauss(P ) = γt(P ), t(P ) = #{{xi, xj} ∈ P : dist(xi, xj) < R}

I Deaths work as in the original PPP�remove the point

I When point born, roll U ∼ Unif([0, 1]) to see if point added

I For instance, if new point would increase t(P ) by 2, only
accept the birth with probability γ2

I This makes the chain reversible with the correct stationary
distribution



Picture

time

space

t

I Point born at t too close to existing node

I Birth only occurs with probability γ



Pseudocode for birth-death step

Birth-Death Strauss step

Input: current state P1, . . . , Pn, intensity function λ

1. Draw TB ← Exp(µ), TD ← Exp(n)

2. If TD < TB (death) then let I ← Unif({1, . . . , n}), remove
point PI from the set

3. Else (possible birth) draw P from λ normalized over the region

3.1 Let b← {i : dist(Pi, P ), draw U ← Unif([0, 1])3.2 If U ≤ γb, then let PN+1 ← P



Using with dominated CFTP

The PPP continuous time Markov chain is the
dominating process

I The Strauss ctmc is the underlying process

I DCFTP works as with the perpetutities

One step in the process

I Generate a birth or a death

I Always accept deaths and remove the point

I Births are either added for certain, not added for certain, or
might be added (?)

When the ? points are gone, the process has coupled



At time 0, all points uncertain

?

?

Radius of disk is R/2



Unblocked birth

?

?

·

⇒

?

?

·

If point is born that does not con�ict with any existing disks, it is
certainly added



Death

?

?D

·

⇒

?

·

If point dies�whether certain or uncertain�it is always removed



Birth near known point

?

·
· ?

·
·

·

?

U ≤ γ

U > γ

If point dies�whether certain or uncertain�it is always removed



Birth near unknown point

?
·

· ?
·

·

·

?
?

U ≤ γ

U > γ

Point might or might not be born



Birth near both

?

·

·

?

·

·

·

?

?

?

·

U ≤ γ2

U ∈ [γ2, γ]

U > γ



New ? points must be next to existing points

? ·

I Let BR be the ball of radius R around the point

I Average # of ? children a ? point has before dying is at most

α < λ(BR)(1− γ)

I So if α < 1, then ? points die away exponentially fast



Birth-death-swap chains
I Birth-death-swap chains improve this framework 2

I Death same as before

I Births can be �blocked� by one or more points

I If birth blocked by exactly one point, can swap with proability
1/4: take the point's place (so removed blocking point and
add the birth)

I This small change guarantees e�ciency when

λ · area(BR)(1− γ) < 2

2M. Huber, Spatial birth-death swap chains, Bernoulli, arXiv:1006.5934,
18(3):1031�1041, 2012



Slice sampling



Drawing uniforms

I Recall that if we draw X uniformly from B where A ⊆ B, and
X ∈ A, then X ∼ Unif(A)

I Mira, Møller, and Roberts3 used this fact to create a
perfect slice sampler

3A. Mira, J. Møller, and G. O. Roberts, Perfect slice samplers, J. R. Statist.
Soc. B, 63(3):593�606, 2001



Slice sampler

Remember Fundamental Theorem of Simulation, to draw

X ∼ fX

instead draw

(X,Y ) ∼ Unif({(x, y) : 0 ≤ y ≤ fX(x)})



Example: drawing from beta distribution

Beta(3, 2)

A

(X,Y ) X ∼ Beta(3, 2)

(X,Y ) ∼ Unif(A)



Gibbs sampler

1. Given X, draw Y ← Unif([0, fX(X)])

2. Given Y , draw X ← Unif({x : fX(x) ≥ Y })

(X, Y ) (X, Y )

(X,Y ′) (X, Y ′)

(X′, Y ′)

This is the slice sampler since X is drawn from the slice of the
volume under the density of height Y



Using monotonicity with perfect slice sampler

Use the following partial order on states

(X,Y ) � (W,Z)⇔ Y ≤ Z

Is there a monotonic update function?



Here’s the idea
I The hard part is drawing uniformly from {x : fX(x) ≥ y}
I Want to draw simulataneously for all y

I Use a nested approach

y

y0

I Draw X uniformly from {x : fX(x) ≥ y0}
I If X ∈ {x : fX(x) ≥ y}, also accept as uniform over this set



Illustration of monotonic slice update

y

y0

Same value for y0 and y

y

y0

Di�erent value for y0 and y



Range of y for which choice of x works

y0
x

Use x

All y in [0, fX(x)] will have x as their value



Can repeat to get values for all y’s needed

y1

y0
x0

Use x0

y2

x1

Use x1



For CFTP, inital run only needs upper and lowerprocess

y`

x`

yu

xu

Given lower step

1. If fX(x`) ≥ yu then xu ← xu

2. Else draw xu uniformly from {x : fX(x) ≥ yu}



Recursive step: upper, lower, and middle process

y`

ym

x`

yu

xu

Given upper and lower step

1. Draw xm uniformly from {x : fX(x) ≥ ym}
2. If fX(xm) ≥ yu then xm ← xu



Summary

Domination

I Create a chain/process which upper bounds chain

I Naturally works with birth-death chains for spatial point
processes

I Solution to chains with no xmax

Uniform coupling

I For A ⊆ B, if X ∼ Unif(B) has X ∈ A, then X ∼ Unif(A)

I Draws from our earlier work on AR

I Solution to moving continuous chains together


